Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/ts87c54x2-vic | |----------------------------|---| | Supplier Device Package | 44-PQFP | | Package / Case | 44-QFP | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Oscillator Type | Internal | | Data Converters | - | | Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V | | RAM Size | 256 x 8 | | EEPROM Size | - | | Program Memory Type | OTP | | Program Memory Size | 16KB (16K x 8) | | Number of I/O | 32 | | Peripherals | POR, WDT | | Connectivity | UART/USART | | Speed | 40/30MHz | | Core Size | 8-Bit | | Core Processor | 80C51 | | Product Status | Obsolete | | Details | | # 5. Pin Configuration *NIC: No Internal Connection **Table 5-1.** Pin Description for 40/44 pin packages | PIN NUMBER | | | | | | | |-----------------|-------|--------------|------------|------|---|--| | MNEMONIC | DIL | LCC | VQFP 1.4 | TYPE | Name And Function | | | V _{SS} | 20 | 22 | 16 | 1 | Ground: 0V reference | | | Vss1 | | 1 | 39 | - 1 | Optional Ground: Contact the Sales Office for ground connection. | | | V _{cc} | 40 | 44 | 38 | I | Power Supply: This is the power supply voltage for normal, idle and power-down operation | | | P0.0-P0.7 | 39-32 | 43-36 | 37-30 | I/O | Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes. | | | P1.0-P1.7 | 1-8 | 2-9 | 40 | 1/0 | Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for Port 1 include: T2 (P1.0): Timer/Counter 2 external count input/Clockout | | | | 2 | 3 | 41 | I | T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that | | | | | | | | have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.5 for A8 to A13 | | | P3.0-P3.7 | 10-17 | 11,
13-19 | 5,
7-13 | I/O | Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Some Port 3 pin P3.4 receive the high order address bits during EPROM programming and verification for TS8xC58X2 devices. Port 3 also serves the special features of the 80C51 family, as listed below. RXD (P3.0): Serial input port | | | | | | | | | | | | 11 | 13
14 | 7 | 0 | TXD (P3.1): Serial output port INTO (P3.2): External interrupt 0 | | | | 13 | 15 | 8
9 | 1 | INT1 (P3.3): External interrupt 0 INT1 (P3.3): External interrupt 1 | | | | 13 | | 10 | 1 | | | | | 15 | 16
17 | 11 | 1 | T0 (P3.4): Timer 0 external input T1 (P3.5): Timer 1 external input | | | | 16 | 18 | 12 | 0 | WR (P3.6): External data memory write strobe | | | | 17 | 19 | 13 | 0 | RD (P3.7): External data memory read strobe P3.4 also receives A14 during TS87C58X2 EPROM Programming. | | | Reset | 9 | 10 | 4 | I | Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . | | **Table 5-1.** Pin Description for 40/44 pin packages | | | PIN NUI | MBER | TVDE | | |--------------------|-----|------------|----------|-------|---| | MNEMONIC | DIL | LCC | VQFP 1.4 | TYPE | Name And Function | | MNEMONIC | | PIN NUMBER | | TYPE | NAME AND FUNCTION | | ALE/PROG | 30 | 33 | 27 | O (I) | Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches. | | PSEN | 29 | 32 | 26 | 0 | Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory. | | ĒĀ/V _{PP} | 31 | 35 | 29 | I | External Access Enable/Programming Supply Voltage: \overline{EA} must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (54X2) or 7FFFH (58X2). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (54X2) or 7FFFH (58X2). This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, \overline{EA} will be internally latched on Reset. | | XTAL1 | 19 | 21 | 15 | I | Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits. | | XTAL2 | 18 | 20 | 14 | 0 | Crystal 2: Output from the inverting oscillator amplifier | # 6. TS80C54/58X2 Enhanced Features In comparison to the original 80C52, the TS80C54/58X2 implements some new features, which are: - The X2 option. - The Dual Data Pointer. - · The Watchdog. - The 4 level interrupt priority system. - The power-off flag. - The ONCE mode. - The ALE disabling. - Some enhanced features are also located in the UART and the timer 2. #### 6.1 X2 Feature The TS80C54/58X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages: - Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power. - Save power consumption while keeping same CPU power (oscillator power saving). - Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes. - Increase CPU power by 2 while keeping same crystal frequency. In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software. ## 6.1.1 Description The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 6-2. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 6-2. shows the mode switching waveforms. Figure 6-1. Clock Generation Diagram Table 7-1. AUXR1: Auxiliary Register 1 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|-----|---|---|-----| | - | - | - | - | GF3 | 0 | - | DPS | | Bit
