

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at87c54x2-slsul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5-1. Pin Description for 40/44 pin packages

	PIN NUMBER		TYPE					
MNEMONIC	DIL	LCC	VQFP 1.4	TYPE	Name And Function			
V _{SS}	20	22	16	I	Ground: 0V reference			
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.			
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation			
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s writte them float and can be used as high impedance inputs. Port 0 pins must be polarize Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program ar data memory. In this application, it uses strong internal pull-up when emitting 1s. P also inputs the code bytes during EPROM programming. External pull-ups are requ during program verification during which P0 outputs the code bytes.			
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current becau of the internal pull-ups. Port 1 also receives the low-order address byte during mem programming and verification. Alternate functions for Port 1 include:			
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout			
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control			
					have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current becaus of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16 bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.5 for A8 to A13			
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O				
	10	11	5	I	RXD (P3.0): Serial input port			
	11	13	7	0	TXD (P3.1): Serial output port			
	12	14	8	1	INT0 (P3.2): External interrupt 0			
	13	15	9	1	INT1 (P3.3): External interrupt 1			
	14	16	10	I	T0 (P3.4): Timer 0 external input			
	15	17	11	I	T1 (P3.5): Timer 1 external input			
	16	18	12	0	WR (P3.6): External data memory write strobe			
	17	19	13	0	RD (P3.7): External data memory read strobe P3.4 also receives A14 during TS87C58X2 EPROM Programming.			
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, reset the device. An internal diffused resistor to V_{SS} permits a power-on reset using only ar external capacitor to V_{CC} .			

Table 6-1. CKCON Register CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	X2

Bit	Bit	
Number	Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$). Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$).

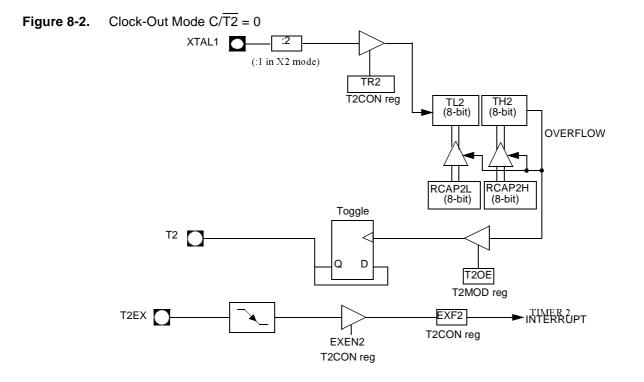
Reset Value = XXXX XXX0b Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

7.1 Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE


; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added								
, 00A2	AUXR	1 EQU 0A2H						
;								
0000 909000	MOV	DPTR,#SOURCE	; address of SOURCE					
0003 05A2	INC	AUXR1	; switch data pointers					
0005 90A000	MOV	DPTR,#DEST	; address of DEST					
0008	LOOP:							
0008 05A2	INC	AUXR1	; switch data pointers					
000A E0	MOVX	A, @DPTR	; get a byte from SOURCE					
000B A3	INC	DPTR	; increment SOURCE address					
000C 05A2	INC	AUXR1	; switch data pointers					
000E F0	MOVX	@DPTR,A	; write the byte to DEST					
000F A3	INC	DPTR	; increment DEST address					
0010 70F6	JNZ	LOOP	; check for 0 terminator					
0012 05A2	INC	AUXR1	; (optional) restore DPS					

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

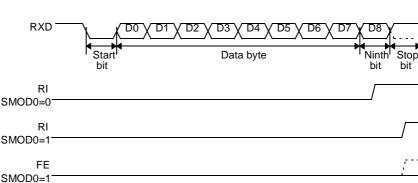
- AMEL
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

¹⁶ **AT/TS8xC54/8X2**

AT/TS8xC54/8X2

Table 8-1.	T2CON Register
------------	----------------


T2CON - Timer 2 Control Register (C8h)

