

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f537-c-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	13
	1.1. Ordering Information	14
	1.2. CIP-51 [™] Microcontroller	18
	1.2.1. Fully 8051 Compatible Instruction Set	18
	1.2.2. Improved Throughput	18
	1.2.3. Additional Features	18
	1.2.4. On-Chip Debug Circuitry	18
	1.3. On-Chip Memory	20
	1.4. Operating Modes	21
	1.5. 12-Bit Analog to Digital Converter	22
	1.6. Programmable Comparator	23
	1.7. Voltage Regulator	23
	1.8. Serial Port	23
	1.9. Port Input/Output	24
2.	Electrical Characteristics	25
	2.1. Absolute Maximum Ratings	25
	2.2. Electrical Characteristics	26
3.	Pinout and Package Definitions	35
4.	12-Bit ADC (ADC0)	52
	4.1. Analog Multiplexer	52
	4.2. Temperature Sensor	53
	4.3. ADC0 Operation	54
	4.3.1. Starting a Conversion	54
	4.3.2. Tracking Modes	54
	4.3.3. Timing	55
	4.3.4. Burst Mode	57
	4.3.5. Output Conversion Code	59
	4.3.6. Settling Time Requirements	60
	4.4. Selectable Gain	60
	4.4.1. Calculating the Gain Value	61
	4.4.2. Setting the Gain Value	62
	4.5. Programmable Window Detector	69
_	4.5.1. Window Detector In Single-Ended Mode	71
5.	Voltage Reference	72
6.	Voltage Regulator (REG0)	/4 70
1.	Comparator	16
8.	CIP-51 Microcontroller	81
	8.1. Instruction Set	82
	8.1.1. INSTRUCTION and CPU TIMING	ŏΖ
	o. I.Z. MOVA Instruction and Program Memory	03 00
	0.2. Register Descriptions	00
	9.2.1 Idla Mada	09
		90

Figure 1.3. C8051F53x Block Diagram (Silicon Revision A)

Figure 1.4. C8051F52x Block Diagram (Silicon Revision A)

1.2. CIP-51[™] Microcontroller

1.2.1. Fully 8051 Compatible Instruction Set

The C8051F52x/F52xA/F53x/F53xA devices use Silicon Laboratories' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51[™] instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The C8051F52x/F52xA/F53x/F53xA family has a superset of all the peripherals included with a standard 8052.

1.2.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12-to-24 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

1.2.3. Additional Features

The C8051F52x/F52xA/F53x/F53xA family includes several key enhancements to the CIP-51 core and peripherals to improve performance and ease of use in end applications.

An extended interrupt handler allows the numerous analog and digital peripherals to operate independently of the controller core and interrupt the controller only when necessary. By requiring less intervention from the microcontroller core, an interrupt-driven system is more efficient and allows for easier implementation of multi-tasking, real-time systems.

Eight reset sources are available: power-on reset circuitry (POR), an on-chip V_{DD} monitor, a Watchdog Timer, a Missing Clock Detector, a voltage level detection from Comparator, a forced software reset, an external reset pin, and an illegal Flash access protection circuit. Each reset source except for the POR, Reset Input Pin, or Flash error may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.

The internal oscillator is factory calibrated to 24.5 MHz $\pm 0.5\%$ across the entire operating temperature and voltage range. An external oscillator drive circuit is also included, allowing an external crystal, ceramic resonator, capacitor, RC, or CMOS clock source to generate the system clock.

1.2.4. On-Chip Debug Circuitry

The C8051F52x/F52xA/F53x/F53xA devices include on-chip Silicon Laboratories 2-Wire (C2) debug circuitry that provides non-intrusive, full speed, in-circuit debugging of the production part *installed in the end application*.

Silicon Laboratories' debugging system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the ADC) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F530DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F52x/F52xA/F53x/F53xA MCUs. The kit

Table 2.2. Global DC Electrical Characteristics

-40 to +125 °C, 25 MHz System Clock unless otherwise specified. Typical values are given at 25 °C

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Current—CPU Inactive (Id	le Mode, not fetching instructio	ns from	Flash)	1	1
Idle I _{DD} ^{3,4}	$V_{DD} = 2.1 V:$ Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz $V_{DD} = 2.6 V:$ Clock = 22 kHz	 	8 22 0.09 2.2	 5	μA μA mA mA
	Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz		9 30 0.13 3	— — 6.5	μΑ μΑ mA mA
Idle I _{DD} Frequency Sensitivity ^{3,6}	T = 25 °C: V_{DD} = 2.1 V, F \leq 1 MHz V_{DD} = 2.1 V, F > 1 MHz V_{DD} = 2.6 V, F \leq 1 MHz V_{DD} = 2.6 V, F > 1 MHz		90 90 118 118		μΑ/MHz μΑ/MHz μΑ/MHz μΑ/MHz
Digital Supply Current ³ (Stop or Suspend Mode)	Oscillator not running, V_{DD} Monitor Disabled. T = 25 °C T = 60 °C T = 125 °C		2 3 50		μΑ μΑ μΑ

Notes:

- 1. For more information on $V_{\mbox{REGIN}}$ characteristics, see Table 2.6 on page 30.
- **2.** SYSCLK must be at least 32 kHz to enable debugging.
- **3.** Based on device characterization data; Not production tested.
- 4. Does not include internal oscillator or internal regulator supply current.
- 5. I_{DD} can be estimated for frequencies <= 12 MHz by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} > 12 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 2.6 V; F = 20 MHz, I_{DD} = 7.3 mA (25 MHz 20 MHz) x 0.184 mA/MHz = 6.38 mA.
- 6. Idle I_{DD} can be estimated for frequencies <= 1 MHz by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} > 1 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 2.6 V; F= 5 MHz, Idle I_{DD} = 3 mA (25 MHz– 5 MHz) x 118 µA/MHz = 0.64 mA.

Table 2.7. Comparator Electrical Characteristics

 $V_{\text{REGIN}} = 2.7-5.25$ V, -40 to +125 °C unless otherwise noted.

All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Conditions	Min	Тур	Max	Units
CP0+ - CP0- = 100 mV		780	_	ns
CP0+ - CP0- = -100 mV		980	_	ns
CP0+ - CP0- = 100 mV		850	—	ns
CP0+ - CP0- = -100 mV		1120	—	ns
CP0+ - CP0- = 100 mV	—	870	—	ns
CP0+ - CP0- = -100 mV		1310	—	ns
CP0+ - CP0- = 100 mV		1980	—	ns
CP0+ – CP0– = –100 mV		4770	—	ns
	—	3	9	mV/V
CP0HYP1-0 = 00	—	0.7	2	mV
CP0HYP1-0 = 01	2	5	10	mV
CP0HYP1-0 = 10	5	10	20	mV
CP0HYP1-0 = 11	13	20	40	mV
CP0HYN1-0 = 00		0.7	2	mV
CP0HYN1-0 = 01	2	5	10	mV
CP0HYN1-0 = 10	5	10	20	mV
CP0HYN1-0 = 11	13	20	40	mV
	-0.25	_	V _{DD} + 0.25	V
	—	4	—	pF
	—	0.5	—	nA
	-15	_	15	mV
		1.5	—	kΩ
	—	0.2	4	mV/V
		2.3	—	μs
Mode 0		6	30	μA
Mode 1		3	15	μA
Mode 2	—	2	7.5	μA
Mode 3		0.3	3.8	uА
	Conditions CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0+ - CP0- = 100 mV CP0+ - CP0- = 00 CP0HYP1-0 = 01 CP0HYP1-0 = 11 CP0HYN1-0 = 01 CP0HYN1-0 = 10 CP0HYN1-0 = 11 CP0HYN1-0 = 11 Mode 0 Mode 1 Mode 2 Mode 3	Conditions Min CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0+ - CP0- = 100 mV CP0+ - CP0- = -100 mV CP0HYP1-0 = 00 CP0HYP1-0 = 01 2 CP0HYN1-0 = 01 2 CP0HYN1-0 = 10 5 CP0HYN1-0 = 11 13 0.25	Conditions Min Typ CP0+ - CP0- = 100 mV 780 CP0+ - CP0- = -100 mV 980 CP0+ - CP0- = 100 mV 1120 CP0+ - CP0- = 100 mV 870 CP0+ - CP0- = 100 mV 1310 CP0+ - CP0- = 100 mV 1310 CP0+ - CP0- = -100 mV 1310 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 4770 3 CP0HYP1-0 = 00 CP0HYP1-0 = 10 5 10 CP0HYN1-0 = 01 CP0HYN1-0 = 01 2 5 5 CP0HYN1-0 = 11 13 20 CP0HYN1-0 = 11 13 20 CP0HYN1-0 = 11 13 20 4 1.5	Conditions Min Typ Max CP0+ - CP0- = 100 mV 780 CP0+ - CP0- = -100 mV 980 CP0+ - CP0- = 100 mV 850 CP0+ - CP0- = 100 mV 1120 CP0+ - CP0- = 100 mV 870 CP0+ - CP0- = 100 mV 1310 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 1980 CP0+ - CP0- = -100 mV 4770 CP0+ - CP0- = -100 mV 4770 CP0HYP1-0 = 00 0.7 2 CP0HYP1-0 = 10 5 10 20 CP0HYN1-0 = 01 2 5 10 CP0HYN1-0 = 11 13 20 40 CP0HYN1-0 = 11 13 20 40 CP0HYN1-0 = 11 13 <t< td=""></t<>

1. Vcm is the common-mode voltage on CP0+ and CP0-.

2. Guaranteed by design and/or characterization.

Post-Tracking Mode is selected when ADOTM is set to 01b. A programmable tracking time based on ADOTK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 does not track the input. Rather, the sampling capacitor remains disconnected from the input making the input pin high-impedance until the next convert start signal.

Dual-Tracking Mode is selected when AD0TM is set to 11b. A programmable tracking time based on AD0TK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 tracks continuously until the next conversion is started.

Depending on the output connected to the ADC input, additional tracking time, more than is specified in Table 2.3 on page 28, may be required after changing MUX settings. See the settling time requirements described in Section "4.3.6. Settling Time Requirements" on page 60.

Figure	43		Tracking	Modes
Iguie	4.3.	ADCU	Hacking	WIDUES

4.3.3. Timing

ADC0 has a maximum conversion speed specified in Table 2.3 on page 28. ADC0 is clocked from the ADC0 Subsystem Clock (FCLK). The source of FCLK is selected based on the BURSTEN bit. When BURSTEN is logic 0, FCLK is derived from the current system clock. When BURSTEN is logic 1, FCLK is derived from the Burst Mode Oscillator, which is an independent clock source whose maximum frequency is specified in Table 2.3 on page 28.

When ADC0 is performing a conversion, it requires a clock source that is typically slower than FCLK. The ADC0 SAR conversion clock (SAR clock) is a divided version of FCLK. The divide ratio can be configured using the AD0SC bits in the ADC0CF register. The maximum SAR clock frequency is listed in Table 2.3 on page 28.

ADC0 can be in one of three states at any given time: tracking, converting, or idle. Tracking time depends on the tracking mode selected. For Pre-Tracking Mode, tracking is managed by software and ADC0 starts conversions immediately following the convert start signal. For Post-Tracking and Dual-Tracking Modes, the tracking time after the convert start signal is equal to the value determined by the AD0TK bits plus 2 FCLK cycles. Tracking is immediately followed by a conversion. The ADC0 conversion time is always 13 SAR clock cycles plus an additional 2 FCLK cycles to start and complete a conversion. Figure 4.4 shows timing diagrams for a conversion in Pre-Tracking Mode and tracking plus conversion in Post-Tracking or Dual-Tracking Mode. In this example, repeat count is set to one.

4.4.1. Calculating the Gain Value

The ADC0 selectable gain feature is controlled by 13 bits in three registers. ADC0GNH contains the 8 upper bits of the gain value and ADC0GNL contains the 4 lower bits of the gain value. The final GAINADD bit (ADC0GNA.0) controls an optional extra 1/64 (0.016) of gain that can be added in addition to the ADC0GNH and ADC0GNL gain. The ADC0GNA.0 bit is set to 1 after a power-on reset.

The equivalent gain for the ADC0GNH, ADC0GNL and ADC0GNA registers is:

$$gain = \left(\frac{GAIN}{4096}\right) + GAINADD \times \left(\frac{1}{64}\right)$$

Equation 4.2. Equivalent Gain from the ADC0GNH and ADC0GNL Registers

Where:

GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4] *GAINADD* is the value of the GAINADD bit (ADC0GNA.0) *gain* is the equivalent gain value from 0 to 1.016

For example, if ADC0GNH = 0xFC, ADC0GNL = 0x00, and GAINADD = '1', GAIN = 0xFC0 = 4032, and the resulting equation is:

$$gain = \left(\frac{4032}{4096}\right) + 1 \times \left(\frac{1}{64}\right) = 0.984 + 0.016 = 1.0$$

The table below equates values in the ADC0GNH, ADC0GNL, and ADC0GNA registers to the equivalent gain using this equation.

ADC0GNH Value	ADC0GNL Value	GAINADD Value	GAIN Value	Equivalent Gain
0xFC (default)	0x00 (default)	1 (default)	4032 + 64	1.0 (default)
0x7C	0x00	1	1984 + 64	0.5
0xBC	0x00	1	3008 + 64	0.75
0x3C	0x00	1	960 + 64	0.25
0xFF	0xF0	0	4095 + 0	~1.0
0xFF	0xF0	1	4095 + 64	1.016

For any desired gain value, the GAIN registers can be calculated by:

$$GAIN = \left(gain - GAINADD \times \left(\frac{1}{64}\right)\right) \times 4096$$

Equation 4.3. Calculating the ADC0GNH and ADC0GNL Values from the Desired Gain Where:

GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4] *GAINADD* is the value of the GAINADD bit (ADC0GNA.0) *gain* is the equivalent gain value from 0 to 1.016

When calculating the value of GAIN to load into the ADC0GNH and ADC0GNL registers, the GAINADD bit can be turned on or off to reach a value closer to the desired gain value.

4.5.1. Window Detector In Single-Ended Mode

Figure 4.7 shows two example window comparisons for right-justified data with ADC0LTH:ADC0LTL = 0x0200 (512d) and ADC0GTH:ADC0GTL = 0x0100 (256d). The input voltage can range from 0 to V_{RFF} x (4095/4096) with respect to GND, and is represented by a 12-bit unsigned integer value. The repeat count is set to one. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0100 < ADC0H:ADC0L < 0x0200). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0100 or ADC0H:ADC0L > 0x0200). Figure 4.8 shows an example using left-justified data with the same comparison values.

Figure 4.7. ADC Window Compare Example: Right-Justified Single-Ended Data

Figure 4.8. ADC Window Compare Example: Left-Justified Single-Ended Data

8. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The C8051F52x/F52xA/F53x/F53xA family has a superset of all the peripherals included with a standard 8051. See Section "1. System Overview" on page 13 for more information about the available peripherals. The CIP-51 includes on-chip debug hardware which interfaces directly with the analog and digital subsystems, providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 8.1 for a block diagram). The CIP-51 core includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput
- 256 Bytes of Internal RAM
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- Integrated Debug Logic
- Program and Data Memory Security

Figure 8.1. CIP-51 Block Diagram

Mnemonic	Mnemonic Description		Clock Cycles
Boolean Manipulation	1		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching			·
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/5
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0–R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00–0x7F) or an SFR (0x80–0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 7680 bytes of program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

8.2. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic 1. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Valu
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
							SFR Address	: 0xD0
Bit7:	CY: Carry	/ Flag.						
	This bit is	set when	the last arithmet	ic operatio	n resulted i	n a carry (a	addition) or a	a borrow
	(subtracti	on). It is cl	eared to 0 by all	other arith	metic opera	ations.	,	
it6:	AC: Auxil	iary Carry	Flag					
	This bit is	set when	the last arithmeti	c operatior	resulted in	a carry int	o (addition)	or a borro
	from (sub	traction) th	ne high order nib	ble. It is cle	eared to 0 b	by all other	arithmetic o	perations
it5:	F0: User	Flag 0.						
	This is a	bit-address	sable, general pu	urpose flag	for use une	der softwar	e control.	
its4–3:	RS1-RS): Register	Bank Select.					
	These bit	s select wi	nich register ban	k is used c	uring regis	ter accesse	es.	
	RS1	RS0	Register Bank	Addr	ess			
	RS1 0	RS0 0	Register Bank	Addr 0x00–0x0	ess 7			
	RS1 0 0	RS0 0 1	Register Bank 0 1	Addr 0x00–0x0 0x08–0x0	ess 7 F			
	RS1 0 0 1	RS0 0 1 0	Register Bank 0 1 2	Addr 0x00–0x0 0x08–0x0 0x10–0x1	ess 7 F 7			
	RS1 0 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
	RS1 0 1 1	RS0 0 1 0 1	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
sit2:	RS1 0 1 1 0 V: Over	RS0 0 1 0 1 flow Flag.	Register Bank 0 1 2 3	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1	ess 7 F 7 F			
lit2:	RS1 0 1 1 OV: Over This bit is	RS0 0 1 0 1 flow Flag.	Register Bank 0 1 2 3 nder the followin	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst	ess 7 F 7 F ances:			
Sit2:	RS1 0 1 1 OV: Over This bit is • An ADD	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o	Register Bank 0 1 2 3 nder the followin r SUBB instructio	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes	ess 7 F 7 F F ances: a sign-chai	nge overflo	w.	
Sit2:	RS1 0 1 1 OV: Over This bit is • An ADD • A MUL	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o nstruction	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes	ess 7 F 7 F ances: a sign-chai	nge overflo r than 255)	W.	
Sit2:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o nstruction istruction of	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-b	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu	ess 7 F 7 F ances: a sign-chai ilt is greate ndition.	nge overflo r than 255)	w.	
Bit2:	RS1 0 1 1 OV : Over This bit is • An ADD • A MUL • A DIV ir The OV b	RS0 0 1 0 1 flow Flag. set to 1 u 0, ADDC, o instruction struction c it is cleare	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate adition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
Sit2:	RS1 0 1 1 0 V: Over This bit is • An ADD • A MUL i • A DIV ir The OV k cases.	RS0 0 1 0 1 flow Flag. set to 1 u 0, ADDC, o instruction struction wit is cleare	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chai alt is greate ndition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
iit2: iit1:	RS1 0 1 1 0 V: Over This bit is • An ADD • A MUL • A DIV ir The OV b cases. F1: User This is a	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o instruction struction bit is cleare Flag 1.	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F 7 F ances: a sign-chai alt is greate adition. SUBB, MU	nge overflo r than 255) L, and DIV	w. instructions	in all oth
Sit2: Sit1:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir The OV b cases. F1: User This is a DAPITY:	RS0 0 1 0 1 flow Flag. set to 1 u b, ADDC, o instruction struction bit is cleare Flag 1. bit-address Parity Flag	Register Bank 0 1 2 3 Inder the followin r SUBB instruction results in an over causes a divide-b d to 0 by the AD sable, general pute	Addr 0x00–0x0 0x08–0x0 0x10–0x1 0x18–0x1 g circumst on causes erflow (resu by-zero cor D, ADDC,	ess 7 F 7 F ances: a sign-chan It is greate ndition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	w. instructions e control.	in all oth
3it2: 3it1: 3it1:	RS1 0 1 1 1 OV: Over This bit is • An ADD • A MUL i • A DIV ir The OV b cases. F1: User This is a PARITY: This bit is	RS0 0 1 0 1 flow Flag. set to 1 u , ADDC, o instruction struction istruction o it is cleare Flag 1. bit-address Parity Flag	Register Bank 0 1 2 3 nder the followin r SUBB instruction results in an over causes a divide-back d to 0 by the AD sable, general pugation p. the sum of the exit	Addr 0x00-0x0 0x08-0x0 0x10-0x1 0x18-0x1 g circumst on causes erflow (resu by-zero cor D, ADDC, urpose flag	ess 7 F 7 F 7 F ances: a sign-chai at sign-chai it is greate adition. SUBB, MU for use und	nge overflo r than 255) L, and DIV der softwar	w. instructions re control.	in all othe

13. Port Input/Output

Digital and analog resources are available through up to 16 I/O pins. Port pins are organized as two or one byte-wide Ports. Each of the Port pins can be defined as general-purpose I/O (GPIO) or analog input/out-put; Port pins P0.0 - P2.7 can be assigned to one of the internal digital resources as shown in Figure 13.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the peripheral priority order of the Priority Decoder (Figure 13.3 and Figure 13.4). The registers XBR0 and XBR1, defined in SFR Definition 13.1 and SFR Definition 13.2, are used to select internal digital functions.

Port I/O pins are 5.25 V tolerant over the operating range of V_{REGIN} . Figure 13.2 shows the Port cell circuit. The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Table 2.10 on page 33.

Figure 13.1. Port I/O Functional Block Diagram

SFR Definition 14.2. OSCICL: Internal Oscillator Calibration

SFR Definition 14.3. OSCIFIN: Internal Fine Oscillator Calibration

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

The equation for determining the load capacitance for two capacitors is:

$$C_L = \frac{C_A \times C_B}{C_A + C_B} + C_S$$

Where:

 C_{A} and C_{B} are the capacitors connected to the crystal leads.

 C_S is the total stray capacitance of the PCB.

The stray capacitance for a typical layout where the crystal is as close as possible to the pins is 2-5 pF per pin.

If C_A and C_B are the same (C), then the equation becomes:

$$C_L = \frac{C}{2} + C_S$$

For example, a tuning-fork crystal of 32 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 14.1, Option 1. With a stray capacitance of 3 pF per pin (6 pF total), the 13 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 14.2.

Figure 14.2. 32 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)

Important Note: This chapter assumes an understanding of the Local Interconnect Network (LIN) protocol. For more information about the LIN protocol, including specifications, please refer to the LIN consortium (http://www.lin-subbus.org/).

LIN is an asynchronous, serial communications interface used primarily in automotive networks. The Silicon Laboratories LIN controller is compliant to the 2.1 Specification, implements a complete hardware LIN interface, and includes the following features:

- Selectable Master and Slave modes.
- Automatic baud rate option in slave mode
- The internal oscillator is accurate to within 0.5% of 24.5 MHz across the entire temperature range and for VDD voltages greater than or equal to the minimum output of the on-chip voltage regulator, so an external oscillator is not necessary for master mode operation for most systems.

Note: The minimum system clock (SYSCLK) required when using the LIN peripheral is 8 MHz.

Figure 17.1. LIN Block Diagram

The LIN peripheral has four main components:

- 1. LIN Access Registers—Provide the interface between the MCU core and the LIN peripheral.
- 2. LIN Data Registers—Where transmitted and received message data bytes are stored.
- 3. LIN Control Registers—Control the functionality of the LIN interface.
- 4. Control State Machine and Bit Streaming Logic—Contains the hardware that serializes messages and controls the bus timing of the controller.

clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 18.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "10.4. Interrupt Register Descriptions" on page 100), facilitating pulse width measurements.

TR0	GATE0	INT0	Counter/Timer					
0	Х	Х	Disabled					
1	0	Х	Enabled					
1	1	0	Disabled					
1	1	1	Enabled					
X = Don't C	X = Don't Care							

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT0 is used with Timer 1; the INT0 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration).

Figure 18.1. T0 Mode 0 Block Diagram

183

SFR Definition 18.3. CKCON: Clock Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
_	_	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_		
							SFR Address	0x8E		
Bit7-6:	RESERVE	D . Read = 0	b; Must write	e 0b.						
Bit5:	T2MH: Tim	her 2 High B	yte Clock Se	elect.	0 hiah hu	a if Tim or O i		lin anlit O		
	bit timer mode T2MH is ignored if Timer 2 is in any other mode									
	0. Timer 2 high byte uses the clock defined by the T2XCI K bit in TMR2CN									
	1: Timer 2 high byte uses the system clock.									
Bit4:	T2ML: Tim	er 2 Low By	te Clock Sel	ect.						
	This bit se	ects the clo	ck supplied t	o Timer 2. I	f Timer 2 is	s configured	in split 8-bit	timer		
	mode, this	bit selects t	he clock sup	plied to the	lower 8-bi	t timer.				
	0: Timer 2	low byte use	es the clock	defined by t	he I2XCL	K bit in TMR	2CN.			
Bit3.	T. Himer∠ T1M· Time	r 1 Clock Se	es the system	II CIUCK.						
Bito.	This select	the clock so	ource supplie	ed to Timer	1. T1M is i	anored wher	n C/T1 is set	to loaic 1.		
	0: Timer 1	uses the clo	ck defined b	y the presc	ale bits, So	CA1–SCA0.				
	1: Timer 1	uses the sys	stem clock.							
Bit2:	TOM: Time	r 0 Clock Se	elect.							
	This bit se	ects the clo	ck source su	pplied to Ti	mer 0. TON	I is ignored	when C/T0 i	s set to		
	logic 1.	/Timor 0 use	s the clock (defined by t	ha nrascal	o hite SCA1	_9040			
	1: Counter	/Timer 0 use	s the system	n clock	ne prescai		-3070.			
Bits1-0:	SCA1-SC	A0: Timer 0/	1 Prescale E	Bits.						
	These bits	control the	division of th	e clock sup	plied to Tir	mer 0 and Tii	mer 1 if conf	igured to		
	use presca	led clock in	outs.							
	8044	8040	Droco							
	JUAT	JUAU	Flesc							
	0	0 S	ystem clock	divided by	12					
	0	1 S	ystem clock	divided by	4					
	1	0 S	ystem clock	divided by	48					
	1	1 E	xternal clock	divided by	8					
	Note: Exte	ernal clock d	ivided by 8 is	synchroniz	ed with					
	the syster	n clock.								

21. C2 Interface

C8051F52x/F52xA/F53x/F53xA devices include an on-chip Silicon Laboratories 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

21.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 21.1. C2ADD: C2 Address

C2 Register Definition 21.2. DEVICEID: C2 Device ID

C2 Register Definition 21.3. REVID: C2 Revision ID

C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data

