

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

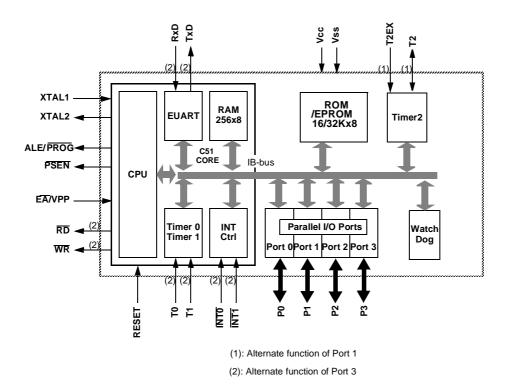
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c58x2-lib

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The TS80C54/58X2 has 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

PDIL40 PLCC44 PQFP44 F1 VQFP44 1.4	ROM (bytes)	EPROM (bytes)
TS80C54X2	16k	0
TS80C58X2	32k	0
TS87C54X2	0	16k
TS87C58X2	0	32k

2. Block Diagram

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C54/58X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

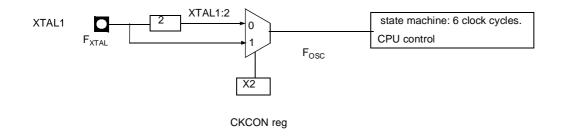
6. TS80C54/58X2 Enhanced Features

In comparison to the original 80C52, the TS80C54/58X2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The Watchdog.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- The ALE disabling.
- Some enhanced features are also located in the UART and the timer 2.

6.1 X2 Feature

The TS80C54/58X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:


- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

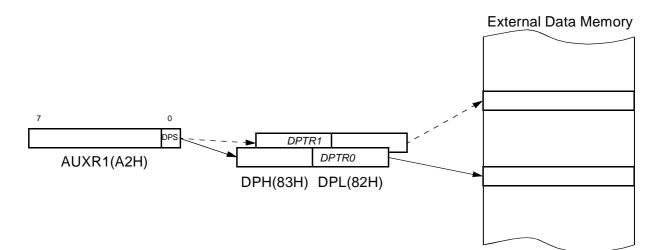
In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 6-2. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 6-2. shows the mode switching waveforms.

Figure 6-1. Clock Generation Diagram

8 AT/TS8xC54/8X2


AT/TS8xC54/8X2

7. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 7-1.) that allows the program code to switch between them (Refer to Figure 7-1).

Figure 7-1. Use of Dual Pointer

AT/TS8xC54/8X2

Table 8-1.	T2CON Register
------------	----------------

T2CON - Timer 2 Control Register (C8h)

7	6	N - Timer 2 Co 5	4	3	2	1	0				
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#				
Bit Number	Bit Mnemonic		Description								
7	TF2	Must be cleared b	Fimer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.								
6	EXF2	Set when a captur When set, causes enabled.	Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode								
5	RCLK	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.									
4	TCLK	Transmit Clock bit Clear to use timer Set to use timer 2	1 overflow as								
3	EXEN2	Timer 2 External E Clear to ignore ev Set to cause a cap 2 is not used to clu	ents on T2EX oture or reload	when a negative		T2EX pin is de	tected, if timer				
2	TR2	Clear to turn off tir	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.								
1	C/T2#	Clear for timer ope	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.								
0	CP/RL2#	If RCLK=1 or TCL overflow. Clear to auto-reloa	Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2								

Reset Value = 0000 0000b Bit addressable

Table 8-2.	T2MOD Register	

T2MOD -	Timer 2	Mode	Control	Register (C9h)
---------	---------	------	---------	----------------

7	6	5	4	3	2	1	0			
-	-	-					DCEN			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value read	eserved ne value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value read	eserved he value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.					
3	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.					
2	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.							
1	T2OE	Clear to program	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.							
0	DCEN	Clear to disable	own Counter Enable bit lear to disable timer 2 as up/down counter. et to enable timer 2 as up/down counter.							

Reset Value = XXXX XX00b Not bit addressable

9. TS80C54/58X2 Serial I/O Port

The serial I/O port in the TS80C54/58X2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

9.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 9-1).

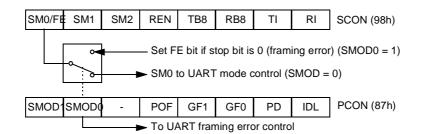
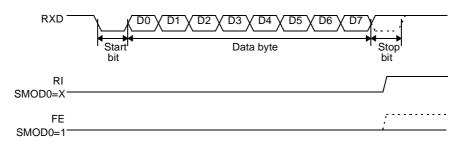



Figure 9-1. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 9-3.) bit is set.

