
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

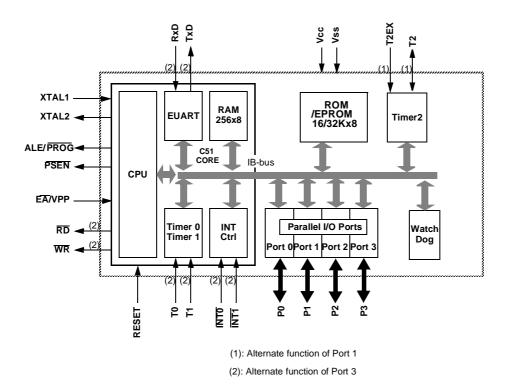
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-PQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c54x2-vcc

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The TS80C54/58X2 has 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

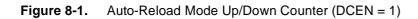
PDIL40 PLCC44 PQFP44 F1 VQFP44 1.4	ROM (bytes)	EPROM (bytes)
TS80C54X2	16k	0
TS80C58X2	32k	0
TS87C54X2	0	16k
TS87C58X2	0	32k

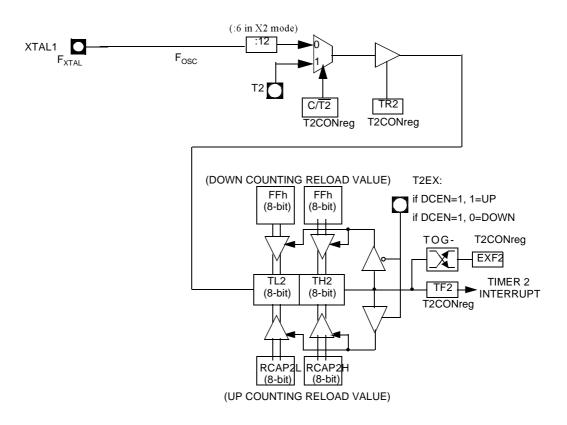
2. Block Diagram

Table 4-1.	All SFRs with their address and their reset value

	Bit address- able			Nor) Bit address	able			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000 0000								F7h
E8h									EFh
E0h	ACC 0000 0000								E7h
D8h									DFh
D0h	PSW 0000 0000								D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h									C7h
B8h	IP XX00 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH XX00 0000	B7h
A8h	IE 0X00 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX 0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXX XXX0	CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	1

reserved


Table 6-1. CKCON Register CKCON - Clock Control Register (8Fh)


7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	X2

Bit	Bit	
Number	Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$). Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$).

Reset Value = XXXX XXX0b Not bit addressable

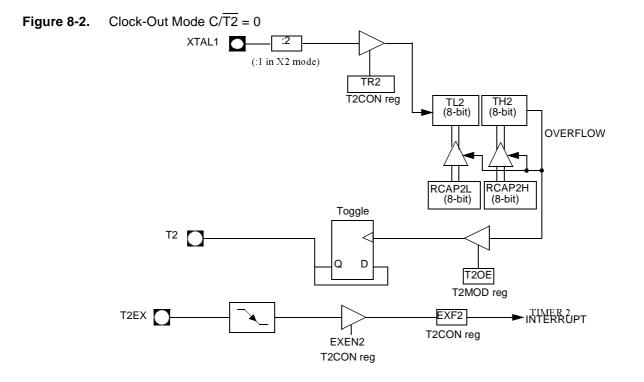
For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

8.1.1 Programmable Clock-Output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 8-2) . The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers :

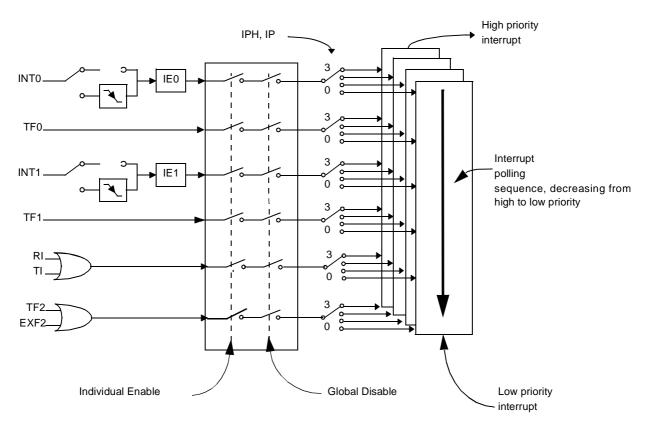
$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).


Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.

- AMEL
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.


It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

¹⁶ **AT/TS8xC54/8X2**

10. Interrupt System

The TS80C54/58X2 has a total of 7 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2) and the serial port interrupt. These interrupts are shown in Figure 10-1.

Figure 10-1. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 10-2.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 10-3.) and in the Interrupt Priority High register (See Table 10-4.). shows the bit values and priority levels associated with each combination.

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

Table 10-1. Priority Level Bit Values

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

7	6		5	4	3	2	1	0
T4	Т3		T2	T1	ТО	\$2	S1	S0
Bit Number	Bit Mnemonic				Descri	ption		
7	T4							
6	Т3							
5	T2	Reserv		or clear this b	it			
4	T1	Donot						
3	T0							
2	S2	WDT Ti	me-out se	elect bit 2				
1	S1	WDT Ti	ime-out se	elect bit 1				
0	S0	WDT Ti	me-out s	elect bit 0				
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \mbox{Imme-out} \\ (2^{14} - 1) machir \\ (2^{15} - 1) machir \\ (2^{16} - 1) machir \\ (2^{17} - 1) machir \\ (2^{18} - 1) machir \\ (2^{19} - 1) machir \\ (2^{20} - 1) machir \\ (2^{21} - 1) mach$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz	

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

14. Power-Off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 14-1.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

7	6	5	4	3	2	1	0
SMOD1	SMOD) -	POF	GF1	GF0	PD	IDL
Bit Number	Bit Mnemonic			Descrip	otion		
7	SMOD1	Serial port Mode Set to select dou		n mode 1, 2 or 3	3.		
6	SMOD0	Serial port Mode Clear to select SI Set to to select F	/10 bit in SCON	•			
5	-	Reserved The value read fr	om this bit is in	determinate. Do	o not set this bit		
4	POF	Power-Off Flag Clear to recogniz Set by hardware			ominal voltage.	Can also be se	t by software.
3	GF1	General purpose Cleared by user f Set by user for ge	or general purp				
2	GF0	General purpose Cleared by user f Set by user for ge	or general purp				
1	PD	Power-Down mc Cleared by hardw Set to enter powe	are when reset	t occurs.			
0	IDL	Idle mode bit Clear by hardwar Set to enter idle r		ot or reset occu	ſS.		

Table 14-1.PCON RegisterPCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

AT/TS8xC54/8X2

Table 18-1.	Signature By	tes Content
-------------	--------------	-------------

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers
31h	57h	Family Code: C51 X2
60h	37h	Product name: TS80C58X2
60h	B7h	Product name: TS87C58X2
60h	3Bh	Product name: TS80C54X2
60h	BBh	Product name: TS87C54X2
61h	FFh	Product revision number

19. Electrical Characteristics

19.1 Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias: C = commercial0°C to 70°C I = industrial -40°C to 85°C Storage Temperature-65°C to + 150°C Voltage on V_{CC} to V_{SS}-0.5 V to + 7 V Voltage on V_{PP} to V_{SS}-0.5 V to + 13 V Voltage on Any Pin to V_{SS}-0.5 V to V_{CC} + 0.5 V Power Dissipation1 W⁽²⁾

- 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

19.2 Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label:

SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

19.3 DC Parameters for Standard Voltage

 $\begin{array}{l} T_{A}=0^{\circ}C \ to \ +70^{\circ}C; \ V_{SS}=0 \ V; \ V_{CC}=5 \ V \pm 10\%; \ F=0 \ to \ 40 \ MHz. \\ T_{A}=-40^{\circ}C \ to \ +85^{\circ}C; \ V_{SS}=0 \ V; \ V_{CC}=5 \ V \pm 10\%; \ F=0 \ to \ 40 \ MHz. \end{array}$

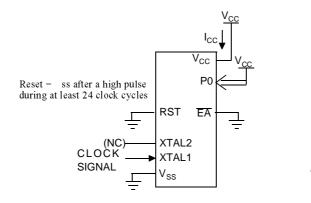
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
				0.3	V	$I_{OL} = 100 \ \mu A^{(4)}$
V _{OL}	Output Low Voltage, ports 1, 2, 3 (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
				1.0	V	I _{OL} = 3.5 mA ⁽⁴⁾

19.4 DC Parameters for Low Voltage

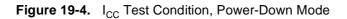
TA = 0°C to +70°C; $V_{SS} = 0$ V; $V_{CC} = 2.7$ V to 5.5 V ± 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; $V_{SS} = 0$ V; $V_{CC} = 2.7$ V to 5.5 V ± 10%; F = 0 to 30 MHz.

