

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K × 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at87c54x2-3csum

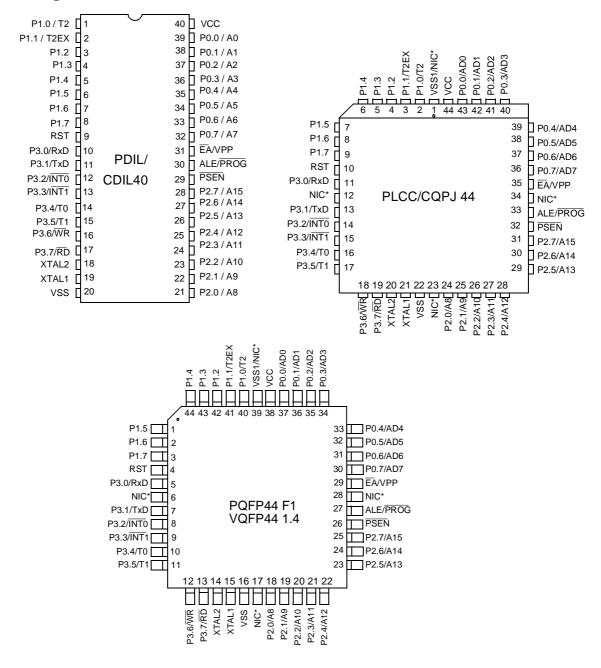
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C54/58X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON


Table 4-1.	All SFRs with their address and their reset value

	Bit address- able		Non Bit addressable							
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F		
F8h									FFh	
F0h	B 0000 0000								F7h	
E8h									EFh	
E0h	ACC 0000 0000								E7h	
D8h									DFh	
D0h	PSW 0000 0000								D7h	
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh	
C0h									C7h	
B8h	IP XX00 0000	SADEN 0000 0000							BFh	
B0h	P3 1111 1111							IPH XX00 0000	B7h	
A8h	IE 0X00 0000	SADDR 0000 0000							AFh	
A0h	P2 1111 1111		AUXR1 XXXX 0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h	
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh	
90h	P1 1111 1111								97h	
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXX XXX0	CKCON XXXX XXX0	8Fh	
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h	
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	1	

reserved

AT/TS8xC54/8X2

5. Pin Configuration

*NIC: No Internal Connection

Table 7-1.AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0
-	-	-	-	GF3	0	-	DPS

Bit Number	Bit Mnemonic	Description	
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
3	GF3	his bit is a general purpose user flag	
2	0	Reserved Always stuck at 0.	
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
0	DPS	Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.	

Reset Value = XXXX 00X0 Not bit addressable

User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

8. Timer 2

The timer 2 in the TS80C54/58X2 is compatible with the timer 2 in the 80C52.

It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 8-1) and T2MOD register (See Table 8-2). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.

Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description.

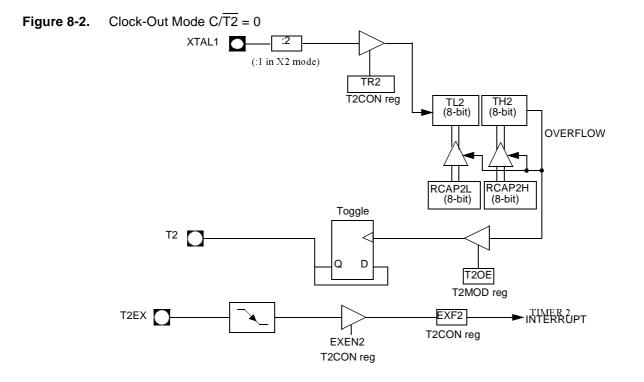
Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.

In TS80C54/58X2 Timer 2 includes the following enhancements:

- Auto-reload mode with up or down counter
- Programmable clock-output

8.1 Auto-Reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 8-1. In this mode the T2EX pin controls the direction of count.


