E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f537a-itr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.1. C8051F53xA/F53x-C Block Diagram	. 16
Figure 1.2. C8051F52xA/F52x-C Block Diagram	. 16
Figure 1.3. C8051F53x Block Diagram (Silicon Revision A)	. 17
Figure 1.4. C8051F52x Block Diagram (Silicon Revision A)	. 17
Figure 1.5. Development/In-System Debug Diagram	. 19
Figure 1.6. Memory Map	. 20
Figure 1.7. 12-Bit ADC Block Diagram	. 22
Figure 1.8. Comparator Block Diagram	. 23
Figure 1.9. Port I/O Functional Block Diagram	. 24
Figure 3.1. DFN-10 Pinout Diagram (Top View)	. 35
Figure 3.2. DFN-10 Package Diagram	. 38
Figure 3.3. DFN-10 Landing Diagram	. 39
Figure 3.4. TSSOP-20 Pinout Diagram (Top View)	. 40
Figure 3.5. TSSOP-20 Package Diagram	. 43
Figure 3.6. TSSOP-20 Landing Diagram	. 44
Figure 3.7. QFN-20 Pinout Diagram (Top View)	. 45
Figure 3.8. QFN-20 Package Diagram*	. 48
Figure 3.9. QFN-20 Landing Diagram*	. 50
Figure 4.1. ADC0 Functional Block Diagram	. 52
Figure 4.2. Typical Temperature Sensor Transfer Function	. 53
Figure 4.3. ADC0 Tracking Modes	. 55
Figure 4.4. 12-Bit ADC Tracking Mode Example	. 56
Figure 4.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4	. 58
Figure 4.6. ADC0 Equivalent Input Circuits	. 60
Figure 4.7. ADC Window Compare Example:	
Right-Justified Single-Ended Data	. 71
Figure 4.8. ADC Window Compare Example:	
Left-Justified Single-Ended Data	. 71
Figure 5.1. Voltage Reference Functional Block Diagram	. 72
Figure 6.1. External Capacitors for Voltage Regulator Input/Output	. 74
Figure 7.1. Comparator Functional Block Diagram	. 76
Figure 7.2. Comparator Hysteresis Plot	. 77
Figure 8.1. CIP-51 Block Diagram	. 81
Figure 9.1. Memory Map	. 92
Figure 11.1. Reset Sources	106
Figure 11.2. Power-On and V _{DD} Monitor Reset Timing	107
Figure 12.1. Flash Program Memory Map	117
Figure 13.1. Port I/O Functional Block Diagram	120
Figure 13.2. Port I/O Cell Block Diagram	121
Figure 13.3. Crossbar Priority Decoder with No Pins Skipped	
(TSSOP 20 and QFN 20)	122
Figure 13.4. Crossbar Priority Decoder with Crystal Pins Skipped	
(TSSOP 20 and QFN 20)	123

1.1. Ordering Information

The following features are common to all devices in this family:

- 25 MHz system clock and 25 MIPS throughput (peak)
- 256 bytes of internal RAM
- Enhanced SPI peripheral
- Enhanced UART peripheral
- Three Timers
- Three Programmable Counter Array channels
- Internal 24.5 MHz oscillator
- Internal Voltage Regulator
- 12-bit, 200 ksps ADC
- Internal Voltage Reference and Temperature Sensor
- One Analog Comparator

Table 1.1 shows the features that differentiate the devices in this family.

Table 1.1. Product Selection Guide (Recommended for New Designs)

Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package	Ordering Part Number	Flash Memory (kB)	Port I/Os	LIN	Package
C8051F520-C-IM	8	6	\checkmark	DFN-10	C8051F534-C-IM	4	16	—	QFN-20
C8051F521-C-IM	8	6		DFN-10	C8051F536-C-IM	2	16	\checkmark	QFN-20
C8051F523-C-IM	4	6	\checkmark	DFN-10	C8051F537-C-IM	2	16	—	QFN-20
C8051F524-C-IM	4	6		DFN-10	C8051F530-C-IT	8	16	\checkmark	TSSOP-20
C8051F526-C-IM	2	6	\checkmark	DFN-10	C8051F531-C-IT	8	16	_	TSSOP-20
C8051F527-C-IM	2	6		DFN-10	C8051F533-C-IT	4	16	\checkmark	TSSOP-20
C8051F530-C-IM	8	16	\checkmark	QFN-20	C8051F534-C-IT	4	16	_	TSSOP-20
C8051F531-C-IM	8	16	_	QFN-20	C8051F536-C-IT	2	16	\checkmark	TSSOP-20
C8051F533-C-IM	4	16	\checkmark	QFN-20	C8051F537-C-IT	2	16		TSSOP-20

All devices in Table 1.1 are also available in an automotive version. For the automotive version, the -I in the ordering part number is replaced with -A. For example, the automotive version of the C8051F520-C-IM is the C8051F520-C-AM.

