# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | 80C51                                                                   |
| Core Size                  | 8-Bit                                                                   |
| Speed                      | 30/20MHz                                                                |
| Connectivity               | UART/USART                                                              |
| Peripherals                | POR, WDT                                                                |
| Number of I/O              | 32                                                                      |
| Program Memory Size        | 16KB (16K x 8)                                                          |
| Program Memory Type        | OTP                                                                     |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 256 x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                             |
| Data Converters            | -                                                                       |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 44-QFP                                                                  |
| Supplier Device Package    | 44-VQFP                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/ts87c54x2-lce |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C54/58X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON



### AT/TS8xC54/8X2

### 5. Pin Configuration



\*NIC: No Internal Connection





Figure 6-2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 6-1.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

### CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.





## Table 6-1. CKCON Register CKCON - Clock Control Register (8Fh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0  |
|---|---|---|---|---|---|---|----|
| - | - | - | - | - | - | - | X2 |

| Bit    | Bit      |                                                                                                                                                                                                                 |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number | Mnemonic | Description                                                                                                                                                                                                     |
| 7      | -        | <b>Reserved</b><br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                          |
| 6      | -        | <b>Reserved</b><br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                          |
| 5      | -        | <b>Reserved</b><br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                          |
| 4      | -        | <b>Reserved</b><br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                          |
| 3      | -        | <b>Reserved</b><br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                          |
| 2      | -        | <b>Reserved</b><br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                          |
| 1      | -        | <b>Reserved</b><br>The value read from this bit is indeterminate. Do not set this bit.                                                                                                                          |
| 0      | X2       | <b>CPU and peripheral clock bit</b><br>Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$ ).<br>Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$ ). |

Reset Value = XXXX XXX0b Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

AT/TS8xC54/8X2

### 7. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 7-1.) that allows the program code to switch between them (Refer to Figure 7-1).



### Figure 7-1. Use of Dual Pointer





### 8. Timer 2

The timer 2 in the TS80C54/58X2 is compatible with the timer 2 in the 80C52.

It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 8-1) and T2MOD register (See Table 8-2). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects  $F_{OSC}/12$  (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.

Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description.

Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.

In TS80C54/58X2 Timer 2 includes the following enhancements:

- Auto-reload mode with up or down counter
- Programmable clock-output

### 8.1 Auto-Reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 8-1. In this mode the T2EX pin controls the direction of count.

When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows according to the the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution

## AT/TS8xC54/8X2

| Table 8-1. | T2CON Register |
|------------|----------------|
|------------|----------------|

T2CON - Timer 2 Control Register (C8h)

