

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c54x2-vca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIN NU	MBER		
MNEMONIC	DIL	LCC	VQFP 1.4	TYPE	Name And Function
MNEMONIC		PIN NU	MBER	TYPE	NAME AND FUNCTION
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: $\overrightarrow{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (54X2) or 7FFFH (58X2). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (54X2) or 7FFFH (58X2). This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, $\overrightarrow{\text{EA}}$ will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

Table 5-1.Pin Description for 40/44 pin packages

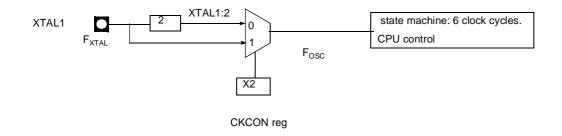
6. TS80C54/58X2 Enhanced Features

In comparison to the original 80C52, the TS80C54/58X2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The Watchdog.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- The ALE disabling.
- Some enhanced features are also located in the UART and the timer 2.

6.1 X2 Feature

The TS80C54/58X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:


- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

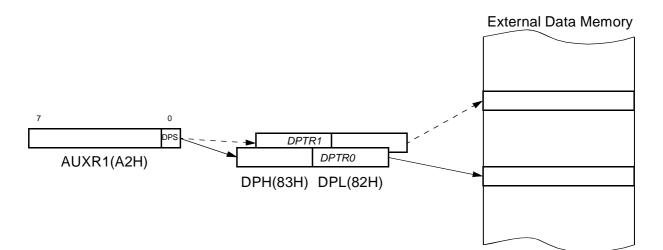
In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 6-2. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 6-2. shows the mode switching waveforms.

Figure 6-1. Clock Generation Diagram

8 AT/TS8xC54/8X2


AT/TS8xC54/8X2

7. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 7-1.) that allows the program code to switch between them (Refer to Figure 7-1).

Figure 7-1. Use of Dual Pointer

Table 8-2.	T2MOD Register	

T2MOD -	Timer 2	Mode	Control	Register (C9h)
---------	---------	------	---------	----------------

7	6	5	4	3	2	1	0		
-	-	-	T2OE						
Bit Number	Bit Mnemonic		Description						
7	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.				
6	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.				
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.				
3	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.				
2	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.				
1	T2OE	Clear to program	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.						
0	DCEN	Clear to disable	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.						

Reset Value = XXXX XX00b Not bit addressable

AT/TS8xC54/8X2

Table 9-3.

SCON Register SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0		
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI		
Bit Number	Bit Mnemonic		<u>.</u>	Descri	otion				
7	FE	Clear to reset th Set by hardware	ming Error bit (SMOD0=1) ar to reset the error state, not cleared by a valid stop bit. by hardware when an invalid stop bit is detected. OD0 must be set to enable access to the FE bit						
	SM0		e bit 0 r serial port mode e cleared to enab		e SM0 bit				
6	SM1		0 0 0 Shift RegisterF _{XTAL} /12 (/6 in X2 mode) 0 1 1 8-bit UARTVariable 0 2 9-bit UARTF _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode)						
5	SM2	Clear to disable Set to enable m	e 2 bit / Multipro multiprocessor o ultiprocessor cor d be cleared in m	communication	feature.		entually mode		
4	REN	Reception Enal Clear to disable Set to enable set	serial reception.						
3	TB8	Clear to transmi	/ Ninth bit to tra t a logic 0 in the a logic 1 in the 9t	9th bit.	s 2 and 3.				
2	RB8	Cleared by hard Set by hardware	Ninth bit receive ware if 9th bit re- e if 9th bit receive 12 = 0, RB8 is the	ceived is a logi ed is a logic 1.	c 0.	RB8 is not used	J.		
1	ТІ	Clear to acknow	ransmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.						
0	RI	Receive Interru Clear to acknow Set by hardware the other modes	ledge interrupt. at the end of the	e 8th bit time ir	n mode 0, see F	igure 9-2. and	Figure 9-3. in		

Reset Value = 0000 0000b Bit addressable

Table 9-4. PCON Register

7	6	5	4	3	2	1	0		
SMOD1	SMOD) -	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic		Description						
7	SMOD1	Serial port Mode Set to select dou		n mode 1, 2 or	3.				
6	SMOD0	Serial port Mode Clear to select SM Set to to select FI	/10 bit in SCON						
5	-	Reserved The value read fro	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	POF	Power-Off Flag Clear to recognize Set by hardware			nominal voltage.	. Can also be s	et by softwa		
3	GF1	General purpose Cleared by user for Set by user for ge	or general purp	0					
2	GF0	Cleared by user f	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
1	PD	Cleared by hardw	ower-Down mode bit leared by hardware when reset occurs. et to enter power-down mode.						
0	IDL	Idle mode bit Clear by hardwar Set to enter idle n		ot or reset occu	rs.				

