

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

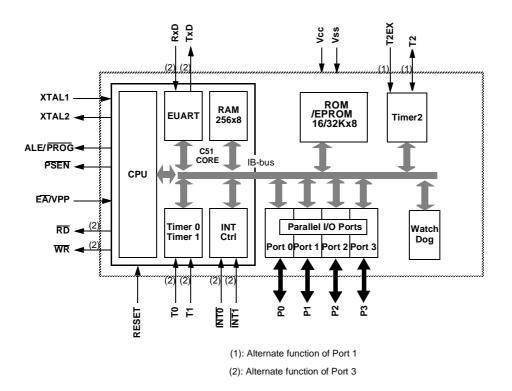
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusObsoleteCore Processor80C51Core Size8-BitSpeed40/20MHzConnectivityUART/USARTPeripheralsPOR, WDTNumber of I/O32Program Memory Size32KB (32K × 8)Program Memory TypeOTPEEPROM Size-RAM Size256 × 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData Converters-	
Core Size8-BitSpeed40/20MHzConnectivityUART/USARTPeripheralsPOR, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	
Speed40/20MHzConnectivityUART/USARTPeripheralsPOR, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	
ConnectivityUART/USARTPeripheralsPOR, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	
PeripheralsPOR, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	
Number of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	
Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	
Program Memory TypeOTPEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	
EEPROM Size - RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V	
RAM Size 256 x 8 Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V	
Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V	
Data Converters -	
Oscillator Type Internal	
Operating Temperature 0°C ~ 70°C (TA)	
Mounting Type Surface Mount	
Package / Case 44-LCC (J-Lead)	
Supplier Device Package44-PLCC (16.6x16.6)	
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/ts87c58x2-mcb	

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The TS80C54/58X2 has 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

PDIL40 PLCC44 PQFP44 F1 VQFP44 1.4	ROM (bytes)	EPROM (bytes)
TS80C54X2	16k	0
TS80C58X2	32k	0
TS87C54X2	0	16k
TS87C58X2	0	32k

2. Block Diagram

		PIN NU	MBER		
MNEMONIC	DIL	LCC	VQFP 1.4	TYPE	Name And Function
MNEMONIC		PIN NU	MBER	TYPE	NAME AND FUNCTION
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: $\overrightarrow{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (54X2) or 7FFFH (58X2). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (54X2) or 7FFFH (58X2). This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, $\overrightarrow{\text{EA}}$ will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

Table 5-1.Pin Description for 40/44 pin packages

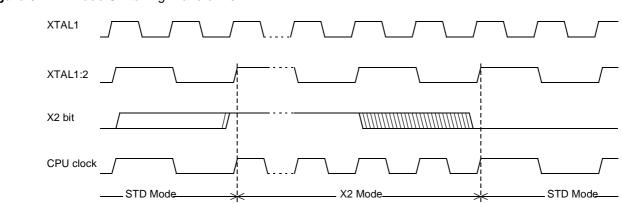


Figure 6-2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 6-1.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

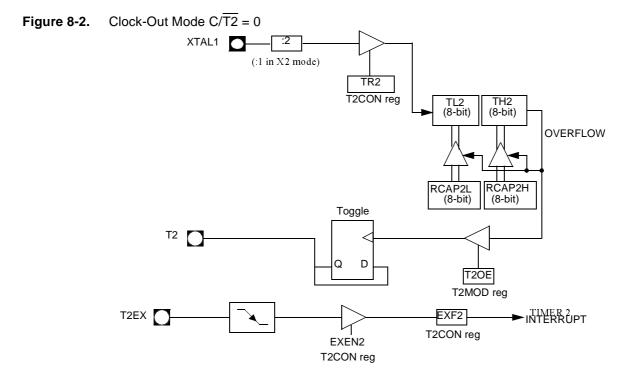
CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