The -AM and -AT devices receive full automotive quality production status, including AEC-Q100 qualification (fault coverage report available upon request), registration with International Material Data System (IMDS) and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered NDA and approved user account. The -AM and -AT devices enable high volume automotive OEM applications with their enhanced testing and processing. Please contact Silicon Labs sales for more information regarding -AM and -AT devices for your automotive project.

									7				_					
System Clock																		
Convert Start (AD0BUSY or Timer Overflow)	`																	
Post-Tracking AD0TM = 01 AD0EN = 0	Powered Down	Power- and Ic	-Up dle	Т	С	Т	с [.]	т	c	т	С	Powered Down	F	ow and	ər-U Idle	p	Т	C
Dual-Tracking AD0TM = 11 AD0EN = 0	Powered Down	Power- and Tr	-Up ack	т	С	Т	c	т	c	т	С	Powered Down	F	Pow	ər-U Trac	p k	т	C
		AD0P\	NR≯															
Post-Tracking AD0TM = 01 AD0EN = 1	Idle	тст	С	Т	С	Т	с					Idle	т	С	т	с	т	C
Dual-Tracking AD0TM = 11 AD0EN = 1	Track	тст	с	Т	С	т	с					Track	Т	С	т	с	Т	C
	T = Tracking C = Converti	ng																
Convert Start (CNVSTR)	>																	
Post-Tracking AD0TM = 01 AD0EN = 0	Powered Down	Power- and Io	-Up lle	т	С					F	ow Do	ered wn	F	ow and	ər-U Idle	p	Т	C
Dual-Tracking AD0TM = 11	Powered	Power-	-Up	т	С					F	owo	ered	F	wo	ər-U Trac	p k	т	C
AD0EN = 0	Down		NR≯								00	WII		anu		<u> </u>		
Post-Tracking																		
AD0TM = 01 $AD0EN = 1$	Idle	тс							ldl	е			Т	С		Idl	e	
Dual-Tracking AD0TM = 11 AD0EN = 1	Track	тс						-	Tra	ck			Т	С		Tra	ıck.	
	T = Tracking	I																

C = Converting

Figure 4.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4

SFR Definition 4.4. ADC0MX: ADC0 Channel Select

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-			ADUMX			00011111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBB
Bits7_5	UNUSED R	ad – 00)0h· Write – c	lon't care				
Bits4–0:		AMUX0	Positive Inpu	ut Selection	า			
	AD0MX4–0		ADC0 Input	Channel				
	00000		P0.0					
	00001		P0.1					
	00010		P0.2					
	00011		P0.3					
	00100		P0.4					
	00101		P0.5					
	00110		P0.6*					
	00111		P0.7*					
	01000		P1.0*					
	01001		P1.1*					
	01010		P1.2*					
	01011		P1.3*					
	01100		P1.4*					
	01101		P1.5*					
	01110		P1.6*					
	01111		P1.7*					
	11000		Temp Senso	or				
	11001		V _{DD}					
	11010 1111	1						

4.5. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 4.10. ADC0GTH: ADC0 Greater-Than Data High Byte

SFR Definition 4.11. ADC0GTL: ADC0 Greater-Than Data Low Byte

18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction, and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Table 10.1.	Interrupt	Summary
-------------	-----------	---------