Table 9-5. PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

	IE - In	terrupt Enable	Register (A8	3h)					
7	6	5	5 4 3 2 1						
EA	-	ET2	ES	ET1	EX1	ET0	EX0		
Bit Number	Bit Mnemonic		Description						
7	EA	Clear to disable a Set to enable all in If EA=1, each inte	nable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. f EA=1, each interrupt source is individually enabled or disabled by setting or clearing its wn interrupt enable bit.						
6	-	Reserved The value read fro	om this bit is in	determinate. Do	o not set this bi	t.			
5	ET2	Clear to disable ti	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.						
4	ES	Serial port Enable Clear to disable s Set to enable seri	erial port interr						
3	ET1	Timer 1 overflow in Clear to disable ti Set to enable time	mer 1 overflow	interrupt.					
2	EX1	Clear to disable e	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.						
1	ET0	Clear to disable ti	Fimer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.						
0	EX0	Clear to disable e	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.						

Table 10-2. IE Register

Reset Value = 0X00 0000b Bit addressable

Table 10-4.	IPH Register

IPH - Ir	nterrupt Priority	High Re	gister (B7h)

7	6	5	4	3	2	1	0
-	-	PT2H	PSH	PT1H	PX1H	РТ0Н	PX0H
Bit Number	Bit Mnemonic			Descrip	otion		
7	-	Reserved The value rea	d from this bit is ir	ndeterminate. D	o not set this bi	t.	
6	-	Reserved The value rea	d from this bit is ir	ndeterminate. D	o not set this bi	t.	
5	PT2H	Timer 2 overflue PT2H PT2 0 0 0 1 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit			
4	PSH	Serial port Prid PSH PS 0 0 0 1 1 0 1 1	ority High bit <u>Priority Level</u> Lowest Highest				
3	PT1H	Timer 1 overflue PT1H PT1 0 0 0 1 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit			
2	PX1H	External interr <u>PX1H</u> <u>PX1</u> 0 0 0 1 1 0 1 1	upt 1 Priority High <u>Priority Level</u> Lowest Highest	bit			
1	РТОН	Timer 0 overflu PT0H PT0 0 0 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit			
0	РХОН	External interr PX0H PX0 0 0 1 0 1 1	upt 0 Priority High <u>Priority Level</u> Lowest Highest	bit			

Reset Value = XX00 0000b Not bit addressable

11. Idle mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

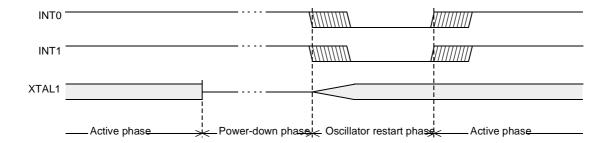
The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

11.1 Power-Down Mode

To save maximum power, a power-down mode can be invoked by software (Refer to Table 9-4., PCON register).

In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input.


Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 11-1. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C54/58X2 into power-down mode.

Figure 11-1. Power-Down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Table 11-1. The state of ports during idle and power-down modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data

* Port 0 can force a "zero" level. A "one" Level will leave port floating.

7	6		5	4	3	2	1	0			
T4	Т3		T2	T1	ТО	\$2	S1	S0			
Bit Number	Bit Mnemonic		Description								
7	T4										
6	Т3										
5	T2		teserved Do not try to set or clear this bit.								
4	T1	Donot									
3	T0										
2	S2	WDT Ti	me-out se	elect bit 2							
1	S1	WDT Ti	VDT Time-out select bit 1								
0	S0	WDT Ti	me-out s	elect bit 0							
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \mbox{Imme-out} \\ (2^{14} - 1) machir \\ (2^{15} - 1) machir \\ (2^{16} - 1) machir \\ (2^{17} - 1) machir \\ (2^{18} - 1) machir \\ (2^{19} - 1) machir \\ (2^{20} - 1) machir \\ (2^{21} - 1) mach$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz				

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

13. ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C54/58X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C54/58X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C54/58X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 13-1 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 13-1. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

16. TS80C54/58X2 ROM

16.1 ROM Structure

The TS80C54/58X2 ROM memory is in three different arrays:

- the code array:16/32 Kbytes.
- the encryption array:64 bytes.
- the signature array:4 bytes.

16.2 ROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

16.2.1 Encryption Array

Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

16.2.2 Program Lock Bits

The lock bits when programmed according to Table 16-1. will provide different level of protection for the on-chip code and data.

Program Lock Bits				
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, $\overline{\text{EA}}$ is sampled and latched on reset.

Table 16-1.Program Lock bits

U: unprogrammed

P: programmed

16.2.3 Signature bytes

The TS80C54/58X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

16.2.4 Verify Algorithm

Refer to 17.3.4

36 AT/TS8xC54/8X2

17. TS87C54/58X2 EPROM

17.1 EPROM Structure

The TS87C54/58X2 EPROM is divided in two different arrays:

- the code array:16/32 Kbytes.
- the encryption array:64 bytes.
- In addition a third non programmable array is implemented:
- the signature array: 4 bytes.

17.2 EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

17.2.1 Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

17.2.2 Program Lock Bits

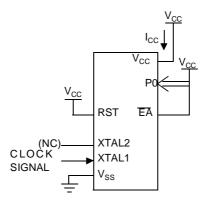
The three lock bits, when programmed according to Table 17-1., will provide different level of protection for the on-chip code and data.