When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows according to the the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution

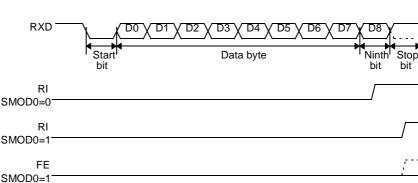
- AMEL
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

¹⁶ **AT/TS8xC54/8X2**

AT/TS8xC54/8X2

Table 8-1.	T2CON Register
------------	----------------


T2CON - Timer 2 Control Register (C8h)

7	6	N - Timer 2 Co 5	1	0					
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#		
Bit Number	Bit Mnemonic			Descrip	tion				
7	TF2	Timer 2 overflow Must be cleared b Set by hardware c	y software.	flow, if RCLK =	0 and TCLK =	0.			
6	EXF2	Set when a captur When set, causes enabled.	Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode						
5	RCLK	Receive Clock bit Clear to use timer Set to use timer 2							
4	TCLK	Transmit Clock bit Clear to use timer Set to use timer 2	1 overflow as						
3	EXEN2	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.							
2	TR2	Clear to turn off tir	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.						
1	C/T2#	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.							
0	CP/RL2#	If RCLK=1 or TCL overflow. Clear to auto-reloa	Timer 2 Capture/Reload bit FRCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2						

Reset Value = 0000 0000b Bit addressable

Figure 9-3. UART Timings in Modes 2 and 3

9.1.1 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit. To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

9.1.2 Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example:

SADDR	0101 0110b
SADEN	<u>1111 1100b</u>
Given	0101 01XXb

The following is an example of how to use given addresses to address different slaves:

Slave A:	SADDR <u>SADEN</u> Given	1111 0001b <u>1111 1010b</u> 1111 0X0Xb
Slave B:	SADDR <u>SADEN</u> Given	1111 0011b <u>1111 1001b</u> 1111 0XX1b
Slave C:	SADDR <u>SADEN</u> Given	1111 0010b <u>1111 1101b</u> 1111 00X1b

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b). For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111

0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

9.1.3 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR	0101 0110b
SADEN	1111 1100b
Broadcast =SADDR OR SADEN	1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:	SADDR <u>SADEN</u> Broadcast	1111 0001b <u>1111 1010b</u> 1111 1X11b,
Slave B:	SADDR <u>SADEN</u> Broadcast	1111 0011b <u>1111 1001b</u> 1111 1X11B,
Slave C:	SADDR= <u>SADEN</u> Broadcast	1111 0010b <u>1111 1101b</u> 1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

9.1.4 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX XXXb (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

Table 9-4. PCON Register

7	6	5	4	3	2	1	0			
SMOD1 SMOD0) -	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic		Description							
7	SMOD1	Serial port Mode Set to select dou		n mode 1, 2 or	3.					
6	SMOD0	Clear to select SM	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.							
5	-	Reserved The value read fro	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	POF	0	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software							
3	GF1	General purpose Cleared by user for Set by user for ge	or general purp	0						
2	GF0	Cleared by user f	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
1	PD	Cleared by hardw	ower-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL									

Table 9-5. PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

IP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0					
-	-	PT2	PS	PT1	PX1	PT0	PX0					
Bit Number	Bit Mnemonic		Description									
7	-	Reserved The value read	eserved he value read from this bit is indeterminate. Do not set this bit.									
6	-	Reserved The value read	eserved he value read from this bit is indeterminate. Do not set this bit.									
5	PT2		Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.									
4	PS	Serial port Prid Refer to PSH f	ority bit or priority level.									
3	PT1		bw interrupt Pri for priority level.	•								
2	PX1		upt 1 Priority bi for priority level.									
1	PT0		imer 0 overflow interrupt Priority bit Refer to PT0H for priority level.									
0	PX0		External interrupt 0 Priority bit Refer to PX0H for priority level.									

Reset Value = XX00 0000b Bit addressable

11. Idle mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

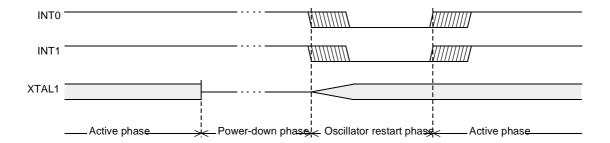
The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

11.1 Power-Down Mode

To save maximum power, a power-down mode can be invoked by software (Refer to Table 9-4., PCON register).

In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input.


Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 11-1. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C54/58X2 into power-down mode.

Figure 11-1. Power-Down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
ldle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data*	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

 Table 11-1.
 The state of ports during idle and power-down modes

* Port 0 can force a "zero" level A "one" Level will leave port floating.

12. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

12.1 Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x $T_{\rm OSC}$, where $T_{\rm OSC}$ = $1/F_{\rm OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ F_{OSC} = 12MHz. To manage this feature, refer to WDTPRG register description, Table 12-2. (SFR0A7h).