| 7             | 6               | 5                                                                                                          | 5 4 3 2 1                                                                                                                                                                                                                                                                                                                         |                                                      |                                                       |                                 |                           |  |  |  |
|---------------|-----------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------|---------------------------|--|--|--|
| TF2           | EXF2            | RCLK                                                                                                       | RCLK TCLK EXEN2 TR2 C/T2#                                                                                                                                                                                                                                                                                                         |                                                      |                                                       |                                 |                           |  |  |  |
| Bit<br>Number | Bit<br>Mnemonic |                                                                                                            |                                                                                                                                                                                                                                                                                                                                   | Descrip                                              | otion                                                 |                                 |                           |  |  |  |
| 7             | TF2             | Timer 2 overflow<br>Must be cleared b<br>Set by hardware c                                                 | <b>Timer 2 overflow Flag</b><br>Must be cleared by software.<br>Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.                                                                                                                                                                                                    |                                                      |                                                       |                                 |                           |  |  |  |
| 6             | EXF2            | Timer 2 External F<br>Set when a captur<br>When set, causes<br>enabled.<br>Must be cleared b<br>(DCEN = 1) | Timer 2 External Flag<br>Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1.<br>When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is<br>enabled.<br>Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode<br>(DCEN = 1) |                                                      |                                                       |                                 |                           |  |  |  |
| 5             | RCLK            | Receive Clock bit<br>Clear to use timer<br>Set to use timer 2                                              | 1 overflow as overflow as re                                                                                                                                                                                                                                                                                                      | receive clock fo<br>ceive clock for s                | r serial port in<br>serial port in mo                 | mode 1 or 3.<br>ode 1 or 3.     |                           |  |  |  |
| 4             | TCLK            | Transmit Clock bit<br>Clear to use timer<br>Set to use timer 2                                             | Fransmit Clock bit<br>Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3.<br>Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.                                                                                                                                            |                                                      |                                                       |                                 |                           |  |  |  |
| 3             | EXEN2           | Timer 2 External E<br>Clear to ignore ev<br>Set to cause a cap<br>2 is not used to clu                     | Timer 2 External Enable bit<br>Clear to ignore events on T2EX pin for timer 2 operation.<br>Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer<br>2 is not used to clock the serial port.                                                                                              |                                                      |                                                       |                                 |                           |  |  |  |
| 2             | TR2             | Timer 2 Run contr<br>Clear to turn off tir<br>Set to turn on time                                          | ol bit<br>ner 2.<br>er 2.                                                                                                                                                                                                                                                                                                         |                                                      |                                                       |                                 |                           |  |  |  |
| 1             | C/T2#           | Timer/Counter 2<br>Clear for timer ope<br>Set for counter op<br>out mode.                                  | <b>Timer/Counter 2 select bit</b><br>Clear for timer operation (input from internal clock system: F <sub>OSC</sub> ).<br>Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock<br>out mode.                                                                                              |                                                      |                                                       |                                 |                           |  |  |  |
| 0             | CP/RL2#         | Timer 2 Capture/F<br>If RCLK=1 or TCL<br>overflow.<br>Clear to auto-reloa<br>Set to capture on             | Reload bit<br>K=1, CP/RL2#<br>ad on timer 2 o<br>negative transi                                                                                                                                                                                                                                                                  | is ignored and<br>verflows or neg<br>tions on T2EX p | timer is forced<br>ative transition<br>pin if EXEN2=1 | to auto-reload<br>s on T2EX pin | on timer 2<br>if EXEN2=1. |  |  |  |

Reset Value = 0000 0000b Bit addressable



## AT/TS8xC54/8X2

### Table 9-3.

SCON Register SCON - Serial Control Register (98h)