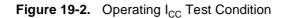
F	Program Lock Bits			
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

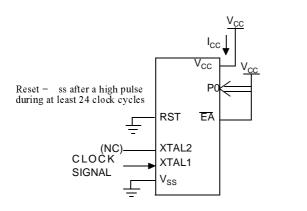
Table 17-1.Program Lock bits

U: unprogrammed,

P: programmed


WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.


- 5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.
- Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
- 7. For other values, please contact your sales office.
- Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (see Figure 19-5.), V_{IL} = V_{SS} + 0.5 V,


 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

All other pins are disconnected.

All other pins are disconnected.

19.5.4 External Data Memory Characteristics

 Table 19-8.
 Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

Table 19-9. AC Parameters for a Fix Clock

Speed		M MHz	X2 r 30	V node MHz z equiv.	standard	V I mode 40 Hz	X2 r 20	·L node MHz z equiv.	standa	·L rd mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60	1	102		95		137	ns
T _{RHDX}	0	1	0		0		0	Ī	0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98	1	165		155		222	ns
T _{AVDV}		165		100	1	175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75	1	47		80		70	Ī	103		ns
T _{QVWX}	10	1	7		15		5	Ī	13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0	1	0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

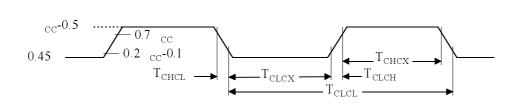

19.5.11 External Clock Drive Characteristics (XTAL1)

Table 19-15.AC Parameters

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

19.5.12 External Clock Drive Waveforms

Figure 19-11. External Clock Drive Waveforms

AT/TS8xC54/8X2

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS87C54X2-MCC	5V ±10%	Commercial	PQFP44	Tray
TS87C54X2-MCE	5V ±10%	Commercial	VQFP44	Tray
TS87C54X2-VCA	5V ±10%	Commercial	PDIL40	Stick
TS87C54X2-VCB	5V ±10%	Commercial	PLCC44	Stick
TS87C54X2-VCC	5V ±10%	Commercial	PQFP44	Tray
TS87C54X2-VCE	5V ±10%	Commercial	VQFP44	Tray
TS87C54X2-LCA	2.7 to 5.5V	Commercial	PDIL40	Stick
TS87C54X2-LCB	2.7 to 5.5V	Commercial	PLCC44	Stick
TS87C54X2-LCC	2.7 to 5.5V	Commercial	PQFP44	Tray
TS87C54X2-LCE	2.7 to 5.5V	Commercial	VQFP44	Tray
TS87C54X2-MIA	5V ±10%	Industrial	PDIL40	Stick
TS87C54X2-MIB	5V ±10%	Industrial	PLCC44	Stick
TS87C54X2-MIC	5V ±10%	Industrial	PQFP44	Tray
TS87C54X2-MIE	5V ±10%	Industrial	VQFP44	Tray
TS87C54X2-VIA	5V ±10%	Industrial	PDIL40	Stick
TS87C54X2-VIB	5V ±10%	Industrial	PLCC44	Stick
TS87C54X2-VIC	5V ±10%	Industrial	PQFP44	Tray
TS87C54X2-VIE	5V ±10%	Industrial	VQFP44	Tray
TS87C54X2-LIA	2.7 to 5.5V	Industrial	PDIL40	Stick
TS87C54X2-LIB	2.7 to 5.5V	Industrial	PLCC44	Stick
TS87C54X2-LIC	2.7 to 5.5V	Industrial	PQFP44	Tray
TS87C54X2-LIE	2.7 to 5.5V	Industrial	VQFP44	Tray
AT87C54X2-3CSUM	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUM	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUM	5V ±10%	Industrial & Green	VQFP44	Tray
AT87C54X2-3CSUL	2.7 to 5.5V	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUL	2.7 to 5.5V	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUL	2.7 to 5.5V	Industrial & Green	VQFP44	Tray
AT87C54X2-3CSUV	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUV	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUV	5V ±10%	Industrial & Green	VQFP44	Tray

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS80C58X2xxx-MCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-MCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-MCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-MCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-VCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-VCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-VCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-VCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-LCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-LCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-LCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-LCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-MIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-MIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-MIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-MIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C58X2xxx-VIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-VIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-VIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-VIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C58X2xxx-LIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-LIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-LIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-LIE	-5 to +/-10%	Industrial	VQFP44	Tray
AT80C58X2zzz-3CSUM	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUM	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUM	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C58X2zzz-3CSUL	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUL	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUL	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C58X2zzz-3CSUV	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUV	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUV	-5 to +/-10%	Industrial & Green	VQFP44	Tray
		2		~
TS87C58X2-MCA	5V ±10%	Commercial	PDIL40	Stick
TS87C58X2-MCB	5V ±10%	Commercial	PLCC44	Stick
TS87C58X2-MCC	5V ±10%	Commercial	PQFP44	Tray