

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c58x2-vce

Table 5-1. Pin Description for 40/44 pin packages

		PIN NUN	/IBER			
MNEMONIC	DIL	LCC	VQFP 1.4	TYPE	Name And Function	
V _{SS}	20	22	16	1	Ground: 0V reference	
Vss1		1	39	- 1	Optional Ground: Contact the Sales Office for ground connection.	
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation	
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.	
P1.0-P1.7	1-8	2-9	40-44	1/0	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used a inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memorgramming and verification. Alternate functions for Port 1 include: T2 (P1.0): Timer/Counter 2 external count input/Clockout	
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control	
					have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.5 for A8 to A13	
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Some Port 3 pin P3.4 receive the high order address bits during EPROM programming and verification for TS8xC58X2 devices. Port 3 also serves the special features of the 80C51 family, as listed below. RXD (P3.0): Serial input port	
	11	13	7	0	TXD (P3.1): Serial output port	
	12	14	8	ı	INTO (P3.2): External interrupt 0	
	13	15	9	' '	INT1 (P3.2): External interrupt 0	
	13	16	10	'	To (P3.4): Timer 0 external input	
	15	17		11 I T1 (P3.5): Timer 1 external input		
	16	18			WR (P3.6): External data memory write strobe	
	17	19	13	0	RD (P3.7): External data memory read strobe P3.4 also receives A14 during TS87C58X2 EPROM Programming.	
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .	

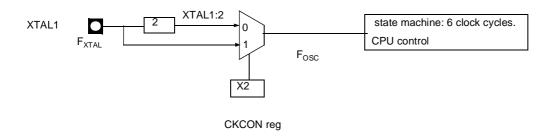
6. TS80C54/58X2 Enhanced Features

In comparison to the original 80C52, the TS80C54/58X2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- · The Watchdog.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- The ALE disabling.
- Some enhanced features are also located in the UART and the timer 2.

6.1 X2 Feature

The TS80C54/58X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:


- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 6-2. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 6-2. shows the mode switching waveforms.

Figure 6-1. Clock Generation Diagram

Table 6-1. CKCON Register CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	X2

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, F _{OSC} =F _{XTAL} /2). Set to select 6 clock periods per machine cycle (X2 mode, F _{OSC} =F _{XTAL}).

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

7.1 Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

```
; Block move using dual data pointers
; Destroys DPTR0, DPTR1, A and PSW
; note: DPS exits opposite of entry state
; unless an extra INC AUXR1 is added
00A2
                    AUXR1 EQU 0A2H
0000 909000
                    MOV
                           DPTR, #SOURCE
                                                 ; address of SOURCE
0003 05A2
                    INC
                           AUXR1
                                                 ; switch data pointers
0005 90A000
                    MOV
                           DPTR,#DEST
                                                 ; address of DEST
                   LOOP:
8000
0008 05A2
                    INC
                           AUXR1
                                                 ; switch data pointers
                    MOVX A, @DPTR
000A E0
                                                 ; get a byte from SOURCE
000B A3
                    INC
                           DPTR
                                                 ; increment SOURCE address
000C 05A2
                    INC
                           AUXR1
                                                 ; switch data pointers
                                                 ; write the byte to DEST
000E F0
                   MOVX @DPTR,A
000F A3
                           DPTR
                                                 ; increment DEST address
                    INC
0010 70F6
                    JNZ
                           LOOP
                                                 ; check for 0 terminator
0012 05A2
                    INC
                           AUXR1
                                                 ; (optional) restore DPS
```

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

8. Timer 2

The timer 2 in the TS80C54/58X2 is compatible with the timer 2 in the 80C52.

It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 8-1) and T2MOD register (See Table 8-2). Timer 2 operation is similar to Timer 0 and Timer 1. $C/\overline{T2}$ selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.

Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description.

Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.

In TS80C54/58X2 Timer 2 includes the following enhancements:

- Auto-reload mode with up or down counter
- Programmable clock-output

8.1 Auto-Reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 8-1. In this mode the T2EX pin controls the direction of count.

When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows according to the the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution

Table 8-1.T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#

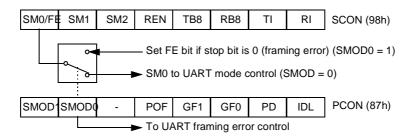
Bit	Bit							
Number	Mnemonic	Description						
7	TF2	Timer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.						
6	EXF2	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)						
5	RCLK	eceive Clock bit ear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. et to use timer 2 overflow as receive clock for serial port in mode 1 or 3.						
4	TCLK	Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.						
3	EXEN2	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.						
2	TR2	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.						
1	C/T2#	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for cloc out mode.						
0	CP/RL2#	Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow. Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1.						

Reset Value = 0000 0000b

Bit addressable

9. TS80C54/58X2 Serial I/O Port

The serial I/O port in the TS80C54/58X2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates


Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

9.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 9-1).

Figure 9-1. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 9-3.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 9-2. and Figure 9-3.).

Figure 9-2. **UART Timings in Mode 1**

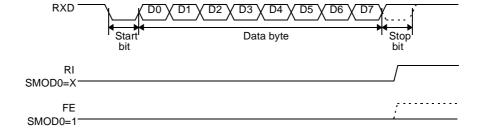


Table 9-3.SCON Register

SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI

	D.,								
Bit Number	Bit Mnemonic	Description							
7	FE	raming Error bit (SMOD0=1) clear to reset the error state, not cleared by a valid stop bit. et by hardware when an invalid stop bit is detected. MOD0 must be set to enable access to the FE bit							
	SM0	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit							
6	SM1	Serial port Mode bit 1 SM0 SM1Mode Description Baud Rate 0 0 0 Shift RegisterFy_n/12 (/6 in X2 mode)							
U	JIVI	0 0 Shift RegisterFXTAL/12 (/6 in X2 mode) 0 1 1 8-bit UARTVariable 1 0 2 9-bit UARTFXTAL/64 or FXTAL/32 (/32, /16 in X2 mode) 1 1 3 9-bit UARTVariable							
5	SM2	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.							
4	REN	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.							
3	TB8	Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3. Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.							
2	RB8	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.							
1	TI	ear to acknowledge interrupt. et by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in e other modes.							
0	RI	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 9-2. and Figure 9-3. in the other modes.							

Reset Value = 0000 0000b Bit addressable

Table 10-3. IP Register

IP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0
-	-	PT2	PS	PT1	PX1	PT0	PX0

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	PT2	Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.
4	PS	Serial port Priority bit Refer to PSH for priority level.
3	PT1	Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level.
2	PX1	External interrupt 1 Priority bit Refer to PX1H for priority level.
1	PT0	Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.
0	PX0	External interrupt 0 Priority bit Refer to PX0H for priority level.

Reset Value = XX00 0000b

Bit addressable

Table 12-2. WDTPRG Register WDTPRG Address (0A7h)

7	6	5	4	3	2	1	0
T4	Т3	T2	T1	T0	S2	S1	S0

Bit Number	Bit Mnemonic				Description				
7	T4								
6	T3								
5	T2		Reserved Do not try to set or clear this bit.						
4	T1		,						
3	T0								
2	S2	WDT Tin	ne-out	select bit 2					
1	S1	WDT Tin	ne-out	select bit 1					
0	S0	WDT Tin	ne-out	select bit 0					
		S2S1 0 0 0 0 1 1 1	\$0 0 0 1 1 0 0 1	Selecte 0 1 0 1 0 1 0 1 0 1	ed Time-out (2 ¹⁴ - 1) machine cycles, 16.3 ms @ 12 MHz (2 ¹⁵ - 1) machine cycles, 32.7 ms @ 12 MHz (2 ¹⁶ - 1) machine cycles, 65.5 ms @ 12 MHz (2 ¹⁷ - 1) machine cycles, 131 ms @ 12 MHz (2 ¹⁸ - 1) machine cycles, 262 ms @ 12 MHz (2 ¹⁹ - 1) machine cycles, 542 ms @ 12 MHz (2 ²⁰ - 1) machine cycles, 1.05 s @ 12 MHz (2 ²¹ - 1) machine cycles, 2.09 s @ 12 MHz				

Reset value XXXX X000

12.1.1 WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C54/58X2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C54/58X2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

13. ONCETM Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C54/58X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C54/58X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C54/58X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 13-1 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

 Table 13-1.
 External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

17.2.3 Signature bytes

The TS87C54/58X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

17.3 EPROM Programming

17.3.1 Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C54/58X2 is placed in specific set-up modes (See Figure 17-1.).

Control and program signals must be held at the levels indicated in Table 17-2.

17.3.2 Definition of terms

Address Lines:P1.0-P1.7, P2.0-P2.5, P3.4 respectively for A0-A14 (P2.5 (A13) for TS87C54X2, P3.4 (A14) for TS87C58X2).

Data Lines:P0.0-P0.7 for D0-D7

Control Signals: RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Table 17-2. EPROM Set-Up Modes

Mode	RST	PSEN	ALE/PR OG	EA/VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	1.1.	12.75	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	1.	12.75	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0	7	0	0	0
Program Lock bit 1	1	0	1.	12.75	1	1	1	1	1
Program Lock bit 2	1	0	Ţ	12.75	1	1	1	0	0
Program Lock bit 3	1	0	ır	12.75	1	0	1	1	0

■ AT/TS8xC54/8X2

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ mA^{(4)}$ $I_{OL} = 7.0 \ mA^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ mA^{(4)}$ $I_{OL} = 3.5 \ mA^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= \text{-}10 \; \mu\text{A} \\ I_{OH} &= \text{-}30 \; \mu\text{A} \\ I_{OH} &= \text{-}60 \; \mu\text{A} \\ V_{CC} &= 5 \; \text{V} \; \pm 10\% \end{split}$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ mA$ $I_{OH} = -7.0 \ mA$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	I_{OH} = -100 µA I_{OH} = -1.6 mA I_{OH} = -3.5 mA V_{CC} = 5 V ± 10%
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I_{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power Down Current		20 (5)	50	μΑ	2.0 V < V _{CC <} 5.5 V ⁽³⁾
I _{cc} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	V _{CC} = 5.5 V ⁽¹⁾
I _{cc} operating	Power Supply Current Maximum values, X1 mode: (7)			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	V _{CC} = 5.5 V ⁽⁸⁾
I _{CC} idle	Power Supply Current Maximum values, X1 mode: (7)			0.25+0.3 Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	V _{CC} = 5.5 V ⁽²⁾

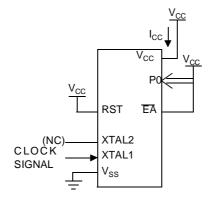
- Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.
- 6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA

Maximum I_{OL} per 8-bit port:

Port 0: 26 mA

Ports 1, 2 and 3: 15 mA


Maximum total I_{OI} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 7. For other values, please contact your sales office.
- 8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 19-5.), $V_{IL} = V_{SS} + 0.5 \text{ V}$,

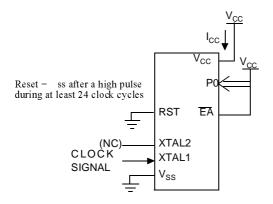

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port \ 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

Figure 19-1. I_{CC} Test Condition, under reset

All other pins are disconnected.

Figure 19-2. Operating I_{CC} Test Condition

All other pins are disconnected.

19.5 AC Parameters

19.5.1 Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Address <u>Valid</u> to ALE Low. T_{ILPL} = Time for ALE Low to <u>PSEN</u> Low.

TA = 0 to +70°C (commercial temperature range); V_{SS} = 0 V; V_{CC} = 5 V \pm 10%; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); V_{SS} = 0 V; V_{CC} = 5 V \pm 10%; -M and -V ranges.

TA = 0 to +70°C (commercial temperature range); V_{SS} = 0 V; 2.7 V < V_{CC} < 5.5 V; -L range. TA = -40°C to +85°C (industrial temperature range); V_{SS} = 0 V; 2.7 V < V_{CC} < 5.5 V; -L range.

Table 19-3. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

Table 19-3. Load Capacitance versus speed range, in pF

	-M	-V	-L
Port 0	100	50	100
Port 1, 2, 3	80	50	80
ALE / PSEN	100	30	100

Table 19-5., Table 19-8. and Table 19-11. give the description of each AC symbols.

Table 19-6., Table 19-9. and Table 19-12. give for each range the AC parameter.

Table 19-7., Table 19-10. and Table 19-13. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

Table 19-4. Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode
Freq (MHz)	40	20	40	30	30	20
T (ns)	25	50	25	33.3	33.3	50

Example:

 T_{LLIV} in X2 mode for a -V part at 20 MHz (T = $1/20^{E6}$ = 50 ns):

$$T_{LLIV} = 2T - x = 2 \times 50 - 22 = 78$$
ns

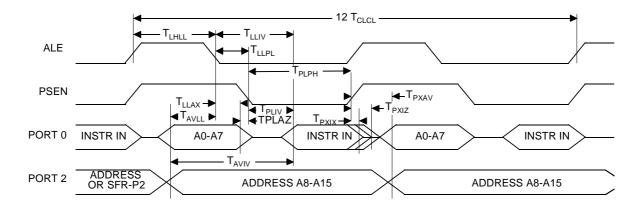
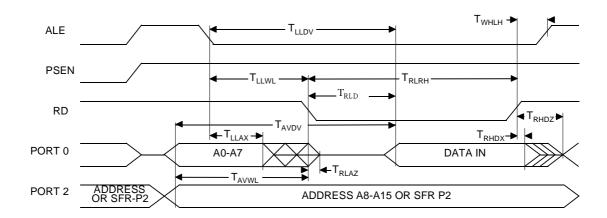


Table 19-7. AC Parameters for a Variable Clock: derating formula

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

19.5.3 External Program Memory Read Cycle


Figure 19-6. External Program Memory Read Cycle

19.5.6 External Data Memory Read Cycle

Figure 19-8. External Data Memory Read Cycle

19.5.7 Serial Port Timing - Shift Register Mode

Table 19-11. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 19-12. AC Parameters for a Fix Clock

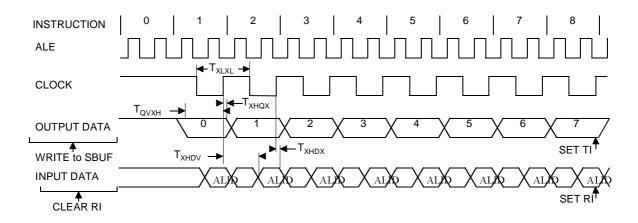

Speed	-	M MHz		node MHz		V mode 40 Hz	_		standar 30 I	d mode	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

Table 19-13. AC Parameters for a Variable Clock: derating formula

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T_{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T_{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T_{XHDX}	Min	х	х	0	0	0	ns
T_{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

19.5.8 Shift Register Timing Waveforms

Figure 19-9. Shift Register Timing Waveforms

19.5.9 EPROM Programming and Verification Characteristics

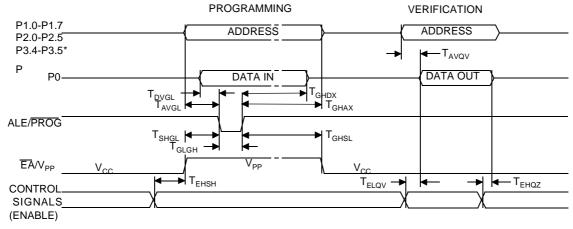

T_A = 21°C to 27°C; V_{SS} = 0V; V_{CC} = 5V \pm 10% while programming. V_{CC} = operating range while verifying.

Table 19-14. EPROM Programming Parameters

Symbol	Parameter	Min	Max	Units
V_{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T_{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T_{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T_{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T_{AVQV}	Address to Valid Data		48 T _{CLCL}	
T_{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

19.5.10 EPROM Programming and Verification Waveforms

Figure 19-10. EPROM Programming and Verification Waveforms

^{* 8}KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

Part Number	Supply Voltage	Temperature Range	Package	Packing
TS87C58X2-MCE	5V ±10%	Commercial	VQFP44	Tray
TS87C58X2-VCA	5V ±10%	Commercial	PDIL40	Stick
TS87C58X2-VCB	5V ±10%	Commercial	PLCC44	Stick
TS87C58X2-VCC	5V ±10%	Commercial	PQFP44	Tray
TS87C58X2-VCE	5V ±10%	Commercial	VQFP44	Tray
TS87C58X2-LCA	2.7 to 5.5V	Commercial	PDIL40	Stick
TS87C58X2-LCB	2.7 to 5.5V	Commercial	PLCC44	Stick
TS87C58X2-LCC	2.7 to 5.5V	Commercial	PQFP44	Tray
TS87C58X2-LCE	2.7 to 5.5V	Commercial	VQFP44	Tray
TS87C58X2-MIA	5V ±10%	Industrial	PDIL40	Stick
TS87C58X2-MIB	5V ±10%	Industrial	PLCC44	Stick
TS87C58X2-MIC	5V ±10%	Industrial	PQFP44	Tray
TS87C58X2-MIE	5V ±10%	Industrial	VQFP44	Tray
TS87C58X2-VIA	5V ±10%	Industrial	PDIL40	Stick
TS87C58X2-VIB	5V ±10%	Industrial	PLCC44	Stick
TS87C58X2-VIC	5V ±10%	Industrial	PQFP44	Tray
TS87C58X2-VIE	5V ±10%	Industrial	VQFP44	Tray
TS87C58X2-LIA	2.7 to 5.5V	Industrial	PDIL40	Stick
TS87C58X2-LIB	2.7 to 5.5V	Industrial	PLCC44	Stick
TS87C58X2-LIC	2.7 to 5.5V	Industrial	PQFP44	Tray
TS87C58X2-LIE	2.7 to 5.5V	Industrial	VQFP44	Tray
			•	
AT87C58X2-3CSUM	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUM	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUM	5V ±10%	Industrial & Green	VQFP44	Tray
AT87C58X2-3CSUL	2.7 to 5.5V	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUL	2.7 to 5.5V	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUL	2.7 to 5.5V	Industrial & Green	VQFP44	Tray
AT87C58X2-3CSUV	5V ±10%	Industrial & Green	PDIL40	Stick
AT87C58X2-SLSUV	5V ±10%	Industrial & Green	PLCC44	Stick
AT87C58X2-RLTUV	5V ±10%	Industrial & Green	VQFP44	Tray

21. Datasheet Revision History

21.1 Changes from Rev. C 01/01 to Rev. D 11/05

1. Added green product Ordering Information.

21.2 Changes from Rev. D 11/05 to Rev. E 04/06

1. Changed value of AUXR register.

