

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	27696
Total RAM Bits	1130496
Number of I/O	180
Number of Gates	-
Voltage - Supply	1.14V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	325-TFBGA, FCBGA
Supplier Device Package	325-FCBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m2gl025t-1fcsg325i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 1	High Temperature Data Retention (HTR)	9
Figure 2	Timing Model	. 15
Figure 3	Input Buffer AC Loading	17
Figure 4	Output Buffer AC Loading	18
Figure 5	Tristate Buffer for Enable Path Test Point	. 19
Figure 6	Timing Model for Input Register	. 65
Figure 7	I/O Register Input Timing Diagram	. 66
Figure 8	Timing Model for Output/Enable Register	. 68
Figure 9	I/O Register Output Timing Diagram	. 69
Figure 10	Input DDR Module	. 70
Figure 11	Input DDR Timing Diagram	71
Figure 12	Output DDR Module	. 73
Figure 13	Output DDR Timing Diagram	. 74
Figure 14	LUT-4	. 75
Figure 15	Sequential Module	. 76
Figure 16	Sequential Module Timing Diagram	77
Figure 17	Power-up to Functional Timing Diagram for SmartFusion2	. 115
Figure 18	Power-up to Functional Timing Diagram for IGLOO2	. 116
Figure 19	DEVRST_N to Functional Timing Diagram for SmartFusion2	. 117
Figure 20	DEVRST_N to Functional Timing Diagram for IGLOO2	. 119
Figure 21	I2C Timing Parameter Definition	125
Figure 22	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 128
Figure 23	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 131

1.9 Revision 3.0

In revision 3.0 of this document, the Theta B/C columns and FCS325 package was updated. For more information, see Table 9, page 10 (SAR 62002).

1.10 Revision 2.0

The following is a summary of the changes in revision 2.0 of this document.

- Table 1, page 4 was updated (SAR 59056).
- Table 7, page 8 temperature and data retention information was updated SAR (61363).
- Storage Operating Table was updated and split into three tables Table 5, page 7, Table 7, page 8 (SAR 58725).
- Updated Theta B/C columns and FCS325 package in Table 9, page 10 (SAR 62002).
- Added 090-FCS325 thermal resistance to Table 9, page 10 (SAR 59384).
- TQ144 package was added to Table 9, page 10 (SAR 57708).
- Added PLL jitter data for the VF400 package (SAR 53162).
- Added Additional Worst Case IDD to Table 11, page 12 and Table 12, page 13 (SAR 59077).
- Table 13, page 13, Table 14, page 13, and Table 15, page 14 were added to verify Inrush currents (SAR 56348).
- Table 18, page 19 and Table 21, page 20 I/O speeds were replaced.
- Max speed was changed in Table 41, page 26 (SAR 57221) and in Table 52, page 29 (SAR 57113).
- Minimum and Maximum DC/AC Input and Output Levels Specification, page 29 and Table 49, page 29–Table 57, page 31 were added.
- Added Cload to Table 89, page 39 (SAR 56238).
- Removed "Rs" information in DDR Timing Measurement Table 123, page 47, Table 133, page 49, and Table 144, page 52.
- Updated drive programming for M/B-LVDS outputs (SAR 58154).
- Added an inverter bubble to DDR_IN latch in Figure 10, page 70 (SAR 61418).
- QF waveform in Figure 11, page 71 was updated (SAR 59816).
- uSRAM Write Clock minimum values were updated in Table 237, page 86–Table 243, page 93 (SAR 55236).
- Fixed typo in the 32 kHz Crystal (XTAL) oscillator accuracy data section (SAR 59669).
- The "On-Chip Oscillator" section was split, and the Embedded NVM (eNVM) Characteristics, page 104 was added. Table 277, page 107–Table 281, page 109 were revised.(SARs 57898 and 59669).
- PLL VCP Frequency and conditions were added to Table 282, page 110 (SAR 57416).
- Fixed typo for PLL jitter data in the 100-400 MHz range (SAR 60727).
- Updated FCCC information in Table 282, page 110 and Table 283, page 111 (SAR 60799).
- Device 025 specifications were added to Table 283, page 111 (SAR 51625).
- JTAG Table 284, page 112 was replaced (SAR 51188).
- Flash*Freeze Table 293, page 119 was replaced (SAR 57828).
- Added support for HCSL I/O Standard for SERDES reference clocks in Table 300, page 123 and Table 301, page 123 (SAR 50748).
- Tir and Tif parameters were added to Table 303, page 124 (SAR 52203).
- Speed grade consistency was fixed in tables throughout the datasheet (SAR 50722).
- Added jitter attenuation information (SAR 59405).

