

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-PQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c58x2-mic

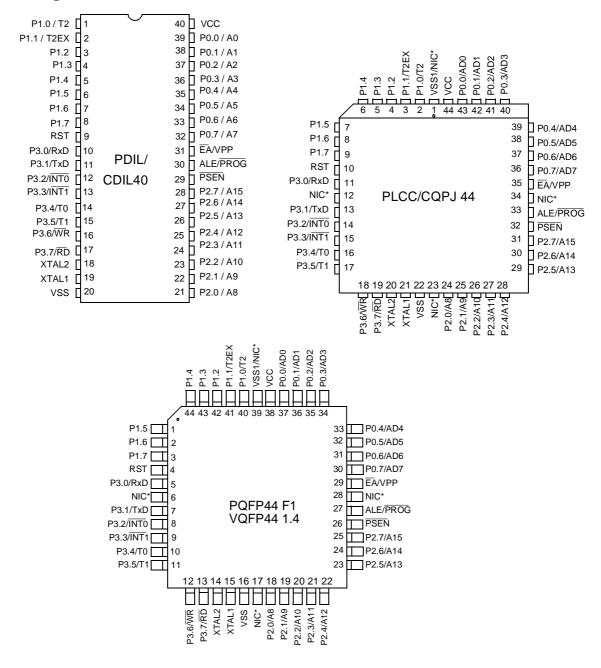
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C54/58X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON


Table 4-1.	All SFRs with their address and their reset value

	Bit address- able		Non Bit addressable						
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000 0000								F7h
E8h									EFh
E0h	ACC 0000 0000								E7h
D8h									DFh
D0h	PSW 0000 0000								D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h									C7h
B8h	IP XX00 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH XX00 0000	B7h
A8h	IE 0X00 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX 0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXX XXX0	CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	1

reserved

AT/TS8xC54/8X2

5. Pin Configuration

*NIC: No Internal Connection

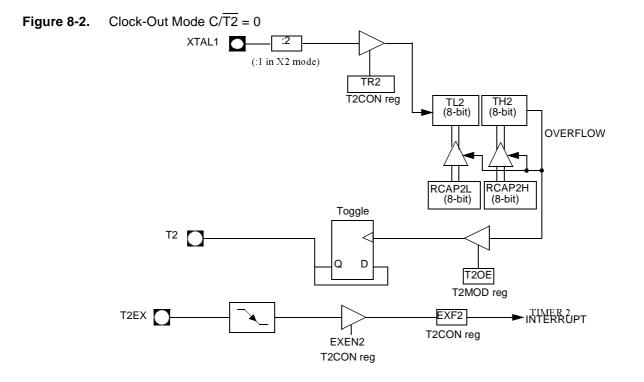

	PIN NUMBER				
MNEMONIC	DIL	LCC	VQFP 1.4	TYPE	Name And Function
MNEMONIC		PIN NU	MBER	TYPE	NAME AND FUNCTION
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: $\overrightarrow{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (54X2) or 7FFFH (58X2). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (54X2) or 7FFFH (58X2). This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, $\overrightarrow{\text{EA}}$ will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

Table 5-1.Pin Description for 40/44 pin packages

- AMEL
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

¹⁶ **AT/TS8xC54/8X2**

AT/TS8xC54/8X2

Table 8-1.	T2CON Register
------------	----------------

T2CON - Timer 2 Control Register (C8h)

7	6	N - Timer 2 Co 5	4	3	2	1	0	
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	
Bit Number	Bit Mnemonic		Description					
7	TF2	Must be cleared b	Timer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.					
6	EXF2	Set when a captur When set, causes enabled.	Just be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode					
5	RCLK		Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.					
4	TCLK	Clear to use timer	Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.					
3	EXEN2	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.						
2	TR2	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.						
1	C/T2#	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.						
0	CP/RL2#	Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow. Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1.						

Reset Value = 0000 0000b Bit addressable

Table 8-2.	T2MOD Register	

T2MOD -	Timer 2	Mode	Control	Register (C9h)
---------	---------	------	---------	----------------

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	T2OE	DCEN	
Bit Number	Bit Mnemonic		Description					
7	-	Reserved The value read	from this bit is in	determinate. Do	o not set this bit.			
6	-	Reserved The value read	eserved ne value read from this bit is indeterminate. Do not set this bit.					
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
2	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	T2OE	Clear to program	F imer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.					
0	DCEN	Clear to disable	own Counter Enable bit ear to disable timer 2 as up/down counter. et to enable timer 2 as up/down counter.					

