
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-PQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c54x2-mcc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C54/58X2 fall into the following categories:

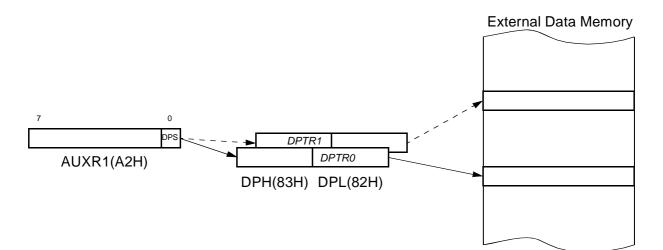
- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

Table 5-1. Pin Description for 40/44 pin packages

		PIN NUMBER			
MNEMONIC	DIL	LCC	LCC VQFP 1.4	TYPE	Name And Function
V _{SS}	20	22	16	I	Ground: 0V reference
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written t them float and can be used as high impedance inputs. Port 0 pins must be polarized t Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port also inputs the code bytes during EPROM programming. External pull-ups are require during program verification during which P0 outputs the code bytes.
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for Port 1 include:
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control
					have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current becaus of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16 bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.5 for A8 to A13
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current becaus of the internal pull-ups. Some Port 3 pin P3.4 receive the high order address bits durin EPROM programming and verification for TS8xC58X2 devices. Port 3 also serves the special features of the 80C51 family, as listed below.
	10	11	5	I	RXD (P3.0): Serial input port
	11	13	7	0	TXD (P3.1): Serial output port
	12	14	8	1	INT0 (P3.2): External interrupt 0
	13	15	9	1	INT1 (P3.3): External interrupt 1
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe P3.4 also receives A14 during TS87C58X2 EPROM Programming.
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, reset the device. An internal diffused resistor to V_{SS} permits a power-on reset using only ar external capacitor to V_{CC} .

		PIN NU	MBER			
MNEMONIC	DIL	LCC	VQFP 1.4	TYPE	Name And Function	
MNEMONIC		PIN NU	MBER	TYPE	NAME AND FUNCTION	
ALE/PROG	30	33	27	O (I)	address during an access to external memory. In normal operation, ALE is emitted constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used to external timing or clocking. Note that one ALE pulse is skipped during each acce external data memory. This pin is also the program pulse input (PROG) during Eff programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit se will be inactive during internal fetches.	
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.	
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: $\overrightarrow{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (54X2) or 7FFFH (58X2). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (54X2) or 7FFFH (58X2). This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, $\overrightarrow{\text{EA}}$ will be internally latched on Reset.	
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.	
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier	

Table 5-1.Pin Description for 40/44 pin packages



7. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 7-1.) that allows the program code to switch between them (Refer to Figure 7-1).

Figure 7-1. Use of Dual Pointer

7.1 Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using d ; Destroys DPTR0, D ; note: DPS exits opp ; unless an extra INC	PTR1, A	and PSW entry state	
, 00A2	AUXR	1 EQU 0A2H	
;			
0000 909000	MOV	DPTR,#SOURCE	; address of SOURCE
0003 05A2	INC	AUXR1	; switch data pointers
0005 90A000	MOV	DPTR,#DEST	; address of DEST
0008	LOOP:		
0008 05A2	INC	AUXR1	; switch data pointers
000A E0	MOVX	A, @DPTR	; get a byte from SOURCE
000B A3	INC	DPTR	; increment SOURCE address
000C 05A2	INC	AUXR1	; switch data pointers
000E F0	MOVX	@DPTR,A	; write the byte to DEST
000F A3	INC	DPTR	; increment DEST address
0010 70F6	JNZ	LOOP	; check for 0 terminator
0012 05A2	INC	AUXR1	; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Table 8-1.	T2CON Register
------------	----------------

T2CON - Timer 2 Control Register (C8h)