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0(INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1(INT0)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
ADC0 Window Compara- tor	0x003B	7	AD0WINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.0)	PWADC0 (EIP1.0)
ADC0 End of Conversion	0x0043	8	AD0INT (ADC0CN.5)	Y	N	EADC0 (EIE1.1)	PADC0 (EIP1.1)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	Ν	EPCA0 (EIE1.2)	PPCA0 (EIP1.2)
Comparator Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)	Ν	Ν	ECPF (EIE1.3)	PCPF (EIP1.3)
Comparator Rising Edge	0x005B	11	CP0RIF (CPT0CN.5)	N	Ν	ECPR (EIE1.4)	PCPR (EIP1.4)
LIN Interrupt	0x0063	12	LININT (LINST.3)	N	N*	ELIN (EIE1.5)	PLIN (EIP1.5)
Voltage Regulator Dropout	0x006B	13	N/A	N/A	N/A	EREG0 (EIE1.6)	PREG0 (EIP1.6)
Port Match	0x0073	14	N/A	N/A	N/A	EMAT (EIE1.7)	PMAT (EIP1.7)
Note: Software must set the	RSTINT bit	(LINCTRL	3) to clear the LININT flag				

10.5. External Interrupts

The INTO and INTO external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INTO Polarity) and IN1PL (INTO Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "18.1. Timer 0 and Timer 1" on page 182) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INTO and INTO are assigned to Port pins as defined in the ITO1CF register (see SFR Definition 10.5). Note that INTO and INTO Port pin assignments are independent of any Crossbar assignments. INTO and INTO will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INTO and/or INTO, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBRO (see Section "13.1. Priority Crossbar Decoder" on page 122 for complete details on configuring the Crossbar).

In the typical configuration, the external interrupt pins should be skipped in the crossbar and configured as open-drain with the pin latch set to 1. See Section "13. Port Input/Output" on page 120 for more information.

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT0 external interrupts, respectively. If an INT0 or INT0 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

Note: 4-Wire SPI Only.

Figure 13.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)

SFR Definition 13.2. XBR1: Port I/O Crossbar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
WEAKP	JD XBARE	T1E	TOE	ECIE	Reserved	PC	AOME	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xE2
Bit7:	WEAKPUD:	Port I/O We	eak Pullup I	Disable.				
	0: Weak Pull	ups enable	d (except fo	or Ports wh	ose I/O are o	configured	i as analog	input).
D'40	1: Weak Pull	ups disable	d.					
Bit6:	XBARE: Cros	ssbar Enab	le.					
	0: Crossbar d	isabled.						
Bit5	TIE: TIEnal	nabieu.						
Dito.	0. T1 unavail	able at Por	t pin					
	1: T1 routed t	to Port pin.						
Bit4:	TOE: TO Enal	ble						
	0: T0 unavail	able at Por	t pin.					
	1: T0 routed t	to Port pin.						
Bit3:	ECIE: PCA0	External Co	ounter Inpu	t Enable				
	0: ECI unava	ilable at Po	rt pin.					
D:40.	1: ECI routed	to Port pin	h					
BITZ: Bito1 0:		UST VVIITE U	D. I/O Enchla	Dito				
DILS I-U.		/A iviouule /A unavaila	hle at Port	nins				
	01: CEX0 rou	ited to Port	nin	pino.				
	10: CEX0. CE	EX1 routed	to Port pin:	S.				
	11: CEX0, CE	EX1, CEX2	routed to F	Port pins.				
				-				

13.3. General Purpose Port I/O

Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Ports P0–P1 are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

In addition to performing general purpose I/O, P0 and P1 can generate a port match event if the logic levels of the Port's input pins match a software controlled value. A port match event is generated if (P0 & P0MASK) does not equal (P0MATCH & P0MASK) or if (P1 & P1MASK) does not equal (P1MATCH & P1MASK). This allows Software to be notified if a certain change or pattern occurs on P0 or P1 input pins regardless of the XBRn settings. A port match event can cause an interrupt if EMAT (EIE2.1) is set to 1 or cause the internal oscillator to awaken from SUSPEND mode. See Section "14.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

SFR Definition 13.3. P0: Port0

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0 1	P0.0	11111111
F0.7	1 0.0	10.5	10.4	10.5	10.2	10.1	10.0	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address:	0x80
Bits7–0:	P0.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alway pin when con 0: P0.n pin is 1: P0.n pin is	ut appears of Output. In Output (hi ys reads 0 i nfigured as s logic low. s logic high.	on I/O pins gh impedar f selected a digital inpu	per Crossb nce if corres as analog in t.	ar Registers ponding P0 put in regis	s.)MDOUT.n ter P0MDIN	bit = 0). I. Directly re	ads Port