Number | Bit
Mnemonic | Description | |---------------|-----------------|--| | 7 | - | Reserved The value read from this bit is indeterminate. Do not set this bit. | | 6 | - | Reserved The value read from this bit is indeterminate. Do not set this bit. | | 5 | - | Reserved The value read from this bit is indeterminate. Do not set this bit. | | 4 | - | Reserved The value read from this bit is indeterminate. Do not set this bit. | | 3 | GF3 | This bit is a general purpose user flag | | 2 | 0 | Reserved Always stuck at 0. | | 1 | - | Reserved The value read from this bit is indeterminate. Do not set this bit. | | 0 | DPS | Data Pointer Selection Clear to select DPTR0. Set to select DPTR1. | Reset Value = XXXX 00X0 Not bit addressable User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate. ## 8. Timer 2 The timer 2 in the TS80C54/58X2 is compatible with the timer 2 in the 80C52. It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 8-1) and T2MOD register (See Table 8-2). Timer 2 operation is similar to Timer 0 and Timer 1. $C/\overline{T2}$ selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input. Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description. Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes. In TS80C54/58X2 Timer 2 includes the following enhancements: - Auto-reload mode with up or down counter - Programmable clock-output #### 8.1 Auto-Reload Mode The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 8-1. In this mode the T2EX pin controls the direction of count. When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2. When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers. The EXF2 bit toggles when timer 2 overflows or underflows according to the the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution Table 8-1.T2CON Register T2CON - Timer 2 Control Register (C8h) | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----|------|------|------|-------|-----|-------|---------| | TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2# | CP/RL2# | | Bit | Bit | | | | | | | |--------|----------|--|--|--|--|--|--| | Number | Mnemonic | Description | | | | | | | 7 | TF2 | Fimer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0. | | | | | | | 6 | EXF2 | Fimer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode DCEN = 1) | | | | | | | 5 | RCLK | Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3. | | | | | | | 4 | TCLK | Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3. | | | | | | | 3 | EXEN2 | Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if til 2 is not used to clock the serial port. | | | | | | | 2 | TR2 | Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2. | | | | | | | 1 | C/T2# | Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode. | | | | | | | 0 | CP/RL2# | Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow. Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1. | | | | | | Reset Value = 0000 0000b Bit addressable The following is an example of how to use given addresses to address different slaves: | Slave A: | SADDR
<u>SADEN</u>
Given | 1111 0001b
1111 1010b
1111 0X0Xb | |----------|--------------------------------|--| | Slave B: | SADDR
<u>SADEN</u>
Given | 1111 0011b
1111 1001b
1111 0XX1b | | Slave C: | SADDR
<u>SADEN</u>
Given | 1111 0010b
1111 1101b
1111 00X1b | The SADEN byte is selected so that each slave may be addressed separately. For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b). For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b). To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b). #### 9.1.3 Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.: | SA | DDR | 0101 | 0110b | |---------------|--------------|------|-------| | SA | DEN | 1111 | 1100b | | Broadcast =SA | DDR OR SADEN | 1111 | 111Xb | The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses: | Slave A: | SADDR
<u>SADEN</u>
Broadcast | 1111 0001b
1111 1010b
1111 1X11b, | |----------|-------------------------------------|---| | Slave B: | SADDR
<u>SADEN</u>
Broadcast | 1111 0011b
1111 1001b
1111 1X11B, | | Slave C: | SADDR=
<u>SADEN</u>
Broadcast | 1111 0010b
1111 1101b