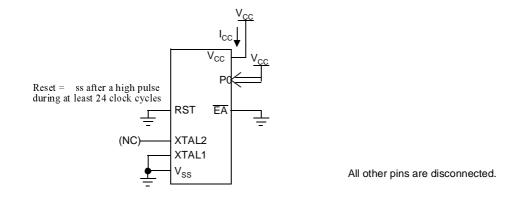
	Table 19-2.	DC Parameters for Low Voltage
--	-------------	-------------------------------

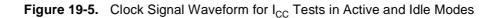
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 (6)			0.45	V	$I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
V _{OH}	Output High Voltage, ports 1, 2, 3	0.9 V _{CC}			V	I _{OH} = -10 μA
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	I _{OH} = -40 μA
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μA	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μA	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power Down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	$V_{\rm CC} = 3.3 \ V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

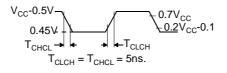

1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 19-5.), $V_{IL} = V_{SS} + 0.5 V$,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used...


- 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5 V, V_{IH} = V_{CC} 0.5 V; XTAL2 N.C; Port 0 = V_{CC}; \overline{EA} = RST = V_{SS} (see Figure 19-3.).
- Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 19-4.).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.




Figure 19-3. I_{CC} Test Condition, Idle Mode



All other pins are disconnected.

19.5 AC Parameters

19.5.1 Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{ILPL} = Time for ALE Low to PSEN Low.

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0 \text{ V}$; $V_{CC} = 5 \text{ V} \pm 10\%$; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0 \text{ V}$; $V_{CC} = 5 \text{ V} \pm 10\%$; -M and -V ranges.

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < V_{CC} < 5.5 V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < V_{CC} < 5.5 V; -L range.

Table 19-3. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and $\overrightarrow{\text{PSEN}}$ signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

í.				
		-М	-V	۰L
	Port 0	100	50	100
	Port 1, 2, 3	80	50	80
	ALE / PSEN	100	30	100

Table 19-3. Load Capacitance versus speed range, in pF

Table 19-5., Table 19-8. and Table 19-11. give the description of each AC symbols.

Table 19-6., Table 19-9. and Table 19-12. give for each range the AC parameter.

Table 19-7., Table 19-10. and Table 19-13. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

 Table 19-4.
 Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode
Freq (MHz)	40	20	40	30	30	20
T (ns)	25	50	25	33.3	33.3	50

Example:

 T_{111V} in X2 mode for a -V part at 20 MHz (T = 1/20^{E6} = 50 ns):

x= 22 (Table 19-7.)

T= 50ns

 $T_{LLIV} = 2T - x = 2 \times 50 - 22 = 78$ ns

19.5.2 External Program Memory Characteristics

Table 19-5. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

 Table 19-6.
 AC Parameters for Fix Clock

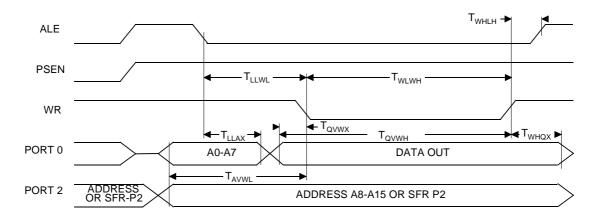
Speed		M MHz	X2 r 30	V node MHz z equiv.	standard	V I mode 40 Hz	X2 n 20	L node MHz z equiv.	standa	L ′d mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45	l l	78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25	Ī	50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12	Ī	20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