| 7             | 6               |                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                          | 4                                                        | 3                                    | 2             | 1              | 0              |  |  |
|---------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|---------------|----------------|----------------|--|--|
| FE/SM0        | SM1             |                                                                                                                                                                                                                                                                   | SM2                                                                                                                                                                                                                                                                                                                                                                        | REN                                                      | TB8                                  | RB8 TI RI     |                |                |  |  |
| Bit<br>Number | Bit<br>Mnemonic |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                            |                                                          | Descrip                              | otion         |                |                |  |  |
| 7             | FE              | Fran<br>Clea<br>Set<br>SMC                                                                                                                                                                                                                                        | Framing Error bit (SMOD0=1)<br>Clear to reset the error state, not cleared by a valid stop bit.<br>Set by hardware when an invalid stop bit is detected.<br>SMOD0 must be set to enable access to the FE bit                                                                                                                                                               |                                                          |                                      |               |                |                |  |  |
|               | SM0             | Seria<br>Refe<br>SMC                                                                                                                                                                                                                                              | al port Mode<br>er to SM1 for s<br>DD0 must be c                                                                                                                                                                                                                                                                                                                           | bit 0<br>serial port mod<br>cleared to enab              | e selection.<br>le access to the     | e SM0 bit     |                |                |  |  |
| 6             | SM1             | <b>Seri</b><br>SMC<br>0<br>1<br>1                                                                                                                                                                                                                                 | ierial port Mode bit 1         M0       SM1Mode       Description       Baud Rate         0       0       0       Shift RegisterF <sub>XTAL</sub> /12 (/6 in X2 mode)         0       1       1       8-bit UARTVariable         0       2       9-bit UARTF <sub>XTAL</sub> /64 or F <sub>XTAL</sub> /32 (/32, /16 in X2 mode)         1       3       9-bit UARTVariable |                                                          |                                      |               |                |                |  |  |
| 5             | SM2             | Serial port Mode 2 bit / Multiprocessor Communication Enable bit<br>Clear to disable multiprocessor communication feature.<br>Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode<br>1. This bit should be cleared in mode 0. |                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                      |               |                |                |  |  |
| 4             | REN             | Rece<br>Clea<br>Set 1                                                                                                                                                                                                                                             | eption Enable<br>ar to disable so<br>to enable seri                                                                                                                                                                                                                                                                                                                        | e bit<br>erial reception.<br>al reception.               |                                      |               |                |                |  |  |
| 3             | TB8             | Tran<br>Clea<br>Set                                                                                                                                                                                                                                               | smitter Bit 8 /<br>ar to transmit a<br>to transmit a l                                                                                                                                                                                                                                                                                                                     | Ninth bit to tra<br>a logic 0 in the<br>ogic 1 in the 9t | nsmit in modes<br>9th bit.<br>h bit. | 2 and 3.      |                |                |  |  |
| 2             | RB8             | Rece<br>Clea<br>Set I<br>In m                                                                                                                                                                                                                                     | Receiver Bit 8 / Ninth bit received in modes 2 and 3<br>Cleared by hardware if 9th bit received is a logic 0.<br>Set by hardware if 9th bit received is a logic 1.<br>In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.                                                                                                                      |                                                          |                                      |               |                |                |  |  |
| 1             | TI              | Tran<br>Clea<br>Set I<br>the c                                                                                                                                                                                                                                    | Transmit Interrupt flag         Clear to acknowledge interrupt.         Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in he other                                                                                                                                                                                           |                                                          |                                      |               |                |                |  |  |
| 0             | RI              | Rece<br>Clea<br>Set<br>the c                                                                                                                                                                                                                                      | eive Interrupt<br>ar to acknowle<br>by hardware a<br>other modes.                                                                                                                                                                                                                                                                                                          | t flag<br>edge interrupt.<br>at the end of th            | e 8th bit time in                    | mode 0, see F | igure 9-2. and | Figure 9-3. in |  |  |

Reset Value = 0000 0000b Bit addressable





If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

|               | IE - In         | terrupt Enable                                                                                             | Register (A8                                                                                                                      | 3h)                             |                   |                  |              |  |  |
|---------------|-----------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|------------------|--------------|--|--|
| 7             | 6               | 5                                                                                                          | 4                                                                                                                                 | 3                               | 2                 | 1                | 0            |  |  |
| EA            | -               | ET2                                                                                                        | ES                                                                                                                                | ET1                             | EX1               | ET0              | EX0          |  |  |
| Bit<br>Number | Bit<br>Mnemonic |                                                                                                            |                                                                                                                                   | Descrip                         | otion             |                  |              |  |  |
| 7             | EA              | Enable All interru<br>Clear to disable a<br>Set to enable all i<br>If EA=1, each inte<br>own interrupt ena | ot bit<br>Ill interrupts.<br>nterrupts.<br>errupt source is<br>ble bit.                                                           | individually ena                | abled or disable  | ed by setting or | clearing its |  |  |
| 6             | -               | <b>Reserved</b><br>The value read fr                                                                       | om this bit is in                                                                                                                 | determinate. Do                 | o not set this bi | t.               |              |  |  |
| 5             | ET2             | Timer 2 overflow i<br>Clear to disable to<br>Set to enable time                                            | nterrupt Enable<br>mer 2 overflow<br>er 2 overflow in                                                                             | e bit<br>interrupt.<br>terrupt. |                   |                  |              |  |  |
| 4             | ES              | Serial port Enable<br>Clear to disable s<br>Set to enable ser                                              | e bit<br>erial port interr<br>ial port interrup                                                                                   | upt.<br>t.                      |                   |                  |              |  |  |
| 3             | ET1             | Timer 1 overflow i<br>Clear to disable ti<br>Set to enable time                                            | nterrupt Enable<br>mer 1 overflow<br>er 1 overflow in                                                                             | e bit<br>interrupt.<br>terrupt. |                   |                  |              |  |  |
| 2             | EX1             | External interrupt<br>Clear to disable e<br>Set to enable ext                                              | xternal interrupt 1 Enable bit<br>Clear to disable external interrupt 1.<br>Set to enable external interrupt 1.                   |                                 |                   |                  |              |  |  |
| 1             | ET0             | Timer 0 overflow i<br>Clear to disable ti<br>Set to enable time                                            | ïmer 0 overflow interrupt Enable bit<br>Clear to disable timer 0 overflow interrupt.<br>Set to enable timer 0 overflow interrupt. |                                 |                   |                  |              |  |  |
| 0             | EX0             | External interrupt<br>Clear to disable e<br>Set to enable ext                                              | 0 Enable bit<br>external interrup<br>ernal interrupt (                                                                            | ot 0.<br>).                     |                   |                  |              |  |  |