1111 1111b | For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh. #### 9.1.4 Reset Addresses On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are xxxx xxxxb (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition. If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence. Table 10-2. IE Register IE - Interrupt Enable Register (A8h) | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|---|-----|----|-----|-----|-----|-----| | EA | - | ET2 | ES | ET1 | EX1 | ET0 | EX0 | | Bit | Bit | | |--------|----------|---| | | | 5 | | Number | Mnemonic | Description | | 7 | EA | Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit. | | 6 | - | Reserved The value read from this bit is indeterminate. Do not set this bit. | | 5 | ET2 | Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt. | | 4 | ES | Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt. | | 3 | ET1 | Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt. | | 2 | EX1 | External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1. | | 1 | ET0 | Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt. | | 0 | EX0 | External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0. | Reset Value = 0X00 0000b Bit addressable ## 11. Idle mode An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely: the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels. There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle. The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits. The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset. #### 11.1 Power-Down Mode To save maximum power, a power-down mode can be invoked by software (Refer to Table 9-4., PCON register). In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize. Only external interrupts INTO and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 11-1. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C54/58X2 into power-down mode. **Table 12-2.** WDTPRG Register WDTPRG Address (0A7h) | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|----| | T4 | Т3 | T2 | T1 | T0 | S2 | S1 | S0 | | Bit
Number | Bit
Mnemonic | | Description | | | | | | | | |---------------|-----------------|---|--|-----------------------------|---|--|--|--|--|--| | 7 | T4 | | | | | | | | | | | 6 | T3 | | | | | | | | | | | 5 | T2 | Reserve
Do not tr | s bit. | | | | | | | | | 4 | T1 | | , | | | | | | | | | 3 | T0 | | | | | | | | | | | 2 | S2 | WDT Tin | ne-out | select bit 2 | | | | | | | | 1 | S1 | WDT Tin | ne-out | select bit 1 | | | | | | | | 0 | S0 | WDT Tin | ne-out | select bit 0 | | | | | | | | | | S2S1
0
0
0
0
1
1
1 | \$0
0
0
1
1
0
0
1 | Selecte 0 1 0 1 0 1 0 1 0 1 | ed Time-out (2 ¹⁴ - 1) machine cycles, 16.3 ms @ 12 MHz (2 ¹⁵ - 1) machine cycles, 32.7 ms @ 12 MHz (2 ¹⁶ - 1) machine cycles, 65.5 ms @ 12 MHz (2 ¹⁷ - 1) machine cycles, 131 ms @ 12 MHz (2 ¹⁸ - 1) machine cycles, 262 ms @ 12 MHz (2 ¹⁹ - 1) machine cycles, 542 ms @ 12 MHz (2 ²⁰ - 1) machine cycles, 1.05 s @ 12 MHz (2 ²¹ - 1) machine cycles, 2.09 s @ 12 MHz | | | | | | Reset value XXXX X000 #### 12.1.1 WDT during Power Down and Idle In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine. To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown. In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode. # 14. Power-Off Flag The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset. A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down. The power-off flag (POF) is located in PCON register (See Table 14-1.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset. The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value. **Table 14-1.** PCON Register PCON - Power Control Register (87h) | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------|-------|---|-----|-----|-----|----|-----| | SMOD1 | SMOD0 | - | POF | GF1 | GF0 | PD | IDL | | 5.4 | 5.4 | | | | | | | | | |--------|----------|---|--|--|--|--|--|--|--| | Bit | Bit | | | | | | | | | | Number | Mnemonic | Description | | | | | | | | | 7 | SMOD1 | Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3. | | | | | | | | | 6 | SMOD0 | Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register. | | | | | | | | | 5 | - | Reserved The value read from this bit is indeterminate. Do not set this bit. | | | | | | | | | 4 | POF | Power-Off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software. | | | | | | | | | 3 | GF1 | General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage. | | | | | | | | | 2 | GF0 | General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage. | | | | | | | | | 1 | PD | Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode. | | | | | | | | | 0 | IDL | Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode. | | | | | | | | Reset Value = 00X1 0000b Not bit addressable ## 17. TS87C54/58X2 EPROM #### 17.1 EPROM Structure The TS87C54/58X2 EPROM is divided in two different arrays: - the code array:16/32 Kbytes. - the encryption array:64 bytes. - In addition a third non programmable array is implemented: - the signature array: 4 bytes. ## 17.2 EPROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy. #### 17.2.1 Encryption Array Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form. When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection. ## 17.2.2 Program Lock Bits The three lock bits, when programmed according to Table 17-1., will provide different level of protection for the on-chip code and data. Table 17-1. Program Lock bits | P | rogram Lo | ck Bits | | | |-------------------|-----------|---------|-----|---| | Security