Table 12-1.WDTRST RegisterWDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

7	6		5	4	3	2	1	0			
T4	Т3		T2	T1	ТО	\$2	S1	S0			
Bit Number	Bit Mnemonic				Descri	ption					
7	T4										
6	Т3										
5	T2		eserved No not try to set or clear this bit.								
4	T1	Donot									
3	T0										
2	S2	WDT Ti	me-out se	elect bit 2							
1	S1	WDT Ti	ime-out se	elect bit 1							
0	S0	WDT Ti	me-out s	elect bit 0							
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \mbox{Imme-out} \\ (2^{14} - 1) machir \\ (2^{15} - 1) machir \\ (2^{16} - 1) machir \\ (2^{17} - 1) machir \\ (2^{18} - 1) machir \\ (2^{19} - 1) machir \\ (2^{20} - 1) machir \\ (2^{21} - 1) machir \\ (2^{21} - 1) machir \\ (2^{21} - 1) machir \\ \end{array}$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz				

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

.

^

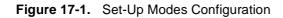
15. Reduced EMI Mode

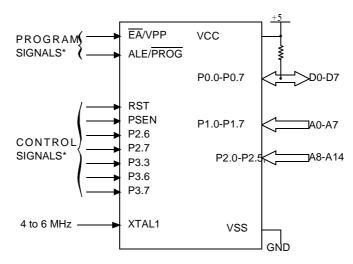
Г

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

2 2


7	6	5	5 4 3 2 1								
-	-	-	-	-	-	RESERVED	AO				
Bit Number	Bit Mnemonic		Description								
7	-	Reserved The value read	eserved he value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value read	eserved he value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.								
3	-	Reserved The value read	d from this bit is	s indeterminate	. Do not set this	s bit.					
2	-	Reserved The value read	d from this bit is	s indeterminate	. Do not set this	s bit.					
1	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	AO		e ALE operatio	n during interna during internal							


Table 15-1.AUXR Register

AUXR - Auxiliary Register (8Eh)

Reset Value = XXXX XXX0b Not bit addressable

* See Table 31. for proper value on these inputs

17.3.3 Programming Algorithm

The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.

To program the TS80C54/58X2 the following sequence must be exercised:

- Step 1: Activate the combination of control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Input the appropriate data on the data lines.
- Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V).
- Step 5: Pulse ALE/PROG once.
- Step 6: Lower EA/VPP from VPP to VCC

Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 17-2.).

17.3.4 Verify algorithm

Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C54/58X2.

P 2.7 is used to enable data output.

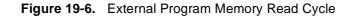
To verify the TS87C54/58X2 code the following sequence must be exercised:

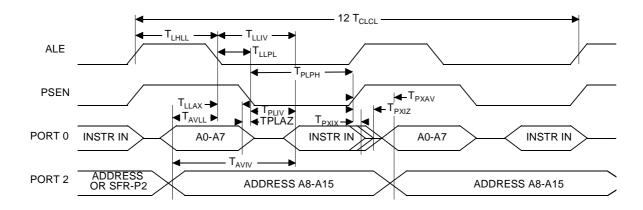
- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 17-2.)

AT/TS8xC54/8X2

Table 18-1.	Signature B	ytes Content
-------------	-------------	--------------

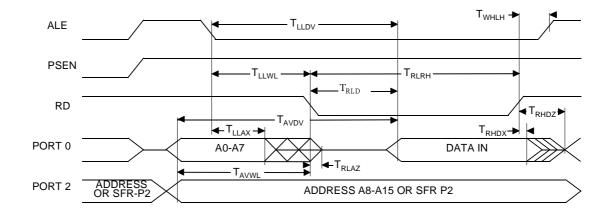

Location	Contents	Comment			
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers			
31h	57h	Family Code: C51 X2			
60h	37h	Product name: TS80C58X2			
60h	B7h	Product name: TS87C58X2			
60h	3Bh	Product name: TS80C54X2			
60h	BBh	Product name: TS87C54X2			
61h	FFh	Product revision number			



Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

Table 19-7. AC Parameters for a Variable Clock: derating formula

19.5.3 External Program Memory Read Cycle



19.5.6 External Data Memory Read Cycle

19.5.7 Serial Port Timing - Shift Register Mode Table 19-11. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 19-12. AC Parameters for a Fix Clock

Speed	-M 40 MHz				-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T_{XHDV}		117		34		117		117		200	ns