1.11 Revision 1.0

The following is a summary of the changes in revision 1.0 of this document.

• The IGLOO2 v2 and the SmartFusion2 v5 datasheets are combined into this single product family datasheet.

2.3.2 Power Consumption

The following sections describe the power consumptions of the devices.

2.3.2.1 Quiescent Supply Current

Table 10 • Quiescent Supply Current Characteristics

	Modes and Configurations				
Power Supplies/Blocks	Non-Flash*Freeze	Flash*Freeze			
FPGA Core	On	Off			
V _{DD} /SERDES_[01]_VDD ¹	On	On			
V _{PP} /V _{PPNVM}	On	On			
HPMS_MDDR_PLL_VDDA/FDDR_PLL_VDDA/ CCC_XX[01]_PLL_VDDA/PLL0_PLL1_HPMS_MDDR_VDD A	0 V	0 V			
SERDES_[01]_PLL_VDDA ²	0 V	0 V			
SERDES_[01]_L[0123]_VDDAPLL/VDD_2V5 ²	On	On			
SERDES_[01]_L[0123]_VDDAIIO ²	On	On			
V _{DDlx} ^{3, 4}	On	On			
V _{REFx}	On	On			
MSSDDR CLK	32 kHz	32 kHz			
RAM	On	Sleep state			
System controller	50 MHz	50 MHz			
50 MHz oscillator (enable/disable)	Enable	Disabled			
1 MHz oscillator (enable/disable)	Disabled	Disabled			
Crystal oscillator (enable/disable)	Disabled	Disabled			

1. SERDES_[01]_VDD Power Supply is shorted to V_{DD} .

2. SerDes and DDR blocks to be unused.

3. V_{DDIx} has been set to ON for test conditions as described. Banks on the east side should always be powered with the appropriate V_{DDI} bank supplies. For details on bank power supplies, see "Recommendation for Unused Bank Supplies" table in the *AC393: SmartFusion2 and IGLO02 Board Design Guidelines Application Note.*

4. No Differential (that is to say, LVDS) I/Os or ODT attributes to be used.

Table 11 • SmartFusion2 and IGLOO2 Quiescent Supply Current (V_{DD} = 1.2 V) – Typical Process

Symbol	Modes	005	010	025	050	060	090	150	Unit	Conditions
IDC1	Non- Flash*Freeze	6.2	6.9	8.9	13.1	15.3	15.4	27.5	mA	Typical (T _J = 25 °C)
		24.0	28.4	40.6	67.8	80.6	81.4	144.7	mA	Commercial (T _J = 85 °C)
		35.2	41.9	60.5	102.1	121.4	122.6	219.1	mA	Industrial (T _J = 100 °C)

Table 15 •	Inrush Currents at Power up	o, –40 °C <= T」<=	100 °C – Typical Process
------------	-----------------------------	-------------------	--------------------------

Power Supplies	Voltage (V)	005	010	025	050	060	090	150	Unit
V _{DD}	1.26	25	32	38	48	45	77	109	mA
V _{PP}	3.46	33	49	36	180	13	36	51	mA
V _{DDI}	2.62	134	141	161	187	93	272	388	mA
Number of banks		7	8	8	10	10	9	19	

2.3.3 Average Fabric Temperature and Voltage Derating Factors

The following table lists the average temperature and voltage derating factors for fabric timing delays normalized to T_J = 85 °C, in worst-case V_{DD} = 1.14 V.

Table 16 • Average Junction Temperature and Voltage Derating Factors for Fabric Timing Delays

Array Voltage V _{DD} (V)	–40 °C	0 °C	25 °C	70 °C	85 °C	100 °C
1.14	0.83	0.89	0.92	0.98	1.00	1.02
1.2	0.75	0.80	0.83	0.89	0.91	0.93
1.26	0.69	0.73	0.76	0.81	0.83	0.85

2.3.5.3 Tristate Buffer and AC Loading

The tristate path for enable path loadings is described in the respective specifications. The following figure shows the methodology of characterization illustrated by the enable path test point.