Reset Value = XXXX XX00b Not bit addressable

Table 9-1. SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Not bit addressable

Table 9-2. SADDR - Slave Address Register (A9h)

				(-)			
7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 10-4.	IPH Register

IPH - In	terrupt Priority	High Re	gister (B7h)

7	6	5	4	3	2	1	0			
-	-	PT2H	PSH	PT1H	PX1H	РТ0Н	PX0H			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value rea	d from this bit is ir	ndeterminate. D	o not set this bi	t.				
6	-	Reserved The value rea	d from this bit is ir	ndeterminate. D	o not set this bi	t.				
5	PT2H	Timer 2 overflue PT2H PT2 0 0 0 1 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit						
4	PSH	Serial port Prid PSH PS 0 0 0 1 1 0 1 1	ority High bit <u>Priority Level</u> Lowest Highest							
3	PT1H	Timer 1 overflue PT1H PT1 0 0 0 1 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit						
2	PX1H	External interr <u>PX1H</u> <u>PX1</u> 0 0 0 1 1 0 1 1	upt 1 Priority High <u>Priority Level</u> Lowest Highest	bit						
1	РТОН	Timer 0 overflu PT0H PT0 0 0 1 0 1 1	ow interrupt Priorit <u>Priority Level</u> Lowest Highest	y High bit						
0	РХОН	External interr PX0H PX0 0 0 1 0 1 1	upt 0 Priority High <u>Priority Level</u> Lowest Highest	bit						

Reset Value = XX00 0000b Not bit addressable

11. Idle mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

11.1 Power-Down Mode

To save maximum power, a power-down mode can be invoked by software (Refer to Table 9-4., PCON register).

In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input.

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 11-1. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C54/58X2 into power-down mode.

17. TS87C54/58X2 EPROM

17.1 EPROM Structure

The TS87C54/58X2 EPROM is divided in two different arrays:

- the code array:16/32 Kbytes.
- the encryption array:64 bytes.
- In addition a third non programmable array is implemented:
- the signature array: 4 bytes.

17.2 EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

17.2.1 Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

17.2.2 Program Lock Bits

The three lock bits, when programmed according to Table 17-1., will provide different level of protection for the on-chip code and data.

F	Program Lock Bits			
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

Table 17-1.Program Lock bits

U: unprogrammed,

P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

17.2.3 Signature bytes

The TS87C54/58X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

17.3 EPROM Programming

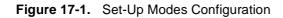
17.3.1 Set-up modes

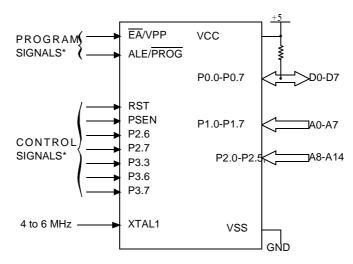
In order to program and verify the EPROM or to read the signature bytes, the TS87C54/58X2 is placed in specific set-up modes (See Figure 17-1.).

Control and program signals must be held at the levels indicated in Table 17-2.

17.3.2 Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4 respectively for A0-A14 (P2.5 (A13) for TS87C54X2, P3.4 (A14) for TS87C58X2).


Data Lines: P0.0-P0.7 for D0-D7


Control Signals:RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Table 17-2. EPROM Set-Up Modes

Mode	RST	PSEN	ALE/PR OG	EA/VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	IJ	12.75	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	IJ	12.75	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	IJ	12.75	1	1	1	1	1
Program Lock bit 2	1	0	IJ.	12.75	1	1	1	0	0
Program Lock bit 3	1	0	IJ	12.75	1	0	1	1	0

* See Table 31. for proper value on these inputs

17.3.3 Programming Algorithm

The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.

To program the TS80C54/58X2 the following sequence must be exercised:

- Step 1: Activate the combination of control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Input the appropriate data on the data lines.
- Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V).
- Step 5: Pulse ALE/PROG once.
- Step 6: Lower EA/VPP from VPP to VCC

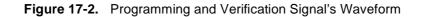
Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 17-2.).

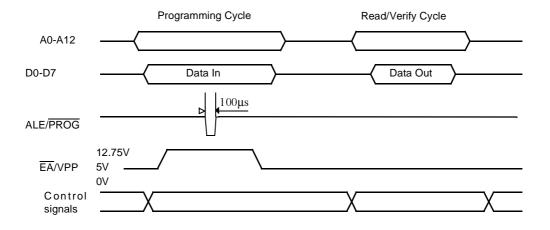
17.3.4 Verify algorithm

Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C54/58X2.

P 2.7 is used to enable data output.

To verify the TS87C54/58X2 code the following sequence must be exercised:


- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.


Repeat step 2 through 3 changing the address for the entire array verification (See Figure 17-2.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

17.4 EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

17.4.1 Erasure Characteristics

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

18. Signature Bytes

The TS87C54/58X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 18-1. shows the content of the signature byte for the TS80C54/58X2.