7.1 Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE


; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added :							
, 00A2	AUXR	1 EQU 0A2H					
;							
0000 909000	MOV	DPTR,#SOURCE	; address of SOURCE				
0003 05A2	INC	AUXR1	; switch data pointers				
0005 90A000	MOV	DPTR,#DEST	; address of DEST				
0008	LOOP:						
0008 05A2	INC	AUXR1	; switch data pointers				
000A E0	MOVX	A, @DPTR	; get a byte from SOURCE				
000B A3	INC	DPTR	; increment SOURCE address				
000C 05A2	INC	AUXR1	; switch data pointers				
000E F0	MOVX	@DPTR,A	; write the byte to DEST				
000F A3	INC	DPTR	; increment DEST address				
0010 70F6	JNZ	LOOP	; check for 0 terminator				
0012 05A2	INC	AUXR1	; (optional) restore DPS				

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

- AMEL
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

¹⁶ **AT/TS8xC54/8X2**

Table 8-2.	T2MOD Register	

T2MOD -	Timer 2	Mode	Control	Register (C9h)
---------	---------	------	---------	----------------

7	6	5	4	3	2	1	0	
-	-	-	T2OE					
Bit Number	Bit Mnemonic		Description					
7	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.			
6	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.			
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
2	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	T2OE	Clear to program	Fimer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.					
0	DCEN		Enable bit timer 2 as up/do ner 2 as up/down					

Reset Value = XXXX XX00b Not bit addressable

9. TS80C54/58X2 Serial I/O Port

The serial I/O port in the TS80C54/58X2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

9.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 9-1).

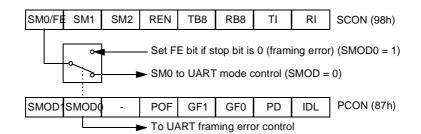
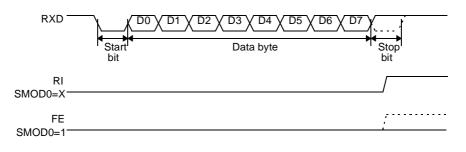



Figure 9-1. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 9-3.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 9-2. and Figure 9-3.).

The following is an example of how to use given addresses to address different slaves:

Slave A:	SADDR <u>SADEN</u> Given	1111 0001b <u>1111 1010b</u> 1111 0X0Xb
Slave B:	SADDR <u>SADEN</u> Given	1111 0011b <u>1111 1001b</u> 1111 0XX1b
Slave C:	SADDR <u>SADEN</u> Given	1111 0010b <u>1111 1101b</u> 1111 00X1b

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b). For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111

0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

9.1.3 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR	0101 0110b
SADEN	1111 1100b
Broadcast =SADDR OR SADEN	1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:	SADDR <u>SADEN</u> Broadcast	1111 0001b <u>1111 1010b</u> 1111 1X11b,
Slave B:	SADDR <u>SADEN</u> Broadcast	1111 0011b <u>1111 1001b</u> 1111 1X11B,
Slave C:	SADDR= <u>SADEN</u> Broadcast	1111 0010b <u>1111 1101b</u> 1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

9.1.4 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX XXXb (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

Table 9-1. SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Not bit addressable

Table 9-2. SADDR - Slave Address Register (A9h)

				(-)			
7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

AT/TS8xC54/8X2

Table 9-3.

SCON Register SCON - Serial Control Register (98h)

7	6	5 4 3 2 1									
FE/SM0	SM1	SM2	ТІ	RI							
Bit Number	Bit Mnemonic		Description								
7	FE	Clear to reset th Set by hardware	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit								
	SM0	Refer to SM1 fo	Refer to SM1 for serial port mode selection. MOD0 must be cleared to enable access to the SM0 bit								
6	SM1		0 0 0 Shift RegisterF _{XTAL} /12 (/6 in X2 mode) 0 1 1 8-bit UARTVariable 1 0 2 9-bit UARTF _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode)								
5	SM2	Clear to disable Set to enable m	e 2 bit / Multipro multiprocessor o ultiprocessor cor d be cleared in m	communication	feature.		entually mode				
4	REN	Reception Enal Clear to disable Set to enable set	serial reception.								
3	TB8	Clear to transmi	/ Ninth bit to tra t a logic 0 in the a logic 1 in the 9t	9th bit.	s 2 and 3.						
2	RB8	Cleared by hard Set by hardware	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.								
1	ТІ	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.									
0	RI	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 9-2. and Figure 9-3. in the other modes.									