level | LB1 | LB2 | LB3 | Protection Description | | 1 | U | U | U | No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data. | | 2 | Р | U | U | MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled. | | 3 | U | Р | U | Same as 2, also verify is disabled. | | 4 | U | U | Р | Same as 3, also external execution is disabled. | U: unprogrammed, P: programmed WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification. The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted. Figure 17-2. Programming and Verification Signal's Waveform ## 17.4 EPROM Erasure (Windowed Packages Only) Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality. Erasure leaves all the EPROM cells in a 1's state (FF). #### 17.4.1 Erasure Characteristics The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers. Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window. # 18. Signature Bytes The TS87C54/58X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 18-1. shows the content of the signature byte for the TS80C54/58X2. ## 19. Electrical Characteristics # 19.1 Absolute Maximum Ratings (1) Ambiant Temperature Under Bias: $C = commercial0^{\circ}C \text{ to } 70^{\circ}C$ I = industrial -40°C to 85°C Storage Temperature-65°C to + 150°C Voltage on V_{CC} to V_{SS} -0.5 V to + 7 V Voltage on V_{PP} to V_{SS} -0.5 V to + 13 V Voltage on Any Pin to V_{SS} -0.5 V to V_{CC} + 0.5 V Power Dissipation1 W⁽²⁾ - Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package. ## 19.2 Power consumption measurement Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc: Using an internal test ROM, the following code is executed: Label: SJMP Label (80 FE) Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock. This is much more representative of the real operating lcc. ## 19.3 DC Parameters for Standard Voltage TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 5 V ± 10%; F = 0 to 40 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 5 V ± 10%; F = 0 to 40 MHz. **Table 19-1.** DC Parameters in Standard Voltage | Symbol | Parameter | Min | Тур | Max | Unit | Test Conditions | |------------------|--|---------------------------|-----|---------------------------|--------|---| | V _{IL} | Input Low Voltage | -0.5 | | 0.2 V _{CC} - 0.1 | V | | | V _{IH} | Input High Voltage except XTAL1, RST | 0.2 V _{CC} + 0.9 | | V _{CC} + 0.5 | V | | | V _{IH1} | Input High Voltage, XTAL1, RST | 0.7 V _{CC} | | V _{CC} + 0.5 | V | | | V _{OL} | Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾ | | | 0.3
0.45 | V
V | $I_{OL} = 100 \ \mu A^{(4)}$
$I_{OL} = 1.6 \ mA^{(4)}$ | | | | | | 1.0 | | $I_{OL} = 3.5 \text{ mA}^{(4)}$ | 42 ## 19.4 DC Parameters for Low Voltage TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz. Table 19-2. DC Parameters for Low Voltage | Symbol | Parameter | Min | Тур | Max | Unit | Test Conditions | |-----------------------------------|---|---------------------------|--|--|------|--| | V _{IL} | Input Low Voltage | -0.5 | | 0.2 V _{CC} - 0.1 | V | | | V _{IH} | Input High Voltage except XTAL1, RST | 0.2 V _{CC} + 0.9 | | V _{CC} + 0.5 | V | | | V _{IH1} | Input High Voltage, XTAL1, RST | 0.7 V _{CC} | | V _{CC} + 0.5 | V | | | V _{OL} | Output Low Voltage, ports 1, 2, 3 (6) | | | 0.45 | V | $I_{OL} = 0.8 \text{ mA}^{(4)}$ | | V _{OL1} | Output Low Voltage, port 0, ALE, PSEN (6) | | | 0.45 | V | $I_{OL} = 1.6 \text{ mA}^{(4)}$ | | V _{OH} | Output High Voltage, ports 1, 2, 3 | 0.9 V _{CC} | | | V | I _{OH} = -10 μA | | V _{OH1} | Output High Voltage, port 0, ALE, PSEN | 0.9 V _{CC} | | | V | I _{OH} = -40 μA | | I _{IL} | Logical 0 Input Current ports 1, 2 and 3 | | | -50 | μΑ | Vin = 0.45 V | | I _{LI} | Input Leakage Current | | | ±10 | μΑ | 0.45 V < Vin < V _{CC} | | I _{TL} | Logical 1 to 0 Transition Current, ports 1, 2, 3 | | | -650 | μΑ | Vin = 2.0 V | | R _{RST} | RST Pulldown Resistor | 50 | 90 (5) | 200 | kΩ | | | CIO | Capacitance of I/O Buffer | | | 10 | pF | Fc = 1 MHz
TA = 25°C | | I _{PD} | Power Down Current | | 20 ⁽⁵⁾
10 ⁽⁵⁾ | 50
30 | μΑ | $V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$