19.5.4 External Data Memory Characteristics

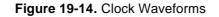
 Table 19-8.
 Symbol Description

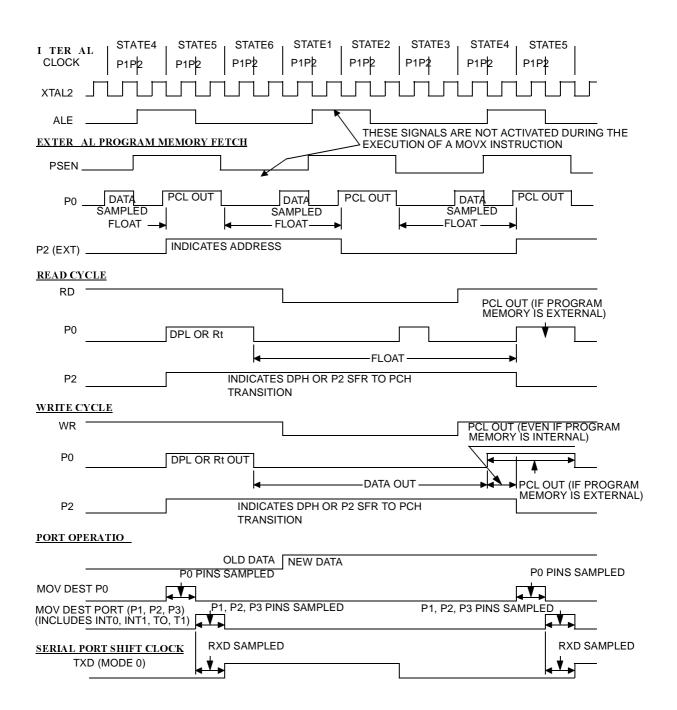
Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

Table 19-9. AC Parameters for a Fix Clock


Speed		M MHz	X2 r 30	V node MHz z equiv.	standard	V I mode 40 Hz	X2 r 20	·L node MHz z equiv.	standa	·L rd mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100	1	60		102		95		137	ns
T _{RHDX}	0	1	0	1	0		0	l l	0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165	1	100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75	1	47	1	80		70	Ī	103		ns
T _{QVWX}	10	1	7	1	15		5	Ī	13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0	1	0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	х	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	х	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns


Table 19-10. AC Parameters for a Variable Clock: derating formula


19.5.5 External Data Memory Write Cycle

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

20. Ordering Information

Possible Ordering Entries

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS80C54X2xxx-MCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C54X2xxx-MCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C54X2xxx-MCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C54X2xxx-MCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C54X2xxx-VCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C54X2xxx-VCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C54X2xxx-VCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C54X2xxx-VCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C54X2xxx-LCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C54X2xxx-LCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C54X2xxx-LCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C54X2xxx-LCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C54X2xxx-MIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C54X2xxx-MIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C54X2xxx-MIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C54X2xxx-MIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C54X2xxx-VIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C54X2xxx-VIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C54X2xxx-VIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C54X2xxx-VIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C54X2xxx-LIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C54X2xxx-LIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C54X2xxx-LIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C54X2xxx-LIE	-5 to +/-10%	Industrial	VQFP44	Tray
AT80C54X2zzz-3CSUM	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C54X2zzz-SLSUM	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C54X2zzz-RLTUM	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C54X2zzz-3CSUL	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C54X2zzz-SLSUL	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C54X2zzz-RLTUL	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C54X2zzz-3CSUV	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C54X2zzz-SLSUV	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C54X2zzz-RLTUV	-5 to +/-10%	Industrial & Green	VQFP44	Tray
TS87C54X2-MCA	5V ±10%	Commercial	PDIL40	Stick
TS87C54X2-MCB	5V ±10%	Commercial	PLCC44	Stick