Reset Value = 0000 0000b Bit addressable

Table 9-4. PCON Register

7	6	5	4	3	2	1	0			
SMOD1	SMOD) -	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic		Description							
7	SMOD1	•	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.							
6	SMOD0	Clear to select SM	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.							
5	-	Reserved The value read fro	om this bit is in	determinate. D	o not set this bit	i.				
4	POF	Power-Off Flag Clear to recognize Set by hardware			nominal voltage.	. Can also be s	et by softwa			
3	GF1	General purpose Cleared by user for Set by user for ge	or general purp	0						
2	GF0	Cleared by user f	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
1	PD	Cleared by hardw	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.								

Table 9-5. PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

	IE - Interrupt Enable Register (A8h)									
7	6	5	4	3	2	1	0			
EA	-	ET2	ES	ET1	EX1	ET0	EX0			
Bit Number	Bit Mnemonic		Description							
7	EA	Clear to disable a Set to enable all in If EA=1, each inte	nable All interrupt bit lear to disable all interrupts. et to enable all interrupts. EA=1, each interrupt source is individually enabled or disabled by setting or clearing its vn interrupt enable bit.							
6	-	Reserved The value read fro	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	ET2	Clear to disable ti	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.							
4	ES	Serial port Enable Clear to disable s Set to enable seri	erial port interre							
3	ET1	Clear to disable ti	Fimer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.							
2	EX1	Clear to disable e	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.							
1	ET0	Clear to disable ti	Fimer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.							
0	EX0	Clear to disable e	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.							

Table 10-2. IE Register

Reset Value = 0X00 0000b Bit addressable

Table 10-4.	IPH Register

IPH - Interrupt Priority High Register (B7h))
--	---

7	6	5	4	3	2	1	0				
-	-	PT2H	PSH	PT1H	PX1H	РТОН	PX0H				
Bit Number	Bit Mnemonic		Description								
7	-	Reserved The value rea	eserved ne value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	eserved ne value read from this bit is indeterminate. Do not set this bit.								
5	PT2H	Pimer 2 overfl PT2H PT2 0 0 1 1 1 1	low interrupt Prior <u>Priority Level</u> Lowest Highest	ity High bit							
4	PSH	Serial port Pri PSH PS 0 0 0 1 1 0 1 1	ority High bit <u>Priority Level</u> Lowest Highest								
3	PT1H	Timer 1 overfl PT1H PT1 0 0 0 1 1 0 1 1	low interrupt Prior <u>Priority Level</u> Lowest Highest	ity High bit							
2	PX1H	External intern <u>PX1H</u> <u>PX1</u> 0 0 0 1 1 0 1 1	rupt 1 Priority Higl <u>Priority Level</u> Lowest Highest	h bit							
1	РТОН	Timer 0 overfl PTOH PTO 0 0 1 0 1 1	low interrupt Prior <u>Priority Level</u> Lowest Highest	ity High bit							
0	РХОН	External internation PX0H PX0 0 0 1 0 1 1	rupt 0 Priority Higl <u>Priority Level</u> Lowest Highest	n bit							

Reset Value = XX00 0000b Not bit addressable

7	6		5	4	3	2	1	0		
T4	Т3		T2	T1	ТО	\$2	S1	S0		
Bit Number	Bit Mnemonic				Descri	ption				
7	T4									
6	Т3									
5	T2		t eserved Do not try to set or clear this bit.							
4	T1	Donot								
3	T0									
2	S2	WDT Ti	me-out se	elect bit 2						
1	S1	WDT Ti	ime-out se	elect bit 1						
0	S0	WDT Ti	me-out s	elect bit 0						
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \mbox{Imme-out} \\ (2^{14} - 1) machir \\ (2^{15} - 1) machir \\ (2^{16} - 1) machir \\ (2^{17} - 1) machir \\ (2^{18} - 1) machir \\ (2^{19} - 1) machir \\ (2^{20} - 1) machir \\ (2^{21} - 1) mach$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz			