SFR Definition 13.4. P0MDIN: Port0 Input Mode

17.7. LIN Registers

The following Special Function Registers (SFRs) are available:

17.7.1. LIN Direct Access SFR Registers Definition

SFR Definition 17.1. LINADDR: Indirect Address Register

SFR Definition 17.2. LINDATA: LIN Data Register

[R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
L	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J
								SFR Address:	0x93
	Bit7–0:	LINDATA7-0 When this re LINADDR. When this re ADDR.	: LIN Indire gister is rea gister is wr	ect Data Reg ad, it will rea itten, it will v	gister Bits. ad the conte write the valu	nts of the L ue to the LI	LINO core re	egister pointe	ed to by I to by LIN-

SFR Definition 17.12. LIN0CTRL: LIN0 Control Register

W	W	W	R/W	R/W	R/W	R/W	R/W	Reset Value			
STOP	SLEEP	TXRX	DTACK	RSTINT	RSTERR	WUPREQ	STREQ	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	Address: 0x08 (indi										
Bit7:	STOP : Stop Communication Processing Bit (slave mode only).										
	This bit is to be set by the application to block the processing of the LIN Communications										
	until the next SYNCH BREAK signal. It is used when the application is handling a request interrupt and cannot use the frame content with the received identifier (alw										
	request inter	e received id	entitier (alv	ays reads							
Bit6.	U). SI FED: Slow	an Mode W	arnina								
Ditto.	This bit is to	be set by th	ne applicati	on to warn t	he nerinhei	ral that a Slee	en Mode Fi	rame was			
	received and	that the B	us is in slee	p mode or	if a Bus Idle	timeout inte	rrupt is rea	uested.			
	The applicat	ion must re	set it when	a Wake-Up	interrupt is	requested.					
Bit5:	TXRX : Transmit/Receive Selection Bit.										
	This bit dete	rmines if the	e current fra	ame is a tra	nsmit frame	e or a receive	e frame.				
	0: Current fra	ame is a reo	ceive opera	tion.							
D ¹ /4	1: Current fra	ame is a tra	insmit opera	ation.	• `						
Bit4:	DTACK: Data acknowledge bit (slave mode only).										
	Set to 1 alter	r nandling a	by the LIN	st interrupt	to acknowle	eage the tran	isier. The b	it will auto-			
Bit3	RSTINT Inte	srrunt Rese	t hit	Controller.							
Bito.	This bit always reads as 0										
	0: No effect.	<i>j</i>									
	1: Reset the	LININT bit	(LIN0ST.3).								
Bit2:	RSTERR: Error Reset Bit.										
	This bit always reads as 0.										
	0: No effect.										
D:44	1: Reset the	error bits in	LINUST ar	IC LINUERI	۲.						
DITI.	WUFKEQ: Wake-Up Kequest Bit.										
	cleared to 0	by the LIN	controller	y senuing a	wakeup sig	griai. The bit		lically be			
Bit0:	STREQ: Sta	rt Request	Bit (master	mode only	<i>(</i>).						
	1: Start a LIN	v transmiss	ion. This sh	ould be set	only after l	oading the id	entifier, dat	ta length			
	and data buf	fer if neces	sary.		-	-		-			
	The bit is res	set to 0 upo	n transmiss	ion comple	tion or erroi	r detection.					

clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 18.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "10.4. Interrupt Register Descriptions" on page 100), facilitating pulse width measurements.

TR0	GATE0	INT0	Counter/Timer					
0	Х	Х	Disabled					
1	0	Х	Enabled					
1	1	0	Disabled					
1	1	1	Enabled					
X = Don't Care								

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT0 is used with Timer 1; the INT0 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 10.5. IT01CF: INT0/INT1 Configuration).

Figure 18.1. T0 Mode 0 Block Diagram

183

SFR Definition 18.3. CKCON: Clock Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
_	_	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000			
Bit7 Bit6 Bi		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
							SFR Address	0x8E			
Bit7–6:	RESERVE	D . Read = 0	b; Must write	e 0b.							
Bit5:	T2MH: Tim	her 2 High B	yte Clock Se	elect.	0 hiah hu	a if Tim or O i		lin anlit O			
	hit timer m	ode T2MH	ck supplied t is ignored if	0 the Timer Timer 2 is ii	∠ nign byi anv othei	r mode	is conligured	a in split 8-			
	0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.										
	1: Timer 2 high byte uses the system clock.										
Bit4:	T2ML: Tim	er 2 Low By	te Clock Sel	ect.							
	This bit se	ects the clo	ck supplied t	o Timer 2. I	f Timer 2 is	s configured	in split 8-bit	timer			
	mode, this	bit selects t	he clock sup	plied to the	lower 8-bi	t timer.					
	0: Timer 2	low byte use	es the clock	defined by t	he I2XCL	K bit in TMR	2CN.				
Bit3.	T. Himer∠ T1M· Time	r 1 Clock Se	es the system	II CIUCK.							
Bito.	This select	the clock so	ource supplie	ed to Timer	1. T1M is i	anored wher	n C/T1 is set	to loaic 1.			
	0: Timer 1	uses the clo	ck defined b	y the presc	ale bits, So	CA1–SCA0.					
	1: Timer 1	uses the sys	stem clock.								
Bit2:	TOM: Time	r 0 Clock Se	elect.								
	This bit se	ects the clo	ck source su	pplied to Ti	mer 0. TON	I is ignored	when C/T0 i	s set to			
	logic 1.	/Timor 0 use	s the clock (defined by t	ha nrascal	o hite SCA1	_9040				
	1: Counter	/Timer 0 use	s the system	n clock	ne prescai		-3070.				
Bits1-0:	SCA1-SC	A0: Timer 0/	1 Prescale E	Bits.							
	These bits	control the	division of th	e clock sup	plied to Tir	mer 0 and Ti	mer 1 if conf	igured to			
	use presca	led clock in	outs.								
	SCA1	SC 40	Prose	aled Clock							
					10						
	0	0 5	ystem clock		12						
	0	1 5	ystem clock	divided by	4						
	1	0 S	ystem clock	divided by	48						
	1	1 E	xternal clock	divided by	8						
	Note: Exte	ernal clock d	ivided by 8 is	synchroniz	ed with						
	the syster	n clock.									

19.3.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2-CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 2 is forced into software timer mode.
- Writes to the Module 2 mode register (PCA0CPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH2 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH2. Upon a PCA0CPH2 write, PCA0H plus the offset held in PCA0CPL2 is loaded into PCA0CPH2 (See Figure 19.10).

Figure 19.10. PCA Module 2 with Watchdog Timer Enabled

Note that the 8-bit offset held in PCA0CPH2 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total offset is then given (in PCA clocks) by Equation 19.4, where PCA0L is the value of the PCA0L register at the time of the update.

 $Offset = (256 \times PCA0CPL2) + (256 - PCA0L)$

Equation 19.4. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. Software may force a WDT reset by writing a 1 to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