Table 10-2. IE Register

Reset Value = 0X00 0000b Bit addressable



| Table 10-4. | IPH Register |
|-------------|--------------|
|             |              |

| IPH - | Interrupt | Priority | High    | Register | (B7h) |
|-------|-----------|----------|---------|----------|-------|
|       | monupi    | 1 HOIILY | ringiri | register |       |

| 7             | 6               |                                             | 5                                                    | 4                                                            | 3               | 2                  | 1    | 0    |
|---------------|-----------------|---------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-----------------|--------------------|------|------|
| -             | -               | I                                           | PT2H                                                 | PSH                                                          | PT1H            | PX1H               | PT0H | PX0H |
| Bit<br>Number | Bit<br>Mnemonic |                                             |                                                      |                                                              | Descrip         | tion               |      |      |
| 7             | -               | Reserve<br>The value                        | ed<br>ue read fr                                     | om this bit is in                                            | determinate. Do | o not set this bit |      |      |
| 6             | -               | Reserve<br>The value                        | ed<br>ue read fr                                     | om this bit is in                                            | determinate. Do | o not set this bit |      |      |
| 5             | PT2H            | Timer 2<br><u>PT2H</u><br>0<br>0<br>1<br>1  | overflow i<br><u>PT2 P</u><br>0 Lo<br>1<br>0<br>1 H  | nterrupt Priority<br><u>riority Level</u><br>owest<br>ighest | / High bit      |                    |      |      |
| 4             | PSH             | Serial po<br><u>PSH</u><br>0<br>1<br>1      | ort Priority<br><u>PS P</u><br>0 Lo<br>1<br>0<br>1 H | r High bit<br>riority Level<br>owest<br>ighest               |                 |                    |      |      |
| 3             | PT1H            | Timer 1<br><u>PT1H</u><br>0<br>0<br>1<br>1  | overflow i<br>PT1 P<br>0 Lo<br>1<br>0<br>1 H         | nterrupt Priority<br>riority Level<br>owest<br>ighest        | / High bit      |                    |      |      |
| 2             | PX1H            | External<br><u>PX1H</u><br>0<br>0<br>1<br>1 | l interrupt<br><u>PX1</u> P<br>0 Lo<br>1<br>0<br>1 H | 1 Priority High<br>riority Level<br>owest<br>ighest          | bit             |                    |      |      |
| 1             | РТОН            | Timer 0<br><u>PT0H</u><br>0<br>1<br>1       | overflow i<br><u>PT0 P</u><br>0 Lo<br>1<br>0<br>1 H  | nterrupt Priority<br><u>riority Level</u><br>owest<br>ighest | / High bit      |                    |      |      |
| 0             | РХОН            | External<br><u>PX0H</u><br>0<br>1<br>1      | l interrupt<br><u>PX0 P</u><br>0 Lo<br>1<br>0<br>1 H | 0 Priority High<br><u>riority Level</u><br>owest<br>ighest   | bit             |                    |      |      |

Reset Value = XX00 0000b Not bit addressable

### 11. Idle mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

### 11.1 Power-Down Mode

To save maximum power, a power-down mode can be invoked by software (Refer to Table 9-4., PCON register).

In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated.  $V_{CC}$  can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before  $V_{CC}$  is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input.

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 11-1. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C54/58X2 into power-down mode.