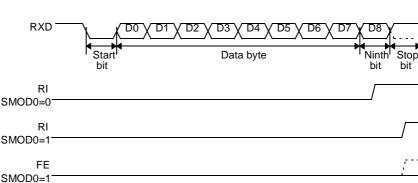

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 9-2. and Figure 9-3.).

Figure 9-3. UART Timings in Modes 2 and 3

9.1.1 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit. To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

9.1.2 Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example:

SADDR	0101 0110b
SADEN	<u>1111 1100b</u>
Given	0101 01XXb

AT/TS8xC54/8X2

Table 9-3.

SCON Register SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0				
FE/SM0	SM1	SM1 SM2 REN TB8				REN TB8 RB8 TI				2 REN TB8 RB8 TI	RI
Bit Number	Bit Mnemonic		Description								
7	FE	Clear to reset th Set by hardware	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit								
	SM0		e bit 0 r serial port mode e cleared to enab		e SM0 bit						
6	SM1		0 0 0 Shift RegisterF _{XTAL} /12 (/6 in X2 mode) 0 1 1 8-bit UARTVariable 1 0 2 9-bit UARTF _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode)								
5	SM2	Clear to disable Set to enable m	e 2 bit / Multipro multiprocessor o ultiprocessor cor d be cleared in m	communication	feature.		entually mode				
4	REN	Reception Enal Clear to disable Set to enable set	serial reception.								
3	TB8	Clear to transmi	/ Ninth bit to tra t a logic 0 in the a logic 1 in the 9t	9th bit.	s 2 and 3.						
2	RB8	Cleared by hard Set by hardware	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.								
1	ТІ	Clear to acknow	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.								
0	RI	Clear to acknow Set by hardware	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 9-2. and Figure 9-3. in he other modes.								

Reset Value = 0000 0000b Bit addressable

Table 9-4. PCON Register

7	6	5	4	3	2	1	0			
SMOD1	SMOD) -	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic		Description							
7	SMOD1	Serial port Mode Set to select dou		n mode 1, 2 or	3.					
6	SMOD0	Serial port Mode Clear to select SM Set to to select FI	/10 bit in SCON							
5	-	Reserved The value read fro	om this bit is in	determinate. D	o not set this bit	i.				
4	POF	Power-Off Flag Clear to recognize Set by hardware			nominal voltage.	. Can also be s	et by softwa			
3	GF1	General purpose Cleared by user for Set by user for ge	or general purp	0						
2	GF0	General purpose Cleared by user for Set by user for ge	or general purp							
1	PD	Power-Down mo Cleared by hardw Set to enter powe	are when rese							
0	IDL	Idle mode bit Clear by hardwar Set to enter idle n		ot or reset occu	rs.					

Table 9-5. PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

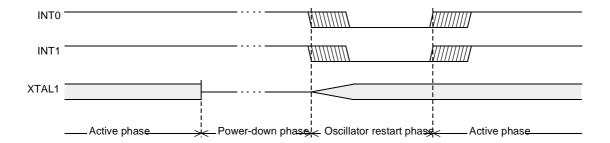

	IE - Interrupt Enable Register (A8h)									
7	6	5	4	3	2	1	0			
EA	-	ET2	ES	ET1	EX1	ET0	EX0			
Bit Number	Bit Mnemonic			Descrip	otion					
7	EA	Clear to disable a Set to enable all in If EA=1, each inte	nable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. EA=1, each interrupt source is individually enabled or disabled by setting or clearing its wn interrupt enable bit.							
6	-	Reserved The value read fro	om this bit is in	determinate. Do	o not set this bi	t.				
5	ET2	Timer 2 overflow in Clear to disable ti Set to enable time	mer 2 overflow	interrupt.						
4	ES	Serial port Enable Clear to disable s Set to enable seri	erial port interr							
3	ET1	Clear to disable ti	Fimer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.							
2	EX1	Clear to disable e	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.							
1	ET0	Clear to disable ti	imer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.							
0	EX0	External interrupt Clear to disable e Set to enable exte	xternal interrup							

Table 10-2. IE Register

Reset Value = 0X00 0000b Bit addressable

Figure 11-1. Power-Down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
ldle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data*	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

 Table 11-1.
 The state of ports during idle and power-down modes

* Port 0 can force a "zero" level A "one" Level will leave port floating.

12. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

12.1 Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x $T_{\rm OSC}$, where $T_{\rm OSC}$ = $1/F_{\rm OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ F_{OSC} = 12MHz. To manage this feature, refer to WDTPRG register description, Table 12-2. (SFR0A7h).

Table 12-1.WDTRST RegisterWDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

7	6		5	4	3	2	1	0	
T4	T4 T3		T2	T1	ТО	\$2	S1	S0	
Bit Number	Bit Mnemonic				Descri	ption			
7	T4								
6	Т3								
5	T2	Reserv		or clear this b	it				
4	T1	Donot							
3	T0								
2	S2	WDT Ti	me-out se	elect bit 2					
1	S1	WDT Ti	ime-out se	elect bit 1					
0	S0	WDT Ti	me-out s	elect bit 0					
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \mbox{Imme-out} \\ (2^{14} - 1) \mbox{maching} \\ (2^{15} - 1) \mbox{maching} \\ (2^{16} - 1) \mbox{maching} \\ (2^{17} - 1) \mbox{maching} \\ (2^{18} - 1) \mbox{maching} \\ (2^{19} - 1) \mbox{maching} \\ (2^{20} - 1) \mbox{maching} \\ (2^{21} - 1) \mbox{maching} \\ (2^{21} - 1) \mbox{maching} \end{array}$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz		

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

13. ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C54/58X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C54/58X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C54/58X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 13-1 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 13-1. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

16. TS80C54/58X2 ROM

16.1 ROM Structure

The TS80C54/58X2 ROM memory is in three different arrays:

- the code array:16/32 Kbytes.
- the encryption array:64 bytes.
- the signature array:4 bytes.

16.2 ROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

16.2.1 Encryption Array

Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

16.2.2 Program Lock Bits

The lock bits when programmed according to Table 16-1. will provide different level of protection for the on-chip code and data.

Program Lock Bits				
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, $\overline{\text{EA}}$ is sampled and latched on reset.

Table 16-1.Program Lock bits

U: unprogrammed

P: programmed

16.2.3 Signature bytes

The TS80C54/58X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

16.2.4 Verify Algorithm

Refer to 17.3.4

36 AT/TS8xC54/8X2

17.2.3 Signature bytes

The TS87C54/58X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

17.3 EPROM Programming

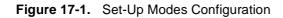
17.3.1 Set-up modes

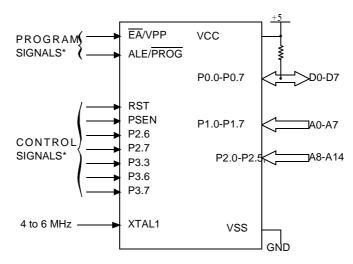
In order to program and verify the EPROM or to read the signature bytes, the TS87C54/58X2 is placed in specific set-up modes (See Figure 17-1.).

Control and program signals must be held at the levels indicated in Table 17-2.

17.3.2 Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4 respectively for A0-A14 (P2.5 (A13) for TS87C54X2, P3.4 (A14) for TS87C58X2).


Data Lines: P0.0-P0.7 for D0-D7


Control Signals:RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Table 17-2. EPROM Set-Up Modes

Mode	RST	PSEN	ALE/PR OG	EA/VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	IJ	12.75	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	IJ	12.75	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	IJ	12.75	1	1	1	1	1
Program Lock bit 2	1	0	IJ.	12.75	1	1	1	0	0
Program Lock bit 3	1	0	IJ	12.75	1	0	1	1	0

* See Table 31. for proper value on these inputs

17.3.3 Programming Algorithm

The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.

To program the TS80C54/58X2 the following sequence must be exercised:

- Step 1: Activate the combination of control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Input the appropriate data on the data lines.
- Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V).
- Step 5: Pulse ALE/PROG once.
- Step 6: Lower EA/VPP from VPP to VCC

Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 17-2.).

17.3.4 Verify algorithm

Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C54/58X2.

P 2.7 is used to enable data output.

To verify the TS87C54/58X2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 17-2.)

AT/TS8xC54/8X2

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power Down Current		20 (5)	50	μΑ	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	V _{CC} = 5.5 V ⁽¹⁾
I _{cc} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	V _{CC} = 5.5 V ⁽⁸⁾
l _{cc} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3 Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

19.5.13 AC Testing Input/Output Waveforms

Figure 19-12. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

19.5.14 Float Waveforms

Figure 19-13. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

19.5.15 Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.