Figure 5 • Tristate Buffer for Enable Path Test Point

2.3.5.4 **I/O Speeds**

This section describes the maximum data rate summary of I/O in worst-case industrial conditions. See the individual I/O standards for operating conditions.

I/O	MSIO	MSIOD	DDRIO	Unit
PCI 3.3 V	630			Mbps
LVTTL 3.3 V	600			Mbps
LVCMOS 3.3 V	600			Mbps
LVCMOS 2.5 V	410	420	400	Mbps
LVCMOS 1.8 V	295	400	400	Mbps
LVCMOS 1.5 V	160	220	235	Mbps
LVCMOS 1.2 V	120	160	200	Mbps
LPDDR-LVCMOS 1.8 V mode			400	Mbps

Table 18 • Maximum Data Rate Summary Table for Single-Ended I/O in Worst-Case Industrial Conditions

Table 53 • LVCMOS 1.8 V AC Calibrated Impedance Option

Parameter	Symbol	Тур	Unit
Supported output driver calibrated impedance (for DDRIO I/O bank)	Rodt_cal	75, 60, 50, 33, 25, 20	Ω

Table 54 • LVCMOS 1.8 V AC Test Parameter Specifications									
Parameter	Symbol	Тур	Unit						
Measuring/trip point for data path	V _{TRIP}	0.9	V						
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2k	Ω						
Capacitive loading for enable path (T _{ZH} , T _{ZL} , T _{HZ} , T _{LZ})	C _{ENT}	5	pF						
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF						

Table 55 • LVCMOS 1.8 V Transmitter Drive Strength Specifications

Output Drive Selection		V _{OH} (V)	V _{OL} (V)	IOH (at Vou)	IOL (at Vol.)	
MSIO I/O Bank	MSIOD I/O Bank	DDRIO I/O Bank	Min	Max	mA	mA
2 mA	2 mA	2 mA	V _{DDI} – 0.45	0.45	2	2
4 mA	4 mA	4 mA	V _{DDI} – 0.45	0.45	4	4
6 mA	6 mA	6 mA	V _{DDI} – 0.45	0.45	6	6
8 mA	8 mA	8 mA	V _{DDI} – 0.45	0.45	8	8
10 mA	10 mA	10 mA	V _{DDI} – 0.45	0.45	10	10
12 mA		12 mA	V _{DDI} – 0.45	0.45	12	12
		16 mA ¹	V _{DDI} – 0.45	0.45	16	16

1. 16 mA drive strengths, all slews, meets LPDDR JEDEC electrical compliance.

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 1.71 V

Table 56 • LVCMOS 1.8 V Receiver Characteristics (Input Buffers)

	On-Die Termination	Termination		٦	Г _{РҮS}	
	(ODT)	-1	-Std	-1	-Std	Unit
LVCMOS 1.8 V (for DDRIO I/O bank with Fixed Codes)	None	1.968	2.315	2.099	2.47	ns
	None	2.898	3.411	2.883	3.393	ns
	50	3.05	3.59	3.044	3.583	ns
LVCMOS 1.8 V	75	2.999	3.53	2.987	3.516	ns
(for MSIO I/O bank)	150	2.947	3.469	2.933	3.452	ns
	None	2.611	3.071	2.598	3.057	ns
	50	2.775	3.264	2.775	3.265	ns
LVCMOS 1.8 V	75	2.72	3.2	2.712	3.19	ns
(for MSIOD I/O bank)	150	2.666	3.137	2.655	3.123	ns

Table 112 • SSTL2 Receiver Characteristics for MSIO I/O Bank (Input Buffers)

	On-Die			
	Termination (ODT)	-1	-Std	Unit
Pseudo differential	None	2.798	3.293	ns
True differential	None	2.733	3.215	ns

Table 113 • DDR1/SSTL2 Receiver Characteristics for MSIOD I/O Bank (Input Buffers)

	On-Die			
	Termination (ODT)	-1	-Std	Unit
Pseudo differential	None	2.476	2.913	ns
True differential	None	2.475	2.911	ns

Table 114 • SSTL2 Class I Transmitter Characteristics for DDRIO I/O Bank (Output and Tristate Buffers)

	T _{DP}		T _{ZL} T		T _{ZH}	. _{zh} T _{HZ}		T _{LZ}			
	-1	-Std	–1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
Single-ended	2.26	2.66	1.99	2.341	1.985	2.335	2.135	2.512	2.13	2.505	ns
Differential	2.26	2.658	2.202	2.591	2.201	2.589	2.393	2.815	2.392	2.814	ns

