E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c58x2-mce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5-1. Pin Description for 40/44 pin packages

			IBER	ТҮРЕ			
MNEMONIC	DIL	LCC	VQFP 1.4	ITPE	Name And Function		
V _{SS}	20	22	16	I	Ground: 0V reference		
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.		
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-dowr operation		
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written t them float and can be used as high impedance inputs. Port 0 pins must be polarized t Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port also inputs the code bytes during EPROM programming. External pull-ups are require during program verification during which P0 outputs the code bytes.		
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	 Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins th have 1s written to them are pulled high by the internal pull-ups and can be used a inputs. As inputs, Port 1 pins that are externally pulled low will source current bec of the internal pull-ups. Port 1 also receives the low-order address byte during me programming and verification. Alternate functions for Port 1 include: 		
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout		
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control		
					have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current becaus of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16 bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.5 for A8 to A13		
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current becaus of the internal pull-ups. Some Port 3 pin P3.4 receive the high order address bits durin EPROM programming and verification for TS8xC58X2 devices. Port 3 also serves the special features of the 80C51 family, as listed below.		
	10	11	5	I	RXD (P3.0): Serial input port		
	11	13	7	0	TXD (P3.1): Serial output port		
	12	14	8	1	INT0 (P3.2): External interrupt 0		
	13	15	9	1	INT1 (P3.3): External interrupt 1		
	14	16	10	I	T0 (P3.4): Timer 0 external input		
	15	17	11	I	T1 (P3.5): Timer 1 external input		
	16	18	12	0	WR (P3.6): External data memory write strobe		
	17	19	13	0	RD (P3.7): External data memory read strobe P3.4 also receives A14 during TS87C58X2 EPROM Programming.		
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, reset the device. An internal diffused resistor to V_{SS} permits a power-on reset using only ar external capacitor to V_{CC} .		

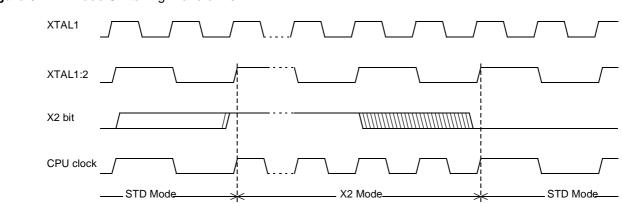
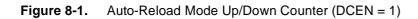


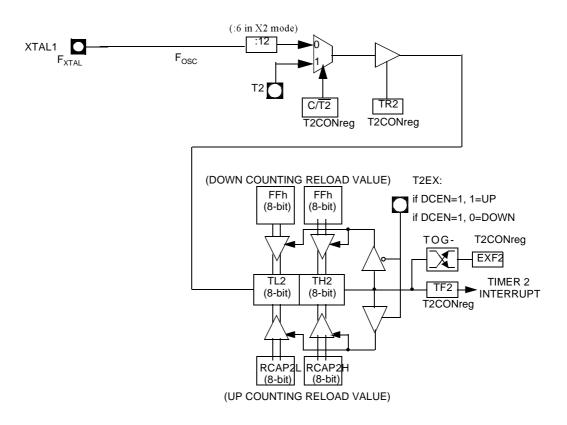
Figure 6-2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 6-1.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.


Table 7-1.AUXR1: Auxiliary Register 1


7	6	5	4	3	2	1	0
-	-	-	-	GF3	0	-	DPS

Bit Number	Bit Mnemonic	Description	
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
3	GF3	his bit is a general purpose user flag	
2	0	Reserved Always stuck at 0.	
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.	
0	DPS	Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.	

Reset Value = XXXX 00X0 Not bit addressable

User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

8.1.1 Programmable Clock-Output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 8-2) . The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers :

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

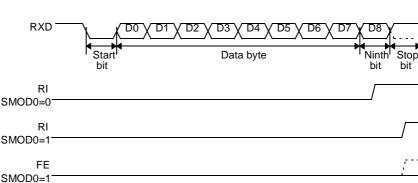
For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.