SFR Definition 19.2. PCA0MD: PCA Mode

R/W	R/W	R/W	R	1	R/W	R/W	R/W	R/W	Reset Value		
CIDL	WDTE	WDLC	К -		CPS2	CPS1	CPS0	ECF	01000000		
Bit7	Bit6	Bit5	Bit	:4	Bit3	Bit2	Bit1	Bit0			
	SFR Address: 0xD9										
Bit7:	CIDL: PC	A Counter/	Timer Idle	e Contro	ol.						
	Specifies	PCA behav	vior when	CPU is	s in Idle M	ode.					
	0: PCA co	ntinues to	function r	normally	y while the	e system co	ontroller is in	n Idle Mode			
D:40	1: PCA operation is suspended while the system controller is in Idle Mode.										
BITO:	If this bit is set, PCA Module 2 is used as the watchdog timer.										
	0: Watchdog Timer disabled.										
	1: PCA M	odule 2 ena	abled as \	Watchd	log Timer.						
Bit5:	WDLCK:	Watchdog	Timer Loo	ck							
	Timer may	CKS/UNIOCKS	s the Wate	chdog til tho n	limer Ena	able. When	WDLCK is	set, the Wa	tchdog		
	0: Watchd	og Timer E	nable un	locked.	IEAL SYSLE	n iesei.					
	1: Watchd	og Timer E	Enable loc	ked.							
Bit4:	UNUSED.	Read = 0k	o, Write =	don't c	are.						
Bits3–1:	CPS2-CP	'SO : PCA C	Counter/Ti	imer Pu	ulse Selec	t.					
	I nese bits	s select the	timebase	e source	e for the H	CA counte	er.				
CPS2 CPS1 CPS0 Timebase											
	CPS2	CPS1	CPS0			Т	imebase				
	CPS2	CPS1	CPS0 0	Syster	n clock di	T vided by 12	imebase				
	CPS2 0 0	CPS1 0 0	CPS0 0 1	Syster Syster	m clock di m clock di	T vided by 12 vided by 4	imebase				
	CPS2 0 0 0	CPS1 0 0 1	CPS0 0 1 0	Syster Syster Timer	m clock di m clock di 0 overflov	T vided by 12 vided by 4 v	imebase				
	CPS2 0 0 0 0 0	CPS1 0 0 1 1 1	CPS0 0 1 0 1 1	Syster Syster Timer High-to divideo	m clock di m clock di 0 overflov o-low tran d by 4)	T vided by 12 vided by 4 v sitions on E	imebase 2 ECI (max ra	te = system	clock		
	CPS2 0 0 0 0 1	CPS1 0 0 1 1 1 0	CPS0 0 1 0 1 0	Syster Syster Timer High-to divideo Syster	m clock di m clock di 0 overflov o-low tran d by 4) m clock	T vided by 12 vided by 4 v sitions on B	imebase 2 ECI (max ra	te = system	clock		
	CPS2 0 0 0 0 1 1	CPS1 0 1 1 0 0 0	CPS0 0 1 0 1 0 1	Syster Syster Timer High-to divideo Syster Extern	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d	T vided by 12 vided by 4 v sitions on F ivided by 8	imebase 2 ECI (max ra	te = system	clock		
	CPS2 0 0 0 1 1	CPS1 0 1 1 0 0 0 1	CPS0 0 1 0 1 0 1 0 1 0	Syster Syster Timer High-to divideo Syster Extern Reserv	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved	T vided by 12 vided by 4 v sitions on E ivided by 8	imebase 2 ECI (max ra *	te = system	clock		
	CPS2 0 0 0 1 1 1 1	CPS1 0 1 1 0 0 0 1 1 1	CPS0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1	Syster Syster Timer High-to divideo Syster Extern Reserv Reserv	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved ved	T vided by 12 vided by 4 v sitions on B ivided by 8	imebase 2 ECI (max ra *	te = system	clock		
	CPS2 0 0 0 1 1 1 1 1 1	CPS1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1	CPS0 0 1 0 1 0 1 0 1 0 1 0 0	Syster Syster Timer High-to divideo Syster Extern Reserv 8 is syn	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved ved	T vided by 12 vided by 4 v sitions on E ivided by 8 with the syst	imebase 2 ECI (max ra *	te = system	clock		
	CPS2 0 0 0 1 1 1 1 1 Note: Ext	CPS1 0 1 1 0 0 1 1 ernal clock	CPS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0	Syster Syster Timer High-to divideo Syster Extern Reserv Reserv 8 is syn	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved ved nchronized	T vided by 12 vided by 4 v sitions on B ivided by 8 with the syst	imebase 2 ECI (max ra * tem clock.	te = system	clock		
Bit0:	CPS2 0 0 0 1 1 1 1 ECF: PCA	CPS1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 cernal clock Counter/T	CPS0 0 1 0 1 0 1 divided by	Syster Syster Timer High-to divideo Syster Extern Reserv 8 is syn	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved ved ved nchronized	T vided by 12 vided by 4 v sitions on B ivided by 8 with the system nable.	ECI (max ra	te = system	clock		
Bit0:	CPS2 0 0 0 0 1 1 1 1 ECF: PCA This bit se 0: Disable	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0	CPS0 0 1 0 1 0 1 divided by Fimer Ove king of th errupt	Syster Syster Timer High-to divideo Syster Extern Reserv 8 is syn erflow Ir e PCA	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved ved ved nchronized nterrupt E Counter/	T vided by 12 vided by 4 v sitions on B ivided by 8 with the syst mable. Fimer Overf	imebase 2 ECI (max ra * tem clock.	te = system	clock		
Bit0:	CPS2 0 0 0 0 1	CPS1 0 0 1 1 0 0 0 1 1 0 0 1 1 cernal clock the mas the CF int a PCA Cou	CPS0 0 1 0 1 0 1 0 1 divided by fimer Ove king of th errupt. unter/Tim	Syster Syster Timer High-to divideo Syster Extern Reserv 8 is syn erflow Ir e PCA er Over	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved ved nchronized nterrupt E Counter/ ⁻	T vided by 12 vided by 4 v sitions on B ivided by 8 with the system nable. Fimer Overfiner	imebase 2 ECI (max ra * tem clock. flow (CF) int	te = system terrupt.	/) is set.		
Bit0:	CPS2 0 0 0 0 1	CPS1 0 0 1 1 0 0 0 1 1 cernal clock of Counter/T ets the mas the CF int a PCA Cou	CPS0 0 1 0 1 0 1 divided by fimer Ove king of th errupt. unter/Time	Syster Syster Timer High-to divideo Syster Extern Reserv 8 is syn erflow Ir e PCA er Over	m clock di m clock di 0 overflov o-low tran d by 4) m clock nal clock d ved ved ved nchronized nterrupt E Counter/ ⁻ rflow inter	T vided by 12 vided by 4 v sitions on B ivided by 8 with the syst nable. Fimer Overf rupt reques	imebase 2 ECI (max ra * tem clock. flow (CF) int st when CF	te = system terrupt. (PCA0CN.7	/) is set.		