Table 115 • DDR1/SSTL2 Class I Transmitter Characteristics for MSIO I/O Bank (Output and Tristate Buffers)

	T _{DP}		T _{ZL}		T _{ZH}		T _{HZ}		T _{LZ}		
	-1	-Std	Unit								
Single-ended	2.055	2.417	2.037	2.396	2.03	2.388	2.068	2.433	2.061	2.425	ns
Differential	2.192	2.58	2.434	2.864	2.425	2.852	2.164	2.545	2.156	2.536	ns

Table 116 • DDR1/SSTL2 Class I Transmitter Characteristics for MSIOD I/O Bank (Output and Tristate Buffers)

	T _{DP}		T _{ZL}		Т _{ZH}		T _{HZ}		T _{LZ}		
	-1	-Std	Unit								
Single-ended	1.512	1.779	1.462	1.72	1.462	1.72	1.676	1.972	1.676	1.971	ns
Differential	1.676	1.971	1.774	2.087	1.766	2.077	1.854	2.181	1.845	2.171	ns

Table 117 • DDR1/SSTL2 Class II Transmitter Characteristics for DDRIO I/O Bank (Output and Tristate Buffers)

	T _{DP}		T	T _{ZL} T		Г _{ZH} Т _{HZ}		T _{LZ}			
	-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
Single-ended	2.122	2.497	1.906	2.243	1.902	2.237	2.061	2.424	2.056	2.418	ns
Differential	2.127	2.501	2.042	2.402	2.043	2.403	2.363	2.78	2.365	2.781	ns

	T _{DP}		T _{ZL}			т _{zн}		т _{нz}		T _{LZ}	
	-1	-Std	-1	-Std	-1	-Std	–1	-Std	-1	-Std	Unit
SSTL18 Class I (for DDRIO I/O Bank)											
Single-ended	2.383	2.804	2.23	2.623	2.229	2.622	2.202	2.591	2.201	2.59	ns
Differential	2.413	2.84	2.797	3.29	2.797	3.29	2.282	2.685	2.282	2.685	ns
			SSTL1	18 Class	II (for D	DRIO I/O	Bank)				
Single-ended	2.281	2.683	2.196	2.584	2.195	2.583	2.171	2.555	2.17	2.554	ns
Differential	2.315	2.724	2.698	3.173	2.698	3.173	2.242	2.639	2.242	2.639	ns

Table 128 • DDR2/SSTL18 Transmitter Characteristics (Output and Tristate Buffers)

2.3.6.5 Stub-Series Terminated Logic 1.5 V (SSTL15)

SSTL15 Class I and Class II are supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs, and also comply with the reduced and full drive double data rate (DDR3) standard. IGLOO2 FPGA and SmartFusion2 SoC FPGA I/Os supports both standards for single-ended signaling and differential signaling for SSTL18. This standard requires a differential amplifier input buffer and a push-pull output buffer.

Minimum and Maximum DC/AC Input and Output Levels Specification

The following table lists the SSTL15 DC voltage specifications for DDRIO bank.

Table 129 • SSTL15 DC Recommended DC Operating Conditions (for DDRIO I/O Bank Only)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply voltage	V _{DDI}	1.425	1.5	1.575	V
Termination voltage	V _{TT}	0.698	0.750	0.803	V
Input reference voltage	V_{REF}	0.698	0.750	0.803	V

Table 130 • SSTL15 DC Input Voltage Specification (for DDRIO I/O Bank Only)

Parameter	Symbol	Min	Мах	Unit
DC input logic high	V _{IH} (DC)	V _{REF} + 0.1	1.575	V
DC input logic low	V _{IL} (DC)	-0.3	V _{REF} – 0.1	V
Input current high ¹	I _{IH} (DC)			
Input current low ¹	I _{IL} (DC)			

1. See Table 24, page 22.

Table 144 • LPDDR AC Differential Voltage Specifications (for DDRIO I/O Bank Only)

Parameter	Symbol	Min	Max	Unit
AC input differential voltage	V _{DIFF}	$0.6 \times V_{DDI}$		V
AC differential cross point voltage	V _x	$0.4 \times V_{DDI}$	0.6 × V _{DDI}	V

Table 145 • LPDDR AC Specifications (for DDRIO I/O Bank Only)

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate	D _{MAX}	400	Mbps	AC loading: per JEDEC specifications

Table 146 • LPDDR AC Calibrated Impedance Option (for DDRIO I/O Bank Only)

Parameter	Symbol	Тур	Unit	Conditions
Supported output driver calibrated impedance	R _{REF}	20, 42	Ω	Reference resistor = 150 Ω
Effective impedance value (ODT)	R _{TT}	50, 70, 150	Ω	Reference resistor = 150 Ω

Table 147 • LPDDR AC Test Parameter Specifications (for DDRIO I/O Bank Only)

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	0.9	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	C _{ENT}	5	pF
Reference resistance for data test path for LPDDR (T_{DP})	RTT_TEST	50	Ω
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	Ω

AC Switching Characteristics

Worst-case commercial conditions: T_J = 85 °C, V_{DD} = 1.14 V, worst-case V_{DDI} .

Table 148 • LPDDR Receiver Characteristics for DDRIO I/O Bank with Fixed Codes

		٦		
	On-Die Termination (ODT)	-1	-Std	Unit
Pseudo differential	None	1.568	1.845	ns
True differential	None	1.588	1.869	ns

Table 149 • LPDDR Reduced Drive for DDRIO I/O Bank (Output and Tristate Buffers)

		T _{DP}	T	ENZL	Τ _Ε	NZH		Г _{ЕNHZ}	Т	ENLZ	
	-1	-Std	–1	-Std	-1	-Std	-1	-Std	–1	-Std	Unit
Single-ended	2.383	2.804	2.23	2.623	2.229	2.622	2.202	2.591	2.201	2.59	ns
Differential	2.396	2.819	2.764	3.252	2.764	3.252	2.255	2.653	2.255	2.653	ns

Table 168 • LVDS25 Receiver Characteristics for MSIOD I/O Bank (Input Buffers)

	T _{PY}			
On-Die Termination (ODT)	-1	-Std	Unit	
None	2.554	3.004	ns	
100	2.549	2.999	ns	

Table 169 • LVDS25 Transmitter Characteristics for MSIO I/O Bank (Output and Tristate Buffers)

Т	DP	T	ZL	Tz	ZH	T	ΗZ	T	LZ	
-1	-Std	–1	-Std	-1	-Std	–1	-Std	–1	-Std	Unit
2.136	2.513	2.416	2.842	2.402	2.825	2.423	2.85	2.409	2.833	ns

Table 170 • LVDS25 Transmitter Characteristics for MSIOD I/O Bank (Output and Tristate Buffers)

	Т	DP	Т	ZL	T	ZH	T	ΗZ	T	Z	
	-1	-Std	Unit								
No pre-emphasis	1.61	1.893	1.749	2.058	1.735	2.041	1.897	2.231	1.866	2.195	ns
Min pre-emphasis	1.527	1.796	1.757	2.067	1.744	2.052	1.905	2.241	1.876	2.207	ns
Med pre-emphasis	1.496	1.76	1.765	2.077	1.751	2.06	1.914	2.252	1.884	2.216	ns

LVDS33 AC Switching Characteristics

Table 171 • LVDS33 Receiver Characteristics for MSIO I/O Bank (Input Buffers)

	T _{PY}			
On Die Termination (ODT)	-1	-Std	Unit	
None	2.572	3.025	ns	
100	2.569	3.023	ns	

Table 172 • LVDS33 Transmitter Characteristics for MSIO I/O Bank (Output and Tristate Buffers)

T	DP		T _{ZL}		т _{zн}	Т	HZ		T _{LZ}	
-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
1.942	2.284	1.98	2.33	1.97	2.318	1.953	2.298	1.96	2.307	ns

Table 215 • LVPECL DC Input Voltage Specification

Parameter	Symbol	Min	Max	Unit
DC input voltage	VI	0	3.45	V

Table 216 • LVPECL DC Differential Voltage Specification

Parameter	Symbol	Min	Тур	Max	Unit
Input common mode voltage	V _{ICM}	0.3		2.8	V
Input differential voltage	V _{IDIFF}	100	300	1,000	mV

Table 217 • LVPECL Minimum and Maximum AC Switching Speeds

Parameter	Symbol	Max	Unit
Maximum data rate	D _{MAX}	900	Mbps

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 2.375 V.