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

13. ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C54/58X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C54/58X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

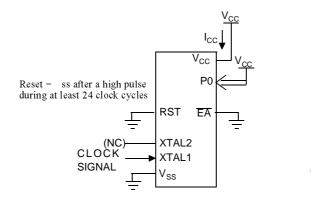
While the TS80C54/58X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 13-1 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

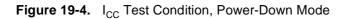
Table 13-1. External Pin Status during ONCE Mode

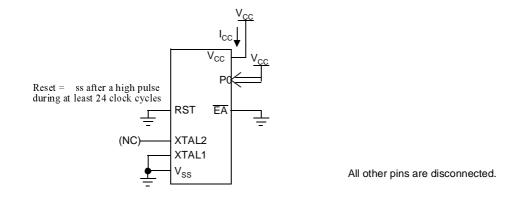
ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

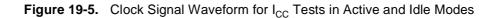
AT/TS8xC54/8X2

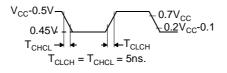

Table 18-1.	Signature B	ytes Content
-------------	-------------	--------------

Location	Contents	Comment		
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers		
31h	57h	Family Code: C51 X2		
60h	37h	Product name: TS80C58X2		
60h	B7h	Product name: TS87C58X2		
60h	3Bh	Product name: TS80C54X2		
60h	BBh	Product name: TS87C54X2		
61h	FFh	Product revision number		

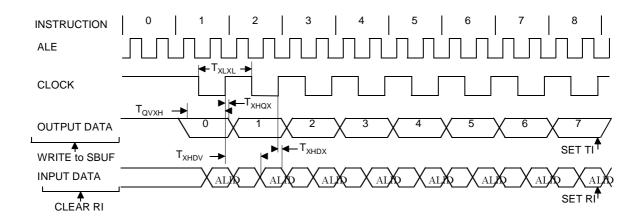




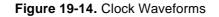

Figure 19-3. I_{CC} Test Condition, Idle Mode



All other pins are disconnected.



Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	x	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns


Table 19-13. AC Parameters for a Variable Clock: derating formula

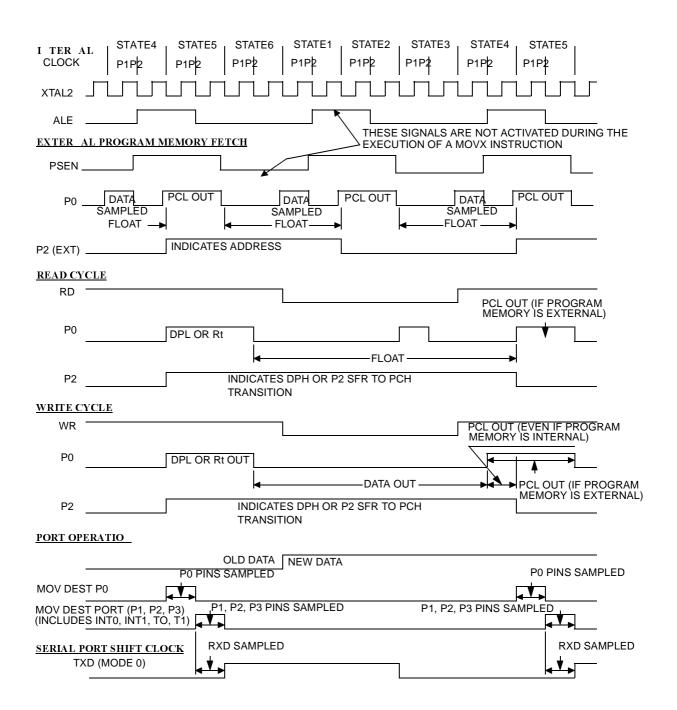

19.5.8 Shift Register Timing Waveforms

Figure 19-9. Shift Register Timing Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

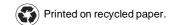
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel'sAtmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel[®], logo and combinations thereof, and Everywhere You Are[®] are the trademarks or registered trademark of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