$V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$ | | I _{CC}
under
RESET | Power Supply Current Maximum values, X1 mode: (7) | | | 1 + 0.2 Freq
(MHz)
@12MHz 3.4
@16MHz 4.2 | mA | V _{CC} = 3.3 V ⁽¹⁾ | | I _{CC}
operating | Power Supply Current Maximum values, X1 mode: (7) | | | 1 + 0.3 Freq
(MHz)
@12MHz 4.6
@16MHz 5.8 | mA | V _{CC} = 3.3 V ⁽⁸⁾ | | I _{CC} idle | Power Supply Current Maximum values, X1 mode: (7) | | | 0.15 Freq (MHz)
+ 0.2
@12MHz 2
@16MHz 2.6 | mA | V _{CC} = 3.3 V ⁽²⁾ | - 1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 19-5.), V_{IL} = V_{SS} + 0.5 V, - $V_{IH} = V_{CC} 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port \ 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used.. - 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} 0.5$ V; XTAL2 N.C; Port $0 = V_{CC}$; $\overline{EA} = RST = V_{SS}$ (see Figure 19-3.). - 3. Power Down I_{CC} is measured with all output pins disconnected; $\overline{EA} = V_{SS}$, PORT $0 = V_{CC}$; XTAL2 NC.; RST = V_{SS} (see Figure 19-4.). - 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary. - Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V. - 6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total I_{OI} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. - 7. For other values, please contact your sales office. - 8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 19-5.), $V_{IL} = V_{SS} + 0.5 \text{ V}$, $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port \ 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case. Figure 19-1. I_{CC} Test Condition, under reset All other pins are disconnected. Figure 19-2. Operating I_{CC} Test Condition All other pins are disconnected. Figure 19-3. I_{CC} Test Condition, Idle Mode All other pins are disconnected. Figure 19-4. I_{CC} Test Condition, Power-Down Mode All other pins are disconnected. Figure 19-5. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes ### 19.5 AC Parameters #### 19.5.1 Explanation of the AC Symbols Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Example: T_{AVLL} = Time for Address <u>Valid</u> to ALE Low. T_{ILPL} = Time for ALE Low to <u>PSEN</u> Low. TA = 0 to +70°C (commercial temperature range); V_{SS} = 0 V; V_{CC} = 5 V \pm 10%; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); V_{SS} = 0 V; V_{CC} = 5 V \pm 10%; -M and -V ranges. TA = 0 to +70°C (commercial temperature range); V_{SS} = 0 V; 2.7 V < V_{CC} < 5.5 V; -L range. TA = -40°C to +85°C (industrial temperature range); V_{SS} = 0 V; 2.7 V < V_{CC} < 5.5 V; -L range. Table 19-3. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded. Table 19-3. Load Capacitance versus speed range, in pF | | -M | -V | -L | |--------------|-----|----|-----| | Port 0 | 100 | 50 | 100 | | Port 1, 2, 3 | 80 | 50 | 80 | | ALE / PSEN | 100 | 30 | 100 | Table 19-5., Table 19-8. and Table 19-11. give the description of each AC symbols. Table 19-6., Table 19-9. and Table 19-12. give for each range the AC parameter. Table 19-7., Table 19-10. and Table 19-13. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade: Table 19-4. Max frequency for derating formula regarding the speed grade | | -M X1 mode | -M X2 mode | -V X1 mode | -V X2 mode | -L X1 mode | -L X2 mode | |------------|------------|------------|------------|------------|------------|------------| | Freq (MHz) | 40 | 20 | 40 | 30 | 30 | 20 | | T (ns) | 25 | 50 | 25 | 33.3 | 33.3 | 50 | ## Example: T_{LLIV} in X2 mode for a -V part at 20 MHz (T = $1/20^{E6}$ = 50 ns): $$T_{LLIV} = 2T - x = 2 \times 50 - 22 = 78$$ ns ## 19.5.6 External Data Memory Read Cycle Figure 19-8. External Data Memory Read Cycle ## 19.5.7 Serial Port Timing - Shift Register Mode Table 19-11. Symbol Description | Symbol | Parameter | |-------------------|--| | T _{XLXL} | Serial port clock cycle time | | T _{QVHX} | Output data set-up to clock rising edge | | T _{XHQX} | Output data hold after clock rising edge | | T _{XHDX} | Input data hold after clock rising edge | | T _{XHDV} | Clock rising edge to input data valid | Table 19-12. AC Parameters for a Fix Clock | Speed | -M
40 MHz | | | node
MHz | | V
mode 40
Hz | _ | | standar
30 I | d mode | Units | |-------------------|--------------|-----|-----|-------------|-----|--------------------|-----|-----|-----------------|--------|-------| | Symbol | Min | Max | | | T _{XLXL} | 300 | | 200 | | 300 | | 300 | | 400 | | ns | | T _{QVHX} | 200 | | 117 | | 200 | | 200 | | 283 | | ns | | T _{XHQX} | 30 | | 13 | | 30 | | 30 | | 47 | | ns | | T _{XHDX} | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | T _{XHDV} | | 117 | | 34 | | 117 | | 117 | | 200 | ns |