7	6	6 5 4 3 2 1					0			
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#			
Bit Number	Bit Mnemonic		Description							
7	TF2	Timer 2 overflow Must be cleared b Set by hardware c	y software.	flow, if RCLK =	0 and TCLK =	0.				
6	EXF2	Set when a captur When set, causes enabled.	Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode							
5	RCLK		Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.							
4	TCLK	Clear to use timer	Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.							
3	EXEN2	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.								
2	TR2	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.								
1	C/T2#	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.								
0	CP/RL2#	Timer 2 Capture/F If RCLK=1 or TCL overflow. Clear to auto-reloa Set to capture on	K=1, CP/RL2# ad on timer 2 c	overflows or neg	ative transition	s on T2EX pin				

Reset Value = 0000 0000b Bit addressable

Figure 9-3. UART Timings in Modes 2 and 3

9.1.1 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit. To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

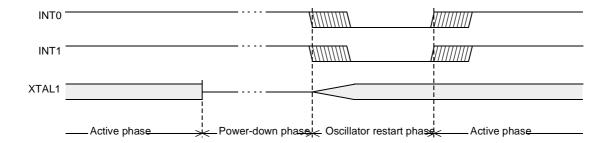
9.1.2 Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example:

SADDR	0101 0110b
SADEN	<u>1111 1100b</u>
Given	0101 01XXb

Table 10-4.	IPH Register


IPH - Ir	nterrupt Priority	High Re	gister (B7h)

7	6	5	4	3	2	1	0			
-	-	PT2H	PSH	PT1H	PX1H	РТ0Н	PX0H			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value rea	d from this bit is ir	ndeterminate. D	o not set this bi	t.				
6	-	Reserved The value rea	d from this bit is ir	ndeterminate. D	o not set this bi	t.				
5	PT2H	Timer 2 overflue PT2H PT2 0 0 0 1 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit						
4	PSH	Serial port Prid PSH PS 0 0 0 1 1 0 1 1	ority High bit <u>Priority Level</u> Lowest Highest							
3	PT1H	Timer 1 overflue PT1H PT1 0 0 0 1 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit						
2	PX1H	External interr <u>PX1H</u> <u>PX1</u> 0 0 0 1 1 0 1 1	upt 1 Priority High <u>Priority Level</u> Lowest Highest	bit						
1	РТОН	Timer 0 overflu PT0H PT0 0 0 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit						
0	РХОН	External interr PX0H PX0 0 0 1 0 1 1	upt 0 Priority High <u>Priority Level</u> Lowest Highest	bit						

Reset Value = XX00 0000b Not bit addressable

Figure 11-1. Power-Down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data*	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

 Table 11-1.
 The state of ports during idle and power-down modes

* Port 0 can force a "zero" level A "one" Level will leave port floating.

7	6		5	4	3	2	1	0
T4	Т3	T3 T2 T1		ТО	\$2	S1	S0	
Bit Number	Bit Mnemonic				Descri	ption		
7	T4							
6	Т3							
5	T2	Reserv		or clear this b	it			
4	T1	Donot						
3	T0							
2	S2	WDT Ti	me-out se	elect bit 2				
1	S1	WDT Ti	ime-out se	elect bit 1				
0	S0	WDT Ti	me-out s	elect bit 0				
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \text{Iime-out} \\ (2^{14} - 1) \text{ machir} \\ (2^{15} - 1) \text{ machir} \\ (2^{16} - 1) \text{ machir} \\ (2^{17} - 1) \text{ machir} \\ (2^{18} - 1) \text{ machir} \\ (2^{19} - 1) \text{ machir} \\ (2^{20} - 1) \text{ machir} \\ (2^{21} - 1) \text{ machir} \\ (2^{21} - 1) \text{ machir} \end{array}$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz	

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

.

^

15. Reduced EMI Mode

Г

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

2 2

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	RESERVED	AO			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value read	eserved ne value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value read	d from this bit is	s indeterminate	. Do not set this	s bit.				
2	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.							
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	AO		e ALE operatio	n during interna during internal						

Table 15-1.AUXR Register

AUXR - Auxiliary Register (8Eh)

Reset Value = XXXX XXX0b Not bit addressable

17. TS87C54/58X2 EPROM

17.1 EPROM Structure

The TS87C54/58X2 EPROM is divided in two different arrays:

- the code array:16/32 Kbytes.
- the encryption array:64 bytes.
- In addition a third non programmable array is implemented:
- the signature array: 4 bytes.