7	6	N - Timer 2 Co 5	4	3	2	1	0				
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#				
Bit Number	Bit Mnemonic			Descrip	tion						
7	TF2	Must be cleared b	mer 2 overflow Flag ust be cleared by software. et by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.								
6	EXF2	Timer 2 External F Set when a captur When set, causes enabled. Must be cleared b (DCEN = 1)	re or a reload is the CPU to ve	ector to timer 2 ir	nterrupt routine	when timer 2 i	nterrupt is				
5	RCLK	Receive Clock bit Clear to use timer Set to use timer 2									
4	TCLK	Transmit Clock bit Clear to use timer Set to use timer 2	1 overflow as		•						
3	EXEN2	Timer 2 External E Clear to ignore ev Set to cause a cap 2 is not used to clu	ents on T2EX oture or reload	when a negative		T2EX pin is de	tected, if timer				
2	TR2	Timer 2 Run contr Clear to turn off tir Set to turn on time	mer 2.								
1	C/T2#	Clear for timer ope	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock ut mode.								
0	CP/RL2#	Timer 2 Capture/F If RCLK=1 or TCL overflow. Clear to auto-reloa Set to capture on	K=1, CP/RL2# ad on timer 2 c	overflows or neg	ative transition	s on T2EX pin					

Reset Value = 0000 0000b Bit addressable

9. TS80C54/58X2 Serial I/O Port

The serial I/O port in the TS80C54/58X2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

9.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 9-1).

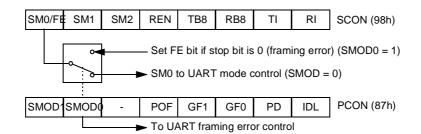
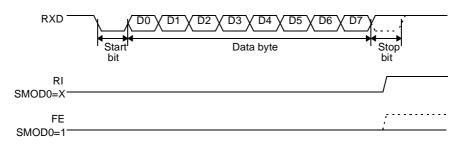



Figure 9-1. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 9-3.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 9-2. and Figure 9-3.).

Table 9-1. SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Not bit addressable

Table 9-2. SADDR - Slave Address Register (A9h)

				(-)			
7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 9-3.

SCON Register SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0			
FE/SM0	SM1	SM2	REN	TB8	RB8 TI RI					
Bit Number	Bit Mnemonic		<u>.</u>	Descri	otion					
7	FE	Clear to reset th Set by hardware	aming Error bit (SMOD0=1) ear to reset the error state, not cleared by a valid stop bit. et by hardware when an invalid stop bit is detected. MOD0 must be set to enable access to the FE bit rial port Mode bit 0 efer to SM1 for serial port mode selection. MOD0 must be cleared to enable access to the SM0 bit							
	SM0	Refer to SM1 fo								
6	SM1		erial port Mode bit 1 <u>M0</u> <u>SM1Mode</u> <u>Description</u> <u>Baud Rate</u> 0 0 Shift RegisterF _{xTAL} /12 (/6 in X2 mode) 1 1 8-bit UARTVariable 0 2 9-bit UARTF _{xTAL} /64 or F _{xTAL} /32 (/32, /16 in X2 mode)							
5	SM2	Clear to disable Set to enable m	e 2 bit / Multipro multiprocessor o ultiprocessor cor d be cleared in m	communication	feature.		entually mode			
4	REN	Reception Enal Clear to disable Set to enable set	serial reception.							
3	TB8	Clear to transmi	/ Ninth bit to tra t a logic 0 in the a logic 1 in the 9t	9th bit.	s 2 and 3.					
2	RB8	Cleared by hard Set by hardware	Ninth bit receive ware if 9th bit re- e if 9th bit receive 12 = 0, RB8 is the	ceived is a logi ed is a logic 1.	c 0.	RB8 is not used	J.			
1	ТІ	Transmit Interr Clear to acknow Set by hardware the other		e 8th bit time ir	n mode 0 or at th	e beginning of	the stop bit in			
0	RI	Receive Interru Clear to acknow Set by hardware the other modes	ledge interrupt. at the end of the	e 8th bit time ir	n mode 0, see F	igure 9-2. and	Figure 9-3. in			

Reset Value = 0000 0000b Bit addressable

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

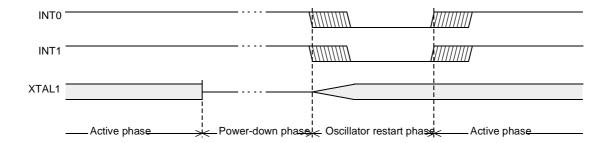

	IE - In	terrupt Enable	Register (A8	3h)					
7	6	5	4	3	2	1	0		
EA	-	ET2	ES	ET1	EX1	ET0	EX0		
Bit Number	Bit Mnemonic			Descrip	otion				
7	EA	Clear to disable a Set to enable all in If EA=1, each inte	able All interrupt bit ear to disable all interrupts. t to enable all interrupts. EA=1, each interrupt source is individually enabled or disabled by setting or clearing its n interrupt enable bit.						
6	-	Reserved The value read fro	om this bit is in	determinate. Do	o not set this bi	t.			
5	ET2	Timer 2 overflow in Clear to disable ti Set to enable time	mer 2 overflow	interrupt.					
4	ES	Serial port Enable Clear to disable s Set to enable seri	erial port interr						
3	ET1	Timer 1 overflow in Clear to disable ti Set to enable time	mer 1 overflow	interrupt.					
2	EX1	External interrupt Clear to disable e Set to enable exte	xternal interrup						
1	ET0	Clear to disable ti	imer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.						
0	EX0	External interrupt Clear to disable e Set to enable exte	xternal interrup						

Table 10-2. IE Register

Reset Value = 0X00 0000b Bit addressable

Figure 11-1. Power-Down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
ldle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data*	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

 Table 11-1.
 The state of ports during idle and power-down modes

* Port 0 can force a "zero" level A "one" Level will leave port floating.

7	6		5	4	3	2	1	0
T4	Т3		T2	T1	ТО	\$2	S1	S0
Bit Number	Bit Mnemonic				Descri	ption		
7	T4							
6	Т3							
5	T2	Reserv		or clear this b	it			
4	T1	Donot						
3	T0							
2	S2	WDT Ti	me-out se	elect bit 2				
1	S1	WDT Ti	ime-out se	elect bit 1				
0	S0	WDT Ti	me-out s	elect bit 0				
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \mbox{Imme-out} \\ (2^{14} - 1) machir \\ (2^{15} - 1) machir \\ (2^{16} - 1) machir \\ (2^{17} - 1) machir \\ (2^{18} - 1) machir \\ (2^{19} - 1) machir \\ (2^{20} - 1) machir \\ (2^{21} - 1) mach$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz	

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

13. ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C54/58X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C54/58X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C54/58X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 13-1 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 13-1. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

17. TS87C54/58X2 EPROM

17.1 EPROM Structure

The TS87C54/58X2 EPROM is divided in two different arrays:

- the code array:16/32 Kbytes.
- the encryption array:64 bytes.
- In addition a third non programmable array is implemented:
- the signature array: 4 bytes.

17.2 EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

17.2.1 Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

17.2.2 Program Lock Bits

The three lock bits, when programmed according to Table 17-1., will provide different level of protection for the on-chip code and data.

Program Lock Bits				
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

Table 17-1.Program Lock bits

U: unprogrammed,

P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

17.2.3 Signature bytes

The TS87C54/58X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

17.3 EPROM Programming

17.3.1 Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C54/58X2 is placed in specific set-up modes (See Figure 17-1.).

Control and program signals must be held at the levels indicated in Table 17-2.

17.3.2 Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4 respectively for A0-A14 (P2.5 (A13) for TS87C54X2, P3.4 (A14) for TS87C58X2).

Data Lines: P0.0-P0.7 for D0-D7

Control Signals:RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Table 17-2. EPROM Set-Up Modes

Mode	RST	PSEN	ALE/PR OG	EA/VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	IJ	12.75	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	IJ	12.75	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	IJ	12.75	1	1	1	1	1
Program Lock bit 2	1	0	IJ	12.75	1	1	1	0	0
Program Lock bit 3	1	0	IJ	12.75	1	0	1	1	0

Table 18-1.	Signature B	ytes Content
-------------	-------------	--------------

Location	Contents	Comment	
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers	
31h	57h	Family Code: C51 X2	
60h	37h	Product name: TS80C58X2	
60h	B7h	Product name: TS87C58X2	
60h	3Bh	Product name: TS80C54X2	
60h	BBh	Product name: TS87C54X2	
61h	FFh	Product revision number	

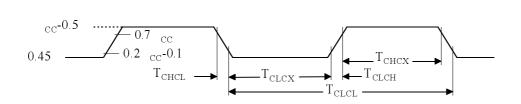

19.5.11 External Clock Drive Characteristics (XTAL1)

Table 19-15.AC Parameters

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

19.5.12 External Clock Drive Waveforms

Figure 19-11. External Clock Drive Waveforms

19.5.13 AC Testing Input/Output Waveforms

Figure 19-12. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

19.5.14 Float Waveforms

Figure 19-13. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

19.5.15 Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS80C58X2xxx-MCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-MCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-MCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-MCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-VCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-VCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-VCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-VCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-LCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-LCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-LCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-LCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-MIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-MIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-MIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-MIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C58X2xxx-VIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-VIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-VIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-VIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C58X2xxx-LIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-LIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-LIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-LIE	-5 to +/-10%	Industrial	VQFP44	Tray
AT80C58X2zzz-3CSUM	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUM	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUM	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C58X2zzz-3CSUL	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUL	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUL	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C58X2zzz-3CSUV	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUV	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUV	-5 to +/-10%	Industrial & Green	VQFP44	Tray
		2		~
TS87C58X2-MCA	5V ±10%	Commercial	PDIL40	Stick
TS87C58X2-MCB	5V ±10%	Commercial	PLCC44	Stick
TS87C58X2-MCC	5V ±10%	Commercial	PQFP44	Tray

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS87C58X2-MCE	5V ±10%	Commercial	VQFP44	Tray
TS87C58X2-VCA	5V ±10%	Commercial	PDIL40	Stick
TS87C58X2-VCB	5V ±10%	Commercial	PLCC44	Stick
TS87C58X2-VCC	5V ±10%	Commercial	PQFP44	Tray
TS87C58X2-VCE	5V ±10%	Commercial	VQFP44	Tray
TS87C58X2-LCA	2.7 to 5.5V	Commercial	PDIL40	Stick
TS87C58X2-LCB	2.7 to 5.5V	Commercial	PLCC44	Stick
TS87C58X2-LCC	2.7 to 5.5V	Commercial	PQFP44	Tray
TS87C58X2-LCE	2.7 to 5.5V	Commercial	VQFP44	Tray
TS87C58X2-MIA	5V ±10%	Industrial	PDIL40	Stick
TS87C58X2-MIB	5V ±10%	Industrial	PLCC44	Stick
TS87C58X2-MIC	5V ±10%	Industrial	PQFP44	Tray
TS87C58X2-MIE	5V ±10%	Industrial	VQFP44	Tray
TS87C58X2-VIA	5V ±10%	Industrial	PDIL40	Stick
TS87C58X2-VIB	5V ±10%	Industrial	PLCC44	Stick
TS87C58X2-VIC	5V ±10%	Industrial	PQFP44	Tray
TS87C58X2-VIE	5V ±10%	Industrial	VQFP44	Tray
TS87C58X2-LIA	2.7 to 5.5V	Industrial	PDIL40	Stick
TS87C58X2-LIB	2.7 to 5.5V	Industrial	PLCC44	Stick
TS87C58X2-LIC	2.7 to 5.5V	Industrial	PQFP44	Tray
TS87C58X2-LIE	2.7 to 5.5V	Industrial	VQFP44	Tray
AT87C58X2-3CSUM	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUM	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUM	5V ±10%	Industrial & Green	VQFP44	Tray
AT87C58X2-3CSUL	2.7 to 5.5V	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUL	2.7 to 5.5V	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUL	2.7 to 5.5V	Industrial & Green	VQFP44	Tray
AT87C58X2-3CSUV	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUV	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUV	5V ±10%	Industrial & Green	VQFP44	Tray

21. Datasheet Revision History

21.1 Changes from Rev. C 01/01 to Rev. D 11/05

1. Added green product Ordering Information.

21.2 Changes from Rev. D 11/05 to Rev. E 04/06

1. Changed value of AUXR register.