19. Electrical Characteristics

19.1 Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias: C = commercial0°C to 70°C I = industrial -40°C to 85°C Storage Temperature-65°C to + 150°C Voltage on V_{CC} to V_{SS}-0.5 V to + 7 V Voltage on V_{PP} to V_{SS}-0.5 V to + 13 V Voltage on Any Pin to V_{SS}-0.5 V to V_{CC} + 0.5 V Power Dissipation1 W⁽²⁾

- 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

19.2 Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label:

SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

19.3 DC Parameters for Standard Voltage

 $\begin{array}{l} T_{A}=0^{\circ}C \ to \ +70^{\circ}C; \ V_{SS}=0 \ V; \ V_{CC}=5 \ V \pm 10\%; \ F=0 \ to \ 40 \ MHz. \\ T_{A}=-40^{\circ}C \ to \ +85^{\circ}C; \ V_{SS}=0 \ V; \ V_{CC}=5 \ V \pm 10\%; \ F=0 \ to \ 40 \ MHz. \end{array}$

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
				0.3	V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$
V _{OL}	Output Low Voltage, ports 1, 2, 3 (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
				1.0	V	I _{OL} = 3.5 mA ⁽⁴⁾

AT/TS8xC54/8X2

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	I _{OH} = -10 μA I _{OH} = -30 μA I _{OH} = -60 μA V _{CC} = 5 V ± 10%
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power Down Current		20 (5)	50	μΑ	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	V _{CC} = 5.5 V ⁽¹⁾
I _{cc} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	V _{CC} = 5.5 V ⁽⁸⁾
l _{cc} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3 Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

19.5.2 External Program Memory Characteristics

Table 19-5. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

 Table 19-6.
 AC Parameters for Fix Clock

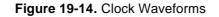
Speed		M MHz	X2 r 30	V node MHz z equiv.	standard	V I mode 40 Hz	X2 n 20	L node MHz z equiv.	standa	L ′d mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45	l l	78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25	l l	50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12	l l	20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

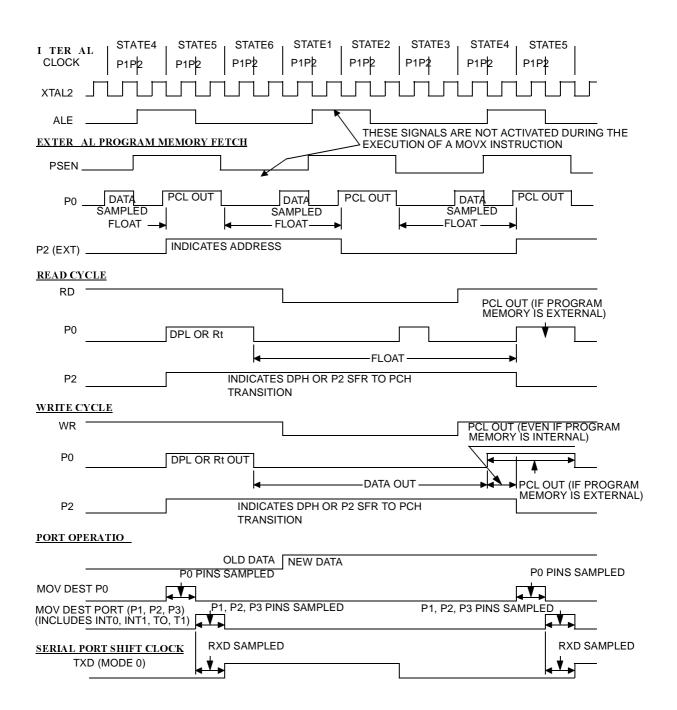
19.5.13 AC Testing Input/Output Waveforms

Figure 19-12. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

19.5.14 Float Waveforms


Figure 19-13. Float Waveforms



For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

19.5.15 Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS80C58X2xxx-MCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-MCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-MCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-MCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-VCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-VCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-VCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-VCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-LCA	-5 to +/-10%	Commercial	PDIL40	Stick
TS80C58X2xxx-LCB	-5 to +/-10%	Commercial	PLCC44	Stick
TS80C58X2xxx-LCC	-5 to +/-10%	Commercial	PQFP44	Tray
TS80C58X2xxx-LCE	-5 to +/-10%	Commercial	VQFP44	Tray
TS80C58X2xxx-MIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-MIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-MIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-MIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C58X2xxx-VIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-VIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-VIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-VIE	-5 to +/-10%	Industrial	VQFP44	Tray
TS80C58X2xxx-LIA	-5 to +/-10%	Industrial	PDIL40	Stick
TS80C58X2xxx-LIB	-5 to +/-10%	Industrial	PLCC44	Stick
TS80C58X2xxx-LIC	-5 to +/-10%	Industrial	PQFP44	Tray
TS80C58X2xxx-LIE	-5 to +/-10%	Industrial	VQFP44	Tray
AT80C58X2zzz-3CSUM	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUM	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUM	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C58X2zzz-3CSUL	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUL	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUL	-5 to +/-10%	Industrial & Green	VQFP44	Tray
AT80C58X2zzz-3CSUV	-5 to +/-10%	Industrial & Green	PDIL40	Stick
AT80C58X2zzz-SLSUV	-5 to +/-10%	Industrial & Green	PLCC44	Stick
AT80C58X2zzz-RLTUV	-5 to +/-10%	Industrial & Green	VQFP44	Tray
		2		~
TS87C58X2-MCA	5V ±10%	Commercial	PDIL40	Stick
TS87C58X2-MCB	5V ±10%	Commercial	PLCC44	Stick
TS87C58X2-MCC	5V ±10%	Commercial	PQFP44	Tray