8 AT/TS8xC54/8X2

58

AT/TS8xC54/8X2

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS87C54X2-MCC	5V ±10%	Commercial	PQFP44	Tray
TS87C54X2-MCE	5V ±10%	Commercial	VQFP44	Tray
TS87C54X2-VCA	5V ±10%	Commercial	PDIL40	Stick
TS87C54X2-VCB	5V ±10%	Commercial	PLCC44	Stick
TS87C54X2-VCC	5V ±10%	Commercial	PQFP44	Tray
TS87C54X2-VCE	5V ±10%	Commercial	VQFP44	Tray
TS87C54X2-LCA	2.7 to 5.5V	Commercial	PDIL40	Stick
TS87C54X2-LCB	2.7 to 5.5V	Commercial	PLCC44	Stick
TS87C54X2-LCC	2.7 to 5.5V	Commercial	PQFP44	Tray
TS87C54X2-LCE	2.7 to 5.5V	Commercial	VQFP44	Tray
TS87C54X2-MIA	5V ±10%	Industrial	PDIL40	Stick
TS87C54X2-MIB	5V ±10%	Industrial	PLCC44	Stick
TS87C54X2-MIC	5V ±10%	Industrial	PQFP44	Tray
TS87C54X2-MIE	5V ±10%	Industrial	VQFP44	Tray
TS87C54X2-VIA	5V ±10%	Industrial	PDIL40	Stick
TS87C54X2-VIB	5V ±10%	Industrial	PLCC44	Stick
TS87C54X2-VIC	5V ±10%	Industrial	PQFP44	Tray
TS87C54X2-VIE	5V ±10%	Industrial	VQFP44	Tray
TS87C54X2-LIA	2.7 to 5.5V	Industrial	PDIL40	Stick
TS87C54X2-LIB	2.7 to 5.5V	Industrial	PLCC44	Stick
TS87C54X2-LIC	2.7 to 5.5V	Industrial	PQFP44	Tray
TS87C54X2-LIE	2.7 to 5.5V	Industrial	VQFP44	Tray
AT87C54X2-3CSUM	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUM	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUM	5V ±10%	Industrial & Green	VQFP44	Tray
AT87C54X2-3CSUL	2.7 to 5.5V	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUL	2.7 to 5.5V	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUL	2.7 to 5.5V	Industrial & Green	VQFP44	Tray
AT87C54X2-3CSUV	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C54X2-SLSUV	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C54X2-RLTUV	5V ±10%	Industrial & Green	VQFP44	Tray

AT/TS8xC54/8X2

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS87C58X2-MCE	5V ±10%	Commercial	VQFP44	Tray
TS87C58X2-VCA	5V ±10%	Commercial	PDIL40	Stick
TS87C58X2-VCB	5V ±10%	Commercial	PLCC44	Stick
TS87C58X2-VCC	5V ±10%	Commercial	PQFP44	Tray
TS87C58X2-VCE	5V ±10%	Commercial	VQFP44	Tray
TS87C58X2-LCA	2.7 to 5.5V	Commercial	PDIL40	Stick
TS87C58X2-LCB	2.7 to 5.5V	Commercial	PLCC44	Stick
TS87C58X2-LCC	2.7 to 5.5V	Commercial	PQFP44	Tray
TS87C58X2-LCE	2.7 to 5.5V	Commercial	VQFP44	Tray
TS87C58X2-MIA	5V ±10%	Industrial	PDIL40	Stick
TS87C58X2-MIB	5V ±10%	Industrial	PLCC44	Stick
TS87C58X2-MIC	5V ±10%	Industrial	PQFP44	Tray
TS87C58X2-MIE	5V ±10%	Industrial	VQFP44	Tray
TS87C58X2-VIA	5V ±10%	Industrial	PDIL40	Stick
TS87C58X2-VIB	5V ±10%	Industrial	PLCC44	Stick
TS87C58X2-VIC	5V ±10%	Industrial	PQFP44	Tray
TS87C58X2-VIE	5V ±10%	Industrial	VQFP44	Tray
TS87C58X2-LIA	2.7 to 5.5V	Industrial	PDIL40	Stick
TS87C58X2-LIB	2.7 to 5.5V	Industrial	PLCC44	Stick
TS87C58X2-LIC	2.7 to 5.5V	Industrial	PQFP44	Tray
TS87C58X2-LIE	2.7 to 5.5V	Industrial	VQFP44	Tray
AT87C58X2-3CSUM	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUM	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUM	5V ±10%	Industrial & Green	VQFP44	Tray
AT87C58X2-3CSUL	2.7 to 5.5V	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUL	2.7 to 5.5V	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUL	2.7 to 5.5V	Industrial & Green	VQFP44	Tray
AT87C58X2-3CSUV	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUV	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUV	5V ±10%	Industrial & Green	VQFP44	Tray

21. Datasheet Revision History

21.1 Changes from Rev. C 01/01 to Rev. D 11/05

1. Added green product Ordering Information.

21.2 Changes from Rev. D 11/05 to Rev. E 04/06

1. Changed value of AUXR register.