SFR Definition 19.4. PCA0L: PCA Counter/Timer Low Byte

SFR Definition 19.5. PCA0H: PCA Counter/Timer High Byte

SFR Definition 19.6. PCA0CPLn: PCA Capture Module Low Byte

SFR Definition 19.7. PCA0CPHn: PCA Capture Module High Byte

21. C2 Interface

C8051F52x/F52xA/F53x/F53xA devices include an on-chip Silicon Laboratories 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

21.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 21.1. C2ADD: C2 Address

C2 Register Definition 21.2. DEVICEID: C2 Device ID

C2 Register Definition 21.3. REVID: C2 Revision ID

C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data

DOCUMENT CHANGE LIST

Revision 0.3 to 0.4

- Updated all specification tables.
- Added 'F52xA and 'F53xA information.
- Updated the Selectable Gain section in the ADC section.
- Updated the External Crystal Example in the Oscillators section.
- Updated the LIN section.

Revision 0.4 to 0.5

- Updated all specification tables.
- Updated Figures 1.1, 1.2, 1.3, and 1.4.
- Updated Section 4 pinout diagrams and tables.

Revision 0.5 to 1.0

- Updated all specification tables and moved them to one section.
- Added Figure 3.1 and Figure 3.2.
- Updated Section 4 pinout diagrams and tables.
- Updated Figure 5.6.
- Added Figure 15.3.
- Updated equations in Section 17.
- Updated Figure 21.3.

Revision 1.0 to 1.1

- Updated Table 2.3, "ADC0 Electrical Characteristics," on page 28 with new Burst Mode Oscillator specification, new Power Supply Current maximum, and made corrections to Temperature Sensor Offset and Offset Error conditions.
- Updated Table 2.9, "Flash Electrical Characteristics," on page 33 with new Flash Write and Erase timing.
- Made correction in Equivalent Gain table in Section "4.4. Selectable Gain" on page 60.
- Updated Section "11.2. Power-Fail Reset / VDD Monitors (VDDMON0 and VDDMON1)" on page 108 regarding higher V_{DD} monitor threshold.

Revision 1.1 to 1.2

- Updated "Ordering Information" on page 14 and Table 1.1, "Product Selection Guide (Recommended for New Designs)," on page 14 to include -A (Automotive) devices and automotive qualification information.
- Updated Table 2.3, "ADC0 Electrical Characteristics," on page 28 to include Temperature Sensor tracking time requirement and update INL maximum specification.
- Updated Figure 3.2. 'DFN-10 Package Diagram' on page 38 with new Pin-1 detail drawing.
- Updated Table 8.1, "CIP-51 Instruction Set Summary," on page 83 with correct CJNE and CPL timing.
- Updated "Power-Fail Reset / VDD Monitors (VDDMON0 and VDDMON1)" on page 108 to clarify the recommendations for the VDD monitor.

Note: All items from the C8051F52xA-F53xA Errata dated August 26, 2009 are incorporated into this data sheet.