AT/TS8xC54/8X2

Table 8-1.	T2CON Register
------------	----------------


T2CON - Timer 2 Control Register (C8h)

7	6	N - Timer 2 Co 5	4	3	2	1	0			
TF2	EXF2 RCLK TCLK EXEN2 TR2 C/		C/T2#	CP/RL2#						
Bit Number	Bit Mnemonic		Description							
7	TF2	Timer 2 overflow Must be cleared b Set by hardware c	y software.	flow, if RCLK =	0 and TCLK =	0.				
6	EXF2	Set when a captur When set, causes enabled.	Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode							
5	RCLK	Receive Clock bit Clear to use timer Set to use timer 2								
4	TCLK	Transmit Clock bit Clear to use timer Set to use timer 2	1 overflow as							
3	EXEN2	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.								
2	TR2	Clear to turn off tir	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.							
1	C/T2#	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.								
0	CP/RL2#	If RCLK=1 or TCL overflow. Clear to auto-reloa	Timer 2 Capture/Reload bit f RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2							

Reset Value = 0000 0000b Bit addressable

Figure 9-3. UART Timings in Modes 2 and 3

9.1.1 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit. To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

9.1.2 Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example:

SADDR	0101 0110b
SADEN	<u>1111 1100b</u>
Given	0101 01XXb

The following is an example of how to use given addresses to address different slaves:

Slave A:	SADDR <u>SADEN</u> Given	1111 0001b <u>1111 1010b</u> 1111 0X0Xb
Slave B:	SADDR <u>SADEN</u> Given	1111 0011b <u>1111 1001b</u> 1111 0XX1b
Slave C:	SADDR <u>SADEN</u> Given	1111 0010b <u>1111 1101b</u> 1111 00X1b

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b). For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111

0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

9.1.3 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR	0101 0110b
SADEN	1111 1100b
Broadcast =SADDR OR SADEN	1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:	SADDR <u>SADEN</u> Broadcast	1111 0001b <u>1111 1010b</u> 1111 1X11b,
Slave B:	SADDR <u>SADEN</u> Broadcast	1111 0011b <u>1111 1001b</u> 1111 1X11B,
Slave C:	SADDR= <u>SADEN</u> Broadcast	1111 0010b <u>1111 1101b</u> 1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

9.1.4 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX XXXb (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

AT/TS8xC54/8X2

Table 9-3.

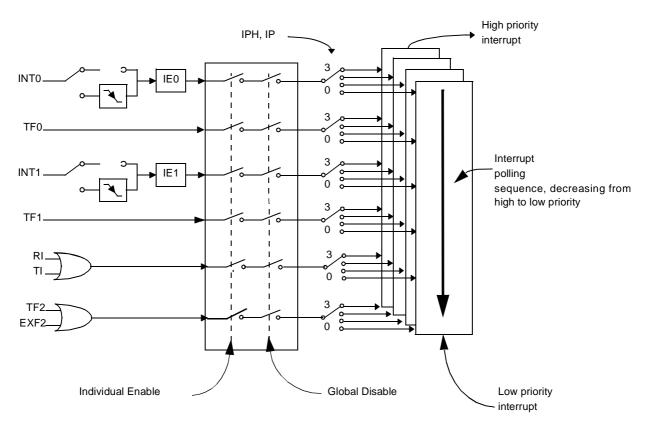
SCON Register SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0		
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI		
Bit Number	Bit Mnemonic		Description						
7	FE	Clear to reset th Set by hardware	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit						
	SM0		e bit 0 r serial port mode e cleared to enab		e SM0 bit				
6	SM1		0 0 0 Shift RegisterF _{XTAL} /12 (/6 in X2 mode) 0 1 1 8-bit UARTVariable 1 0 2 9-bit UARTF _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode)						
5	SM2	Clear to disable Set to enable m	e 2 bit / Multipro multiprocessor o ultiprocessor cor d be cleared in m	communication	feature.		entually mode		
4	REN	Clear to disable	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.						
3	TB8	Clear to transmi	Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3. Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.						
2	RB8	Cleared by hard Set by hardware	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.						
1	ТІ	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.							
0	RI	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 9-2. and Figure 9-3. in he other modes.							