17.2 EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

17.2.1 Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

17.2.2 Program Lock Bits

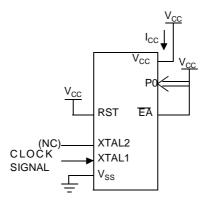
The three lock bits, when programmed according to Table 17-1., will provide different level of protection for the on-chip code and data.

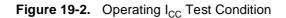
F	Program Lo	ock Bits		
Security level			LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

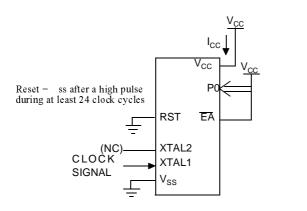
Table 17-1.Program Lock bits

U: unprogrammed,

P: programmed


WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.


- 5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.
- Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
- 7. For other values, please contact your sales office.
- Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (see Figure 19-5.), V_{IL} = V_{SS} + 0.5 V,


 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

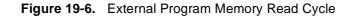
All other pins are disconnected.

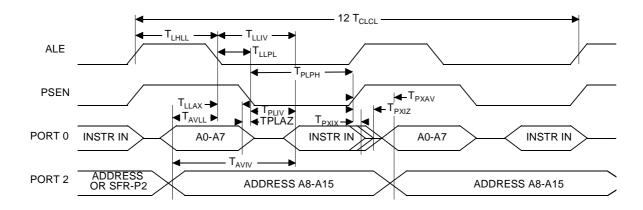
All other pins are disconnected.

19.5.2 External Program Memory Characteristics

Table 19-5. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float


 Table 19-6.
 AC Parameters for Fix Clock


Speed		M MHz	X2 r 30	V node MHz z equiv.	standard	V I mode 40 Hz	X2 n 20	L node MHz z equiv.	standa	L ′d mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45	l l	78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25	l l	50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12	l l	20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

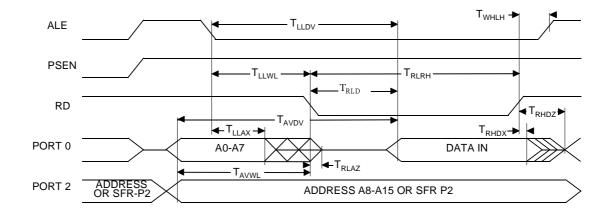
Table 19-7. AC Parameters for a Variable Clock: derating formula

19.5.3 External Program Memory Read Cycle

19.5.4 External Data Memory Characteristics

 Table 19-8.
 Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high


Table 19-9. AC Parameters for a Fix Clock

Speed		M MHz	X2 r 30	V node MHz z equiv.	standard	V I mode 40 Hz	X2 r 20	·L node MHz z equiv.	standa	·L rd mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100	1	60		102		95		137	ns
T _{RHDX}	0	1	0	1	0		0	l l	0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165	1	100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75	1	47	1	80		70	l l	103		ns
T _{QVWX}	10	1	7	1	15		5	l l	13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0	1	0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

19.5.6 External Data Memory Read Cycle

19.5.7 Serial Port Timing - Shift Register Mode Table 19-11. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 19-12. AC Parameters for a Fix Clock

Speed		M MHz	X2 n 30 l	V node MHz z equiv.	standard	V mode 40 Hz	20 1	L node MHz z equiv.	standar	L d mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T_{XHDV}		117		34		117		117		200	ns

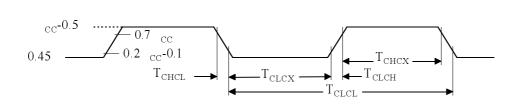

19.5.11 External Clock Drive Characteristics (XTAL1)

Table 19-15.AC Parameters

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

19.5.12 External Clock Drive Waveforms

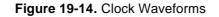
Figure 19-11. External Clock Drive Waveforms