### Figure 11-1. Power-Down Exit Waveform



Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

| Mode       | Program<br>Memory | ALE | PSEN | PORT0      | PORT1     | PORT2     | PORT3     |
|------------|-------------------|-----|------|------------|-----------|-----------|-----------|
| Idle       | Internal          | 1   | 1    | Port Data* | Port Data | Port Data | Port Data |
| Idle       | External          | 1   | 1    | Floating   | Port Data | Address   | Port Data |
| Power Down | Internal          | 0   | 0    | Port Data* | Port Data | Port Data | Port Data |
| Power Down | External          | 0   | 0    | Floating   | Port Data | Port Data | Port Data |

 Table 11-1.
 The state of ports during idle and power-down modes

\* Port 0 can force a "zero" level A "one" Level will leave port floating.

### 12. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

### 12.1 Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x  $T_{\rm OSC}$ , where  $T_{\rm OSC}$  =  $1/F_{\rm OSC}$ . To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a  $2^7$  counter has been added to extend the Time-out capability, ranking from 16ms to 2s @  $F_{OSC}$  = 12MHz. To manage this feature, refer to WDTPRG register description, Table 12-2. (SFR0A7h).

## Table 12-1.WDTRST RegisterWDTRST Address (0A6h)

|             | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
|-------------|---|---|---|---|---|---|---|
| Reset value | Х | Х | Х | Х | Х | Х | Х |

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.





### 17.2.3 Signature bytes

The TS87C54/58X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

### 17.3 EPROM Programming

### 17.3.1 Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C54/58X2 is placed in specific set-up modes (See Figure 17-1.).

Control and program signals must be held at the levels indicated in Table 17-2.

### 17.3.2 Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4 respectively for A0-A14 (P2.5 (A13) for TS87C54X2, P3.4 (A14) for TS87C58X2).

Data Lines: P0.0-P0.7 for D0-D7

Control Signals:RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Table 17-2. EPROM Set-Up Modes

| Mode                                      | RST | PSEN | ALE/PR<br>OG | EA/VPP | P2.6 | P2.7 | P3.3 | P3.6 | P3.7 |
|-------------------------------------------|-----|------|--------------|--------|------|------|------|------|------|
| Program Code data                         | 1   | 0    | ٦Ľ           | 12.75  | 0    | 1    | 1    | 1    | 1    |
| Verify Code data                          | 1   | 0    | 1            | 1      | 0    |      | 0    | 1    | 1    |
| Program Encryption<br>Array Address 0-3Fh | 1   | 0    | IJ           | 12.75  | 0    | 1    | 1    | 0    | 1    |
| Read Signature Bytes                      | 1   | 0    | 1            | 1      | 0    |      | 0    | 0    | 0    |
| Program Lock bit 1                        | 1   | 0    | IJ.          | 12.75  | 1    | 1    | 1    | 1    | 1    |
| Program Lock bit 2                        | 1   | 0    | J            | 12.75  | 1    | 1    | 1    | 0    | 0    |
| Program Lock bit 3                        | 1   | 0    | IJ           | 12.75  | 1    | 0    | 1    | 1    | 0    |



Figure 19-3. I<sub>CC</sub> Test Condition, Idle Mode



All other pins are disconnected.











### 19.5.6 External Data Memory Read Cycle





### 19.5.7 Serial Port Timing - Shift Register Mode Table 19-11. Symbol Description

| Symbol            | Parameter                                |
|-------------------|------------------------------------------|
| T <sub>XLXL</sub> | Serial port clock cycle time             |
| T <sub>QVHX</sub> | Output data set-up to clock rising edge  |
| T <sub>XHQX</sub> | Output data hold after clock rising edge |
| T <sub>XHDX</sub> | Input data hold after clock rising edge  |
| T <sub>XHDV</sub> | Clock rising edge to input data valid    |