Reset Value = 0000 0000b Bit addressable

Table 9-4. PCON Register

7	6	5	4	3	2	1	0		
SMOD1	SMOD) -	POF	GF0	PD	IDL			
Bit Number	Bit Mnemonic			Descri	otion				
7	SMOD1	Serial port Mode Set to select dou		n mode 1, 2 or	3.				
6	SMOD0	Clear to select SM	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.						
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	POF	0	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.						
3	GF1	General purpose Cleared by user for Set by user for ge	or general purp	0					
2	GF0	Cleared by user f	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
1	PD	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	dle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.							


Table 9-5. PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

10. Interrupt System

The TS80C54/58X2 has a total of 7 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2) and the serial port interrupt. These interrupts are shown in Figure 10-1.

Figure 10-1. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 10-2.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 10-3.) and in the Interrupt Priority High register (See Table 10-4.). shows the bit values and priority levels associated with each combination.

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

Table 10-1. Priority Level Bit Values

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

IP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0	
-	-	PT2	PS	PX1	PT0	PX0		
Bit Number	Bit Mnemonic		Description					
7	-	Reserved The value read	eserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value read	eserved The value read from this bit is indeterminate. Do not set this bit.					
5	PT2		Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.					
4	PS		Serial port Priority bit Refer to PSH for priority level.					
3	PT1		Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level.					
2	PX1		External interrupt 1 Priority bit Refer to PX1H for priority level.					
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.					
0	PX0		upt 0 Priority bi for priority level.	t				

Reset Value = XX00 0000b Bit addressable

7	6		5	4	3	2	1	0
T4	Т3	Т3		T1	ТО	\$2	S1	S0
Bit Number	Bit Mnemonic				Descri	ption		
7	T4							
6	Т3							
5	T2	Reserv		or clear this b	it			
4	T1	Donot						
3	T0							
2	S2	WDT Ti	me-out se	elect bit 2				
1	S1	WDT Ti	ime-out se	elect bit 1				
0	S0	WDT Ti	me-out s	elect bit 0				
		<u>S2S1</u> 0 0 0 1 1 1 1	<u>S0</u> 0 1 1 0 0 1	<u>Selected</u> 0 1 0 1 0 1 0 1	$\begin{array}{l} \hline \mbox{Imme-out} \\ (2^{14} - 1) machir \\ (2^{15} - 1) machir \\ (2^{16} - 1) machir \\ (2^{17} - 1) machir \\ (2^{18} - 1) machir \\ (2^{19} - 1) machir \\ (2^{20} - 1) machir \\ (2^{21} - 1) mach$	ne cycles, 32.7 m ne cycles, 65.5 m ne cycles, 131 m ne cycles, 262 m ne cycles, 542 m ne cycles, 1.05 s	ms @ 12 MHz ms @ 12 MHz ns @ 12 MHz ns @ 12 MHz ns @ 12 MHz s @ 12 MHz	

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

13. ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C54/58X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C54/58X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C54/58X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 13-1 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 13-1. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

.

^

15. Reduced EMI Mode

Г

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

2 2

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	RESERVED	AO		
Bit Number	Bit Mnemonic		Description						
7	-	Reserved The value read	eserved he value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value read	eserved e value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	AO		e ALE operatio	n during interna during internal					

Table 15-1.AUXR Register

AUXR - Auxiliary Register (8Eh)

Reset Value = XXXX XXX0b Not bit addressable

17. TS87C54/58X2 EPROM

17.1 EPROM Structure

The TS87C54/58X2 EPROM is divided in two different arrays:

- the code array:16/32 Kbytes.
- the encryption array:64 bytes.
- In addition a third non programmable array is implemented:
- the signature array: 4 bytes.

17.2 EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

17.2.1 Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

17.2.2 Program Lock Bits

The three lock bits, when programmed according to Table 17-1., will provide different level of protection for the on-chip code and data.