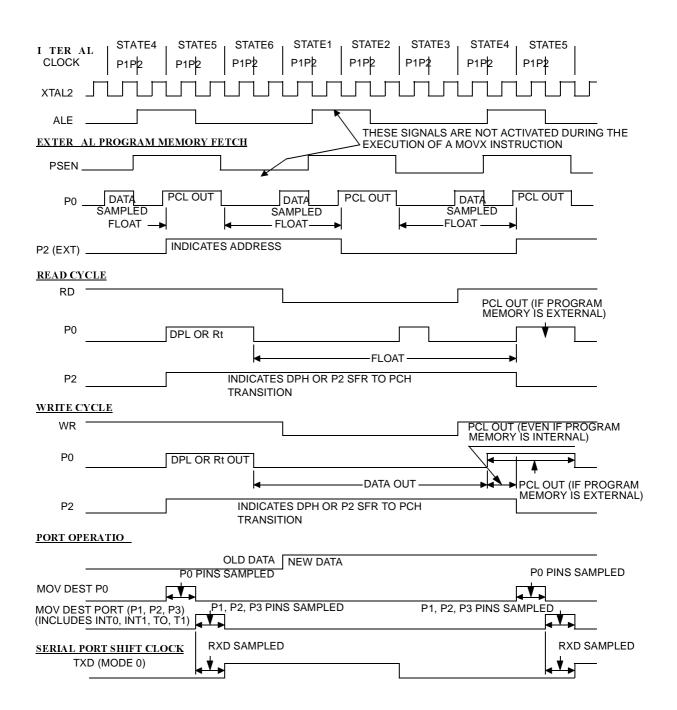
19.5.13 AC Testing Input/Output Waveforms

Figure 19-12. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

19.5.14 Float Waveforms


Figure 19-13. Float Waveforms



For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

19.5.15 Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

AT/TS8xC54/8X2

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS87C54X2-MCC	5V ±10%	Commercial	PQFP44	Tray
TS87C54X2-MCE	5V ±10%	Commercial	VQFP44	Tray
TS87C54X2-VCA	5V ±10%	Commercial	PDIL40	Stick
TS87C54X2-VCB	5V ±10%	Commercial	PLCC44	Stick
TS87C54X2-VCC	5V ±10%	Commercial	PQFP44	Tray
TS87C54X2-VCE	5V ±10%	Commercial	VQFP44	Tray
TS87C54X2-LCA	2.7 to 5.5V	Commercial	PDIL40	Stick
TS87C54X2-LCB	2.7 to 5.5V	Commercial	PLCC44	Stick
TS87C54X2-LCC	2.7 to 5.5V	Commercial	PQFP44	Tray
TS87C54X2-LCE	2.7 to 5.5V	Commercial	VQFP44	Tray
TS87C54X2-MIA	5V ±10%	Industrial	PDIL40	Stick
TS87C54X2-MIB	5V ±10%	Industrial	PLCC44	Stick
TS87C54X2-MIC	5V ±10%	Industrial	PQFP44	Tray
TS87C54X2-MIE	5V ±10%	Industrial	VQFP44	Tray
TS87C54X2-VIA	5V ±10%	Industrial	PDIL40	Stick
TS87C54X2-VIB	5V ±10%	Industrial	PLCC44	Stick
TS87C54X2-VIC	5V ±10%	Industrial	PQFP44	Tray
TS87C54X2-VIE	5V ±10%	Industrial	VQFP44	Tray
TS87C54X2-LIA	2.7 to 5.5V	Industrial	PDIL40	Stick
TS87C54X2-LIB	2.7 to 5.5V	Industrial	PLCC44	Stick
TS87C54X2-LIC	2.7 to 5.5V	Industrial	PQFP44	Tray
TS87C54X2-LIE	2.7 to 5.5V	Industrial	VQFP44	Tray
AT87C54X2-3CSUM	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUM	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUM	5V ±10%	Industrial & Green	VQFP44	Tray
AT87C54X2-3CSUL	2.7 to 5.5V	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUL	2.7 to 5.5V	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUL	2.7 to 5.5V	Industrial & Green	VQFP44	Tray
AT87C54X2-3CSUV	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUV	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUV	5V ±10%	Industrial & Green	VQFP44	Tray