Table 19-12. AC Parameters for a Fix Clock

| Speed             | -I<br>40 I | M<br>MHz | -<br>X2 n<br>30 l<br>60 MHz | V<br>node<br>MHz<br>z equiv. | ۔<br>standard<br>M | V<br>mode 40<br>Hz | -<br>X2 n<br>20 I<br>40 MHz | L<br>node<br>MHz<br>z equiv. | -<br>standar<br>30 I | L<br>d mode<br>MHz | Units |
|-------------------|------------|----------|-----------------------------|------------------------------|--------------------|--------------------|-----------------------------|------------------------------|----------------------|--------------------|-------|
| Symbol            | Min        | Max      | Min                         | Max                          | Min                | Мах                | Min                         | Max                          | Min                  | Max                |       |
| T <sub>XLXL</sub> | 300        |          | 200                         |                              | 300                |                    | 300                         |                              | 400                  |                    | ns    |
| T <sub>QVHX</sub> | 200        |          | 117                         |                              | 200                |                    | 200                         |                              | 283                  |                    | ns    |
| T <sub>XHQX</sub> | 30         |          | 13                          |                              | 30                 |                    | 30                          |                              | 47                   |                    | ns    |
| T <sub>XHDX</sub> | 0          |          | 0                           |                              | 0                  |                    | 0                           |                              | 0                    |                    | ns    |
| T <sub>XHDV</sub> |            | 117      |                             | 34                           |                    | 117                |                             | 117                          |                      | 200                | ns    |

| Symbol            | Туре | Standard<br>Clock | X2 Clock | -М  | -V  | -L  | Units |
|-------------------|------|-------------------|----------|-----|-----|-----|-------|
| T <sub>XLXL</sub> | Min  | 12 T              | 6 T      |     |     |     | ns    |
| T <sub>QVHX</sub> | Min  | 10 T - x          | 5 T - x  | 50  | 50  | 50  | ns    |
| T <sub>XHQX</sub> | Min  | 2 T - x           | T - x    | 20  | 20  | 20  | ns    |
| T <sub>XHDX</sub> | Min  | х                 | х        | 0   | 0   | 0   | ns    |
| T <sub>XHDV</sub> | Max  | 10 T - x          | 5 T- x   | 133 | 133 | 133 | ns    |

Table 19-13. AC Parameters for a Variable Clock: derating formula

### 19.5.8 Shift Register Timing Waveforms

Figure 19-9. Shift Register Timing Waveforms





### **19.5.11** External Clock Drive Characteristics (XTAL1)

### Table 19-15.AC Parameters

| Symbol                               | Parameter               | Min | Мах | Units |
|--------------------------------------|-------------------------|-----|-----|-------|
| T <sub>CLCL</sub>                    | Oscillator Period       | 25  |     | ns    |
| T <sub>CHCX</sub>                    | High Time               | 5   |     | ns    |
| T <sub>CLCX</sub>                    | Low Time                | 5   |     | ns    |
| T <sub>CLCH</sub>                    | Rise Time               |     | 5   | ns    |
| T <sub>CHCL</sub>                    | Fall Time               |     | 5   | ns    |
| T <sub>CHCX</sub> /T <sub>CLCX</sub> | Cyclic ratio in X2 mode | 40  | 60  | %     |

### 19.5.12 External Clock Drive Waveforms

Figure 19-11. External Clock Drive Waveforms







### 19.5.13 AC Testing Input/Output Waveforms

### Figure 19-12. AC Testing Input/Output Waveforms



AC inputs during testing are driven at V<sub>CC</sub> - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V<sub>IH</sub> min for a logic "1" and V<sub>IL</sub> max for a logic "0".

### 19.5.14 Float Waveforms

### Figure 19-13. Float Waveforms



For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded  $V_{OH}/V_{OL}$  level occurs.  $I_{OL}/I_{OH} \ge \pm 20$ mA.

### 19.5.15 Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.



### 20. Ordering Information

| Table 20-1. |  |
|-------------|--|
|-------------|--|

Possible Ordering Entries

| Part Number        | Supply Voltage | Temperature Range  | Package | Packing |
|--------------------|----------------|--------------------|---------|---------|
| TS80C54X2xxx-MCA   | -5 to +/-10%   | Commercial         | PDIL40  | Stick   |
| TS80C54X2xxx-MCB   | -5 to +/-10%   | Commercial         | PLCC44  | Stick   |
| TS80C54X2xxx-MCC   | -5 to +/-10%   | Commercial         | PQFP44  | Tray    |
| TS80C54X2xxx-MCE   | -5 to +/-10%   | Commercial         | VQFP44  | Tray    |
| TS80C54X2xxx-VCA   | -5 to +/-10%   | Commercial         | PDIL40  | Stick   |
| TS80C54X2xxx-VCB   | -5 to +/-10%   | Commercial         | PLCC44  | Stick   |
| TS80C54X2xxx-VCC   | -5 to +/-10%   | Commercial         | PQFP44  | Tray    |
| TS80C54X2xxx-VCE   | -5 to +/-10%   | Commercial         | VQFP44  | Tray    |
| TS80C54X2xxx-LCA   | -5 to +/-10%   | Commercial         | PDIL40  | Stick   |
| TS80C54X2xxx-LCB   | -5 to +/-10%   | Commercial         | PLCC44  | Stick   |
| TS80C54X2xxx-LCC   | -5 to +/-10%   | Commercial         | PQFP44  | Tray    |
| TS80C54X2xxx-LCE   | -5 to +/-10%   | Commercial         | VQFP44  | Tray    |
| TS80C54X2xxx-MIA   | -5 to +/-10%   | Industrial         | PDIL40  | Stick   |
| TS80C54X2xxx-MIB   | -5 to +/-10%   | Industrial         | PLCC44  | Stick   |
| TS80C54X2xxx-MIC   | -5 to +/-10%   | Industrial         | PQFP44  | Tray    |
| TS80C54X2xxx-MIE   | -5 to +/-10%   | Industrial         | VQFP44  | Tray    |
| TS80C54X2xxx-VIA   | -5 to +/-10%   | Industrial         | PDIL40  | Stick   |
| TS80C54X2xxx-VIB   | -5 to +/-10%   | Industrial         | PLCC44  | Stick   |
| TS80C54X2xxx-VIC   | -5 to +/-10%   | Industrial         | PQFP44  | Tray    |
| TS80C54X2xxx-VIE   | -5 to +/-10%   | Industrial         | VQFP44  | Tray    |
| TS80C54X2xxx-LIA   | -5 to +/-10%   | Industrial         | PDIL40  | Stick   |
| TS80C54X2xxx-LIB   | -5 to +/-10%   | Industrial         | PLCC44  | Stick   |
| TS80C54X2xxx-LIC   | -5 to +/-10%   | Industrial         | PQFP44  | Tray    |
| TS80C54X2xxx-LIE   | -5 to +/-10%   | Industrial         | VQFP44  | Tray    |
|                    |                |                    |         |         |
| AT80C54X2zzz-3CSUM | -5 to +/-10%   | Industrial & Green | PDIL40  | Stick   |
| AT80C54X2zzz-SLSUM | -5 to +/-10%   | Industrial & Green | PLCC44  | Stick   |
| AT80C54X2zzz-RLTUM | -5 to +/-10%   | Industrial & Green | VQFP44  | Tray    |
| AT80C54X2zzz-3CSUL | -5 to +/-10%   | Industrial & Green | PDIL40  | Stick   |
| AT80C54X2zzz-SLSUL | -5 to +/-10%   | Industrial & Green | PLCC44  | Stick   |
| AT80C54X2zzz-RLTUL | -5 to +/-10%   | Industrial & Green | VQFP44  | Tray    |
| AT80C54X2zzz-3CSUV | -5 to +/-10%   | Industrial & Green | PDIL40  | Stick   |
| AT80C54X2zzz-SLSUV | -5 to +/-10%   | Industrial & Green | PLCC44  | Stick   |
| AT80C54X2zzz-RLTUV | -5 to +/-10%   | Industrial & Green | VQFP44  | Tray    |
|                    |                |                    |         |         |
| TS87C54X2-MCA      | 5V ±10%        | Commercial         | PDIL40  | Stick   |
| TS87C54X2-MCB      | 5V ±10%        | Commercial         | PLCC44  | Stick   |

## 8 AT/TS8xC54/8X2