F	Program Lock Bits			
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

Table 17-1.Program Lock bits

U: unprogrammed,

P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

19. Electrical Characteristics

19.1 Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias: C = commercial0°C to 70°C I = industrial -40°C to 85°C Storage Temperature-65°C to + 150°C Voltage on V_{CC} to V_{SS}-0.5 V to + 7 V Voltage on V_{PP} to V_{SS}-0.5 V to + 13 V Voltage on Any Pin to V_{SS}-0.5 V to V_{CC} + 0.5 V Power Dissipation1 W⁽²⁾

- 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

19.2 Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label:

SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

19.3 DC Parameters for Standard Voltage

 $\begin{array}{l} T_{A}=0^{\circ}C \ to \ +70^{\circ}C; \ V_{SS}=0 \ V; \ V_{CC}=5 \ V \pm 10\%; \ F=0 \ to \ 40 \ MHz. \\ T_{A}=-40^{\circ}C \ to \ +85^{\circ}C; \ V_{SS}=0 \ V; \ V_{CC}=5 \ V \pm 10\%; \ F=0 \ to \ 40 \ MHz. \end{array}$

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
				0.3	V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$
V _{OL}	Output Low Voltage, ports 1, 2, 3 (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
				1.0	V	I _{OL} = 3.5 mA ⁽⁴⁾

AT/TS8xC54/8X2

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
I	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V_{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power Down Current		20 (5)	50	μΑ	$2.0 \text{ V} < \text{V}_{\text{CC}} \le 5.5 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	V _{CC} = 5.5 V ⁽¹⁾
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	V _{CC} = 5.5 V ⁽⁸⁾
l _{cc} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3 Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

19.4 DC Parameters for Low Voltage

TA = 0°C to +70°C; $V_{SS} = 0$ V; $V_{CC} = 2.7$ V to 5.5 V ± 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; $V_{SS} = 0$ V; $V_{CC} = 2.7$ V to 5.5 V ± 10%; F = 0 to 30 MHz.

	Table 19-2.	DC Parameters for Low Voltage
--	-------------	-------------------------------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 (6)			0.45	V	$I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
V _{OH}	Output High Voltage, ports 1, 2, 3	0.9 V _{CC}			V	I _{OH} = -10 μA
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	I _{OH} = -40 μA
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μA	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μA	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power Down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	$V_{\rm CC} = 3.3 \ V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 19-5.), $V_{IL} = V_{SS} + 0.5 V$,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used...

- 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5 V, V_{IH} = V_{CC} 0.5 V; XTAL2 N.C; Port 0 = V_{CC}; \overline{EA} = RST = V_{SS} (see Figure 19-3.).
- Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 19-4.).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

19.5 AC Parameters

19.5.1 Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{ILPL} = Time for ALE Low to PSEN Low.

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0 \text{ V}$; $V_{CC} = 5 \text{ V} \pm 10\%$; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0 \text{ V}$; $V_{CC} = 5 \text{ V} \pm 10\%$; -M and -V ranges.

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < V_{CC} < 5.5 V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < V_{CC} < 5.5 V; -L range.

Table 19-3. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and $\overrightarrow{\text{PSEN}}$ signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

í.				
		-М	-V	۰L
	Port 0	100	50	100
	Port 1, 2, 3	80	50	80
	ALE / PSEN	100	30	100

Table 19-3. Load Capacitance versus speed range, in pF

Table 19-5., Table 19-8. and Table 19-11. give the description of each AC symbols.

Table 19-6., Table 19-9. and Table 19-12. give for each range the AC parameter.

Table 19-7., Table 19-10. and Table 19-13. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

 Table 19-4.
 Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode	
Freq (MHz)	40	20	40	30	30	20	
T (ns)	25	50	25	33.3	33.3	50	

Example:

 T_{111V} in X2 mode for a -V part at 20 MHz (T = 1/20^{E6} = 50 ns):

x= 22 (Table 19-7.)

T= 50ns

 $T_{LLIV} = 2T - x = 2 \times 50 - 22 = 78$ ns

19.5.4 External Data Memory Characteristics

 Table 19-8.
 Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

Table 19-9. AC Parameters for a Fix Clock

Speed		-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60	1	102		95		137	ns
T _{RHDX}	0	1	0		0		0	l l	0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98	1	165		155		222	ns
T _{AVDV}		165		100	1	175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75	1	47		80		70	Ī	103		ns
T _{QVWX}	10	1	7		15		5	Ī	13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0	1	0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns