E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f537a-it

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1. Ordering Information

The following features are common to all devices in this family:

- 25 MHz system clock and 25 MIPS throughput (peak)
- 256 bytes of internal RAM
- Enhanced SPI peripheral
- Enhanced UART peripheral
- Three Timers
- Three Programmable Counter Array channels
- Internal 24.5 MHz oscillator
- Internal Voltage Regulator
- 12-bit, 200 ksps ADC
- Internal Voltage Reference and Temperature Sensor
- One Analog Comparator

Table 1.1 shows the features that differentiate the devices in this family.

Table 1.1. Product Selection Guide (Recommended for New Designs)

Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package	Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package
C8051F520-C-IM	8	6	\checkmark	DFN-10	C8051F534-C-IM	4	16	—	QFN-20
C8051F521-C-IM	8	6		DFN-10	C8051F536-C-IM	2	16	\checkmark	QFN-20
C8051F523-C-IM	4	6	\checkmark	DFN-10	C8051F537-C-IM	2	16	—	QFN-20
C8051F524-C-IM	4	6		DFN-10	C8051F530-C-IT	8	16	\checkmark	TSSOP-20
C8051F526-C-IM	2	6	\checkmark	DFN-10	C8051F531-C-IT	8	16	_	TSSOP-20
C8051F527-C-IM	2	6		DFN-10	C8051F533-C-IT	4	16	\checkmark	TSSOP-20
C8051F530-C-IM	8	16	\checkmark	QFN-20	C8051F534-C-IT	4	16	_	TSSOP-20
C8051F531-C-IM	8	16	_	QFN-20	C8051F536-C-IT	2	16	\checkmark	TSSOP-20
C8051F533-C-IM	4	16	\checkmark	QFN-20	C8051F537-C-IT	2	16		TSSOP-20

All devices in Table 1.1 are also available in an automotive version. For the automotive version, the -I in the ordering part number is replaced with -A. For example, the automotive version of the C8051F520-C-IM is the C8051F520-C-AM.

The -AM and -AT devices receive full automotive quality production status, including AEC-Q100 qualification (fault coverage report available upon request), registration with International Material Data System (IMDS) and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered NDA and approved user account. The -AM and -AT devices enable high volume automotive OEM applications with their enhanced testing and processing. Please contact Silicon Labs sales for more information regarding -AM and -AT devices for your automotive project.

Figure 1.3. C8051F53x Block Diagram (Silicon Revision A)

Figure 1.4. C8051F52x Block Diagram (Silicon Revision A)

2. Electrical Characteristics

2.1. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units
Ambient temperature under Bias		-55	—	135	°C
Storage Temperature		-65	_	150	°C
Voltage on V _{REGIN} with Respect to GND		-0.3	_	5.5	V
Voltage on V _{DD} with Respect to GND		-0.3	_	2.8	V
Voltage on XTAL1 with Respect to GND		-0.3	_	V _{REGIN} + 0.3	V
Voltage on XTAL2 with Respect to GND		-0.3	_	V_{REGIN} + 0.3	V
Voltage on any Port I/O Pin or RST with Respect to GND		-0.3		V _{REGIN} + 0.3	V
Maximum Output Current Sunk by any Port Pin		_	_	100	mA
Maximum Output Current Sourced by any Port Pin		_	_	100	mA
Maximum Total Current through V _{REGIN} , and GND		_	_	500	mA
Note: Stresses above those listed under "Absolute Maximum This is a stress rating only and functional operation of th indicated in the operation listings of this specification is n extended periods may affect device reliability.	Ratings" may c le devices at the not implied. Exp	cause per ose or an posure to	rmanen ny other maxim	t damage to the c conditions above um rating conditi	device. e those ons for

Table 3.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10)

Name	Pin Nur	nbers	Туре	Description
	'F52xA 'F52x-C	'F52x		
RST/ C2CK	1	1	D 1/0 D 1/0	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least the minimum RST low time to generate a system reset, as defined in Table 2.8 on page 32. A 1 k Ω pullup to V_{REGIN} is recommended. See Reset Sources Section for a com- plete description.
				Clock signal for the C2 Debug Interface.
P0.0/	2	2	D I/O or A In	Port 0.0. See Port I/O Section for a complete description.
V _{REF}			A O or D In	External V _{REF} Input. See V _{REF} Section.
GND	3	3		Ground.
V _{DD}	4	4		Core Supply Voltage.
V _{REGIN}	5	5		On-Chip Voltage Regulator Input.
P0.5/RX*/	6	—	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.
CNVSTR			D In	External Converter start input for the ADC0, see Section "4. 12- Bit ADC (ADC0)" on page 52 for a complete description.
P0.5/	—	6	D I/O or A In	Port 0.5. See Port I/O Section for a complete description.
CNVSTR			D In	External Converter start input for the ADC0, see Section "4. 12- Bit ADC (ADC0)" on page 52 for a complete description.
P0.4/TX*	7	—	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.4/RX*	—	7	D I/O or A In	Port 0.4. See Port I/O Section for a complete description.
P0.3	8	—	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
XTAL2			D I/O	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "14. Oscillators" on page 135.
Note: Please	refer to Se	ection "2	20. Device S	Specific Behavior" on page 210.

Figure 3.5. TSSOP-20 Package Diagram

Symbol	Min	Nom	Max
А	—	_	1.20
A1	0.05	_	0.15
A2	0.80	1.00	1.05
b	0.19		0.30
С	0.09		0.20
D	6.40	6.50	6.60
е		0.65 BSC.	
E		6.40 BSC.	
E1	4.30	4.40	4.50
L	0.45	0.60	0.75
θ1	0°		8°
aaa		0.10	
bbb		0.10	
ddd		0.20	
Notes:			

Table 3.5. TSSOP-20 Package Diagram Dimensions

1. All dimensions shown are in millimeters (mm).

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-153, variation AC.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4. 12-Bit ADC (ADC0)

The ADC0 on the C8051F52x/F52x/F53x/F53x/F53xA Family consists of an analog multiplexer (AMUX0) with 16/6 total input selections, and a 200 ksps, 12-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, programmable window detector, programmable gain, and hardware accumulator. The ADC0 subsystem has a special Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 4.1. ADC0 inputs are single-ended and may be configured to measure P0.0-P1.7, the Temperature Sensor output, V_{DD} , or GND with respect to GND. The voltage reference for the ADC is selected as described in Section "5. Voltage Reference" on page 72. ADC0 is enabled when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1, or when performing conversions in Burst Mode. ADC0 is in low power shutdown when AD0EN is logic 0 and no Burst Mode conversions are taking place.

Figure 4.1. ADC0 Functional Block Diagram

4.1. Analog Multiplexer

AMUX0 selects the input channel to the ADC. Any of the following may be selected as an input: P0.0–P1.7, the on-chip temperature sensor, the core power supply (V_{DD}), or ground (GND). **ADC0 is single-ended and all signals measured are with respect to GND.** The ADC0 input channels are selected using the ADC0MX register as described in SFR Definition 4.4.

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN (for n = 0,1). To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP (for n = 0,1). See Section "13. Port Input/Output" on page 120 for more Port I/O configuration details.

Table 9.2. Special Function Registers

Register	Address	Description	Page
ACC	0xE0	Accumulator	89
ADC0CF	0xBC	ADC0 Configuration	65
ADC0CN	0xE8	ADC0 Control	67
ADC0H	0xBE	ADC0	66
ADC0L	0xBD	ADC0	66
ADC0GTH	0xC4	ADC0 Greater-Than Data High Byte	69
ADC0GTL	0xC3	ADC0 Greater-Than Data Low Byte	69
ADC0LTH	0xC6	ADC0 Less-Than Data High Byte	70
ADC0LTL	0xC5	ADC0 Less-Than Data Low Byte	70
ADC0MX	0xBB	ADC0 Channel Select	64
ADC0TK	0xBA	ADC0 Tracking Mode Select	68
В	0xF0	B Register	89
CKCON	0x8E	Clock Control	188
CLKSEL	0xA9	Clock Select	143
CPT0CN	0x9B	Comparator0 Control	78
CPT0MD	0x9D	Comparator0 Mode Selection	80
CPT0MX	0x9F	Comparator0 MUX Selection	79
DPH	0x83	Data Pointer High	87
DPL	0x82	Data Pointer Low	87
EIE1	0xE6	Extended Interrupt Enable 1	102
EIP1	0xF6	Extended Interrupt Priority 1	103
FLKEY	0xB7	Flash Lock and Key	119
IE	0xA8	Interrupt Enable	100
IP	0xB8	Interrupt Priority	101
IT01CF	0xE4	INT0/INT1 Configuration	105
LINADDR	0x92	LIN indirect address pointer	172
LINCF	0x95	LIN master-slave and automatic baud rate selection	173
LINDATA	0x93	LIN indirect data buffer	172
OSCICL	0xB3	Internal Oscillator Calibration	138

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Table 9.2. Special Function Registers (Continued)

Register	Address	Description	Page
REF0CN	0xD1	Voltage Reference Control	73
REG0CN	0xC9	Voltage Regulator Control	75
RSTSRC	0xEF	Reset Source Configuration/Status	112
SBUF0	0x99	UART0 Data Buffer	150
SCON0	0x98	UART0 Control	149
SP	0x81	Stack Pointer	87
SPI0CFG	0xA1	SPI Configuration	157
SPI0CKR	0xA2	SPI Clock Rate Control	159
SPI0CN	0xF8	SPI Control	158
SPI0DAT	0xA3	SPI Data	160
TCON	0x88	Timer/Counter Control	186
TH0	0x8C	Timer/Counter 0 High	189
TH1	0x8D	Timer/Counter 1 High	189
TL0	0x8A	Timer/Counter 0 Low	189
TL1	0x8B	Timer/Counter 1 Low	189
TMOD	0x89	Timer/Counter Mode	187
TMR2CN	0xC8	Timer/Counter 2 Control	193
TMR2H	0xCD	Timer/Counter 2 High	194
TMR2L	0xCC	Timer/Counter 2 Low	194
TMR2RLH	0xCB	Timer/Counter 2 Reload High	194
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	194
VDDMON	0xFF	V _{DD} Monitor Control	109
XBR0	0xE1	Port I/O Crossbar Control 0	127
XBR1	0xE2	Port I/O Crossbar Control 1	128

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

10. Interrupt Handler

The C8051F52x/F52xA/F53x/F53xA family includes an extended interrupt system with two selectable priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Each interrupt source has one or more associated interruptpending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending state, and will not be serviced until the EA bit is set back to logic 1.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

10.1. MCU Interrupt Sources and Vectors

The C8051F52x/F52xA/F53x/F53xA MCUs support 15 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order, and control bits are summarized in Table 10.1 on page 99. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

10.2. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 10.1.

10.3. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is

5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

12.2.3. System Clock

- 1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in application note "AN201: Writing to Flash from Firmware," available from the Silicon Laboratories website.

SFR Definition 13.1. XBR0: Port I/O Crossbar Register 0

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	CP0AE	CP0E	SYSCKE	LINE	SPI0E	URT0E	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address:	: 0xE1
Bit7–6 :	RESERVED	. Read = 00	0b; Must wr	ite 00b.				
Bit5:	CP0AE: Cor	nparator0 A	synchrono	us Output E	nable			
	0: Asynchror	nous CP0 u	navailable	at Port pin.				
	1: Asynchror	nous CP0 re	outed to Po	ort pin.				
Bit4:	CP0E: Comp	parator0 Ou	itput Enabl	е				
	0: CP0 unav	ailable at P	ort pin.					
	1: CP0 route	ed to Port pi	n.					
Bit3:	SYSCKE: /S	YSCLK Ou	tput Enable	Э				
	0: /SYSCLK	unavailable	e at Port pir	า.				
	1: /SYSCLK	output rout	ed to Port p	oin.				
Bit2:	LINE. Lin Ou	utput Enable	е					
Bit1:	SPIOE: SPI I	/O Enable						
	0: SPI I/O ur	navailable a	t Port pins.					
	1: SPI I/O ro	uted to Por	t pins. Note	e that the SP	I can be as	signed eith	er 3 or 4 GP	PIO pins.
Bit0:	URTOE: UAR	RT I/O Outp	out Enable					
	0: UART I/O	unavailable	e at Port pi	า.				
	1: UART TX	0, RX0 rout	ed to Port	oins (P0.3 ar	nd P0.4) or	(P0.4 and I	P0.5).*	
Note: Refe	r to Section "20	. Device Spe	cific Behavi	or" on page 21	10.			

127

SFR Definition 13.9. P1: Port1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address:	0x90
Bits7–0:	P1.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alway pin when con 0: P1.n pin is 1: P1.n pin is	ut appears o Output. n Output (hi ys reads 0 i nfigured as s logic low. s logic high.	on I/O pins gh impedar if selected a digital input	per Crossbance if corres as analog in t.	ar Registers ponding P1 put in regist	s. IMDOUT.n ter P1MDIN	bit = 0). I. Directly re	ads Port

SFR Definition 13.10. P1MDIN: Port1 Input Mode

SFR Definition 14.1. OSCICN: Internal Oscillator Control

R/W	R/W	R/W	R	R	R/W	R/W	R/W	Reset Value
IOSCEN	1 IOSCEN0	SUSPEND	IFRDY	_	IFCN2	IFCN1	IFCN0	11000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address	0xB2
Bits7–6:	IOSCEN[1:0)]: Internal O	scillator Er	nable Bits.				
	00: Oscillato	or Disabled.						
	01: Reserve	d.						
	10: Reserve	0. r Enchlad in	Normal M	ada and Dir	poblad in Si	uopond Mo	do	
Bit5	SUSPEND	Internal Osci	Ilator Susr	oue and Dis	ableu III S Rit	uspenu mu	ue.	
Dito.	Setting this b	bit to logic 1	places the	internal os	cillator in Sl	USPEND n	node. The ir	nternal oscil-
	lator resume	es operation	when one o	of the SUSI	PEND mod	e awakenir	na events oc	cur.
Bit4:	IFRDY: Inter	nal Oscillato	r Frequenc	cy Ready F	lag.		.g	
	0: Internal O	scillator is no	ot running	at program	med freque	ency.		
	1: Internal O	scillator is ru	inning at p	rogrammed	I frequency			
Bit3:	UNUSED. R	ead = 0b, W	rite = don't	care.				
Bits2–0:	IFCN2–0: In	ternal Oscilla	ator Freque	ency Contro	ol Bits.			
	000: SYSCL	K derived fro	om Internal	Oscillator	divided by	128 (defau	lt).	
		K derived fro	om Internal	Oscillator	divided by (64. 22		
	010. 31301	K derived fro	m Internal	Oscillator	divided by .	32. 16		
	100: SYSCI	K derived fro	om Internal	Oscillator	divided by	8		
	101: SYSCL	K derived fro	om Internal	l Oscillator	divided by 4	4.		
	110: SYSCL	K derived fro	m Internal	Oscillator	divided by 2	2.		
	111: SYSCL	K derived fro	m Internal	Oscillator of	divided by 1	1.		
					-			

Figure 16.2. Multiple-Master Mode Connection Diagram

Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram

16.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted into the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

The shift register contents are locked after the slave detects the first edge of SCK. Writes to SPI0DAT that occur after the first SCK edge will be held in the TX latch until the end of the current transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 16.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is not a way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. Figure 16.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

16.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

Note that all of the following interrupt bits must be cleared by software.

- 1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- 2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- 3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master in multimaster mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- 4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed while the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

SFR Definition 16.2. SPI0CN: SPI0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit
Biti	Bito	Bito	Bitt	Bito	DILL	DRT		Addressable
							SFR Address	s: 0x⊦8
Bit7 [.]	SPIF SPIOL	nterrunt Fla	n					
Bitr.	This bit is se	t to logic 1	bv hardwar	e at the end	l of a data tr	ansfer. If in	terrupts ar	e enabled.
	setting this b	it causes th	ne CPU to v	ector to the	SPI0 interro	upt service	routine. Th	his bit is not
	automatically	y cleared by	y hardware.	It must be	cleared by s	oftware.		
Bit6:	WCOL: Write	e Collision	Flag.					
	This bit is se	t to logic 1 k	by hardware	e (and gene	rates a SPI0	interrupt) i	f a write to	SPI0DAT is
	attempted w	hen the trar	nsmit buffer	has not bee	en emptied t	othe SPIs	hift register	. When this
	bit is not aut	omatically (UDAT WIII De	e ignorea, a pardware, lt	nd the trans	ared by so	MIII NOT DE V ftware	vritten. This
Bit5 [.]	MODE Mod	e Fault Flag	neared by n	iaiuwaie. it		area by 30	itware.	
	This bit is se	t to logic 1	by hardwar	e (and gene	erates a SPI	0 interrupt)	when a ma	aster mode
	collision is de	etected (NS	SS is low, M	STEN = 1,	and NSSMD	D[1:0] = 01)	. This bit is	not auto-
	matically cle	ared by har	dware. It m	ust be clea	red by softw	are.		
Bit4:	RXOVRN: R	eceive Ove	errun Flag (S	Slave Mode	only).			
	This bit is se	t to logic 1	by hardwar	e (and gene	erates a SPI	0 interrupt)	when the r	receive but-
	shifted into t	ho SPIO shi	ia irom a pr	evious tran This hit is no	sier and the	ally cleared	he current	transier is
	be cleared b	v software.	in register.					
Bits3-2:	NSSMD1-N	SSMD0: SI	ave Select I	Mode.				
	Selects betw	veen the fol	lowing NSS	operation i	modes:			
	(See Sectior	n "16.2. SPI	0 Master M	ode Operat	ion" on page	e 153 and \$	Section "16	.3. SPI0
	Slave Mode	Operation"	on page 15	54).				
	00: 3-Wire S	lave or 3-w	ire Master I	viode. NSS	signal is not	t routed to	a port pin.	dovico
	1x: 4-Wire S	ingle-Maste	r Mode NS	S signal is	manned as :	an outout fi	rom the dev	vice and will
	assume the	value of NS	SMD0.	o signa is		anoutputn		
Bit1:	TXBMT: Tra	nsmit Buffe	r Empty.					
	This bit will b	be set to log	gic 0 when r	new data ha	is been writt	en to the tr	ansmit buff	er. When
	data in the tr	ansmit buff	er is transfe	erred to the	SPI shift reg	ister, this b	oit will be se	et to logic 1,
D:40.	indicating the	at it is safe	to write a ne	ew byte to t	he transmit	buffer.		
DILU	This hit enab) ⊑⊓able. Jes/disable	s the SPI					
	0: SPI disabl	led.						
	1: SPI enabl	ed.						

SFR Definition 17.8. LIN0DT5: LIN0 Data Byte 5

SFR Definition 17.9. LIN0DT6: LIN0 Data Byte 6

SFR Definition 17.10. LIN0DT7: LIN0 Data Byte 7

SFR Definition 17.11. LIN0DT8: LIN0 Data Byte 8

18.2.3. External Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 2 can be clocked from the system clock, or the system clock divided by 12, depending on the T2ML (CKCON.4) and T2XCLK bits. When a capture event is generated, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator/8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. Timer 2 should be in 16-bit auto-reload mode when using Capture Mode.

For example, if T2ML = 1b and TF2CEN = 1b, Timer 2 will clock every SYSCLK and capture every external clock divided by 8. If the SYSCLK is 24.5 MHz and the difference between two successive captures is 5984, then the external clock frequency is:

$$\frac{24.5 \text{ MHz}}{(5984/8)} = 0.032754 \text{ MHz or } 32.754 \text{ kHz}$$

This mode allows software to determine the external oscillator frequency when an RC network or capacitor is used to generate the clock source.

Figure 18.6. Timer 2 Capture Mode Block Diagram

SFR Definition 19.2. PCA0MD: PCA Mode

R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	Reset Value		
CIDL	WDTE	WDLC	K -	-	CPS2	CPS1	CPS0	ECF	01000000		
Bit7	Bit6	Bit5	Bit	t4	Bit3	Bit2	Bit1	Bit0			
								SFR Address	s: 0xD9		
Bit7:	CIDL: PC	A Counter/	Timer Idle	e Con	trol.						
	Specifies	PCA behav	vior when	CPU	is in Idle M	lode.					
	0: PCA co	ntinues to	function r	norma	ally while the	e system co	ontroller is i	n Idle Mode			
D:40	1: PCA op	peration is a	suspende	ed whi	le the syste	em controlle	er is in Idle N	Mode.			
BITO:	If this hit is	atchoog H siset PCA	Module 2	Die Die Lie	ed as the v	vatchdog tir	ner				
	0: Watchdog Timer disabled.										
	1: PCA Module 2 enabled as Watchdog Timer.										
Bit5:	WDLCK: Watchdog Timer Lock										
	Timer may	CKS/UNIOCKS	s the Wat	Chdo	J limer Ena	able. When	WDLCK is	set, the Wa	tchdog		
	0: Watchd	og Timer E	Enable un	locke	d.	ni lesel.					
	1: Watchd	og Timer E	Enable loc	cked.							
Bit4:	UNUSED.	Read = 0k	o, Write =	don't	care.						
Bits3–1:	CPS2-CP	'SO : PCA C	Counter/Ti	imer F	Pulse Selec	it.					
	I nese bits	s select the	timebase	e soui	rce for the H	CA counte	er.				
	CPS2	CPS1	CPS0			Т	imebase				
	CPS2	CPS1	CPS0	Syste	em clock di	T vided by 12	imebase				
	CPS2 0 0	CPS1 0 0	CPS0 0 1	Syste Syste	em clock di em clock di	T vided by 12 vided by 4	imebase				
	CPS2 0 0 0	CPS1 0 0 1	CPS0 0 1 0	Syste Syste Time	em clock di em clock di er 0 overflov	T vided by 12 vided by 4 v	imebase				
	CPS2 0 0 0 0 0	CPS1 0 0 1	CPS0 0 1 0 1 1	Syste Syste Time High divid	em clock di em clock di er 0 overflov -to-low tran ed by 4)	T vided by 12 vided by 4 v sitions on E	imebase 2 ECI (max ra	te = system	l clock		
	CPS2 0 0 0 0 1	CPS1 0 0 1 1 1 0	CPS0 0 1 0 1 0	Syste Syste Time High divid Syste	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock	T vided by 12 vided by 4 v sitions on E	imebase 2 ECI (max ra	te = system	I clock		
	CPS2 0 0 0 0 1 1	CPS1 0 1 1 0 0 0	CPS0 0 1 0 1 0 1 1	Syste Syste Time High divid Syste Exte	em clock di em clock di r 0 overflov -to-low tran ed by 4) em clock rnal clock c	T vided by 12 vided by 4 v sitions on F ivided by 8	imebase 2 ECI (max ra	te = system	I clock		
	CPS2 0 0 0 1 1	CPS1 0 1 1 0 0 0 1	CPS0 0 1 0 1 0 1 0 1 0	Syste Syste Time High divid Syste Exte Rese	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved	T vided by 12 vided by 4 v sitions on E ivided by 8	imebase 2 ECI (max ra *	te = system	I clock		
	CPS2 0 0 0 1 1 1 1	CPS1 0 1 1 0 0 0 1 1 1	CPS0 0 1 0 1 0 1 0 1 0 1	Syste Syste Time High divid Syste Exte Rese	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved	T vided by 12 vided by 4 v sitions on B livided by 8	imebase 2 ECI (max ra *	te = system) clock		
	CPS2 0 0 0 1 1 1 1 1 Note: Ext	CPS1 0 1 1 1 0 0 1 1 1 ternal clock	CPS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Syste Syste Time High divid Syste Exte Rese 8 is syste	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved ynchronized	T vided by 12 vided by 4 v sitions on E livided by 8 with the syst	ECI (max ra	te = system	I clock		
	CPS2 0 0 0 1 1 1 1 1 Note: Ext	CPS1 0 1 1 0 0 1 1 ternal clock	CPS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0	Syste Syste High divid Syste Exte Rese 8 is sy	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved ynchronized	T vided by 12 vided by 4 v sitions on B livided by 8 with the syst	ECI (max ra	te = system	I clock		
Bit0:	CPS2 0 0 0 1 1 1 1 ECF: PCA This hit as	CPS1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 cernal clock Counter/T to the mode	CPS0 0 1 0 1 0 1 0 1 divided by	Syste Syste Time High divid Syste Exte Rese 8 is syste 8 is syste	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock d erved erved ynchronized	T vided by 12 vided by 4 v sitions on B livided by 8 with the system nable.	ECI (max ra	te = system	I Clock		
Bit0:	CPS2 0 0 0 0 1 1 1 1 ECF: PCA This bit se 0: Disable	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0	CPS0 0 1 0 1 0 1 divided by Fimer Ove sking of th errupt	Syste Syste Time High divid Syste Exte Rese 8 is syste 8 is syste rflow	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock d erved erved ynchronized Interrupt E A Counter/	T vided by 12 vided by 4 v sitions on B livided by 8 with the system nable. Fimer Overf	ECI (max ra cem clock.	te = system	I clock		
Bit0:	CPS2 0 0 0 0 1	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	CPS0 0 1 0 1 0 1 divided by Fimer Ove sking of th errupt. unter/Tim	Syste Syste Time High divid Syste Exte Rese 8 is sy erflow he PC/	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock d erved erved ynchronized Interrupt E A Counter/ erflow inter	T vided by 12 vided by 4 v sitions on B livided by 8 with the system nable. Fimer Overfinet rupt request	ECI (max ra ECI (max ra tem clock.	te = system terrupt.	/) is set.		
Bit0:	CPS2 0 0 0 0 1	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0	CPS0 0 1 0 1 0 1 divided by fimer Ove sking of th errupt. unter/Tim	Syste Syste Time High divid Syste Exte Rese 8 is sy erflow he PC,	em clock di em clock di er 0 overflov -to-low tran ed by 4) em clock rnal clock c erved erved ynchronized Interrupt E A Counter/ erflow inter	T vided by 12 vided by 4 v sitions on B livided by 8 with the syst mable. Fimer Overf rupt reques	ECI (max ra cem clock. low (CF) int	te = system terrupt. (PCA0CN.7	/) is set.		

C2 Register Definition 21.3. REVID: C2 Revision ID

C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data