Table 218 •	LVPECL Receiver	Characteristics fo	r MSIO I/O Bank
-------------	-----------------	---------------------------	-----------------

		Τ _{ΡΥ}			
On-Die Termination (ODT)	-1	-Std	Unit		
None	2.572	3.025	ns		
100	2.569	3.023	ns		

2.3.8 I/O Register Specifications

This section describes input and output register specifications.

2.3.8.1 Input Register

Figure 6 • Timing Model for Input Register

The following table lists the input data register propagation delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 219 • Input Data Register Propagation Delays

		Measuring Nodes			
Parameter	Symbol	(from, to) ¹	-1	-Std	Unit
Bypass delay of the input register	T _{IBYP}	F, G	0.353	0.415	ns
Clock-to-Q of the input register	T _{ICLKQ}	E, G	0.16	0.188	ns
Data setup time for the input register	T _{ISUD}	A, E	0.357	0.421	ns
Data hold time for the input register	T _{IHD}	A, E	0	0	ns
Enable setup time for the input register	T _{ISUE}	B, E	0.46	0.542	ns
Enable hold time for the input register	T _{IHE}	B, E	0	0	ns
Synchronous load setup time for the input register	T _{ISUSL}	D, E	0.46	0.542	ns
Synchronous load hold time for the input register	T _{IHSL}	D, E	0	0	ns
Asynchronous clear-to-Q of the input register (ADn=1)	T _{IALN2Q}	C, G	0.625	0.735	ns
Asynchronous preset-to-Q of the input register (ADn=0)	_	C, G	0.587	0.69	ns
Asynchronous load removal time for the input register	TIREMALN	C, E	0	0	ns
Asynchronous load recovery time for the input register	T _{IRECALN}	C, E	0.074	0.087	ns
Asynchronous load minimum pulse width for the input register	T _{IWALN}	C, C	0.304	0.357	ns
Clock minimum pulse width high for the input register	TICKMPWH	E, E	0.075	0.088	ns
Clock minimum pulse width low for the input register	TICKMPWL	E, E	0.159	0.187	ns

1. For the derating values at specific junction temperature and voltage supply levels, see Table 16, page 14 for derating values.

The following table lists the output/enable propagation delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 220 •	Output/Enable Data	Register Pr	opagation Delays
-------------	--------------------	--------------------	------------------

		Measuring			
Parameter	Symbol	(from, to) ¹	-1	-Std	Unit
Bypass delay of the output/enable register	T _{OBYP}	F, G or H, I	0.353	0.415	ns
Clock-to-Q of the output/enable register	T _{OCLKQ}	E, G or E, I	0.263	0.309	ns
Data setup time for the output/enable register	T _{OSUD}	A, E or J, E	0.19	0.223	ns
Data hold time for the output/enable register	T _{OHD}	A, E or J, E	0	0	ns
Enable setup time for the output/enable register	T _{OSUE}	B, E	0.419	0.493	ns
Enable hold time for the output/enable register	T _{OHE}	B, E	0	0	ns
Synchronous load setup time for the output/enable register	T _{OSUSL}	D, E	0.196	0.231	ns
Synchronous load hold time for the output/enable register	T _{OHSL}	D, E	0	0	ns
Asynchronous clear-to-q of the output/enable register (ADn = 1)	T _{OALN2Q}	C, G or C, I	0.505	0.594	ns
Asynchronous preset-to-q of the output/enable register (ADn = 0)	-	C, G or C, I	0.528	0.621	ns
Asynchronous load removal time for the output/enable register	TOREMALN	C, E	0	0	ns
Asynchronous load recovery time for the output/enable register	T _{ORECALN}	C, E	0.034	0.04	ns
Asynchronous load minimum pulse width for the output/enable register	T _{OWALN}	C, C	0.304	0.357	ns
Clock minimum pulse width high for the output/enable register	T _{OCKMPWH}	E, E	0.075	0.088	ns
Clock minimum pulse width low for the output/enable register	TOCKMPWL	E, E	0.159	0.187	ns

1. For the derating values at specific junction temperature and voltage supply levels, see Table 16, page 14 for derating values.

2.3.9.4 Output DDR Module

Table 238 • µSRAM (RAM64x16) in 64 × 16 Mode (continued)

		-	-1	_	Std	
Parameter	Symbol	Min	Мах	Min	Мах	Unit
Read synchronous reset hold time	T _{SRSTHD}	0.061		0.071		ns
Write clock period	T _{CCY}	4		4		ns
Write clock minimum pulse width high	T _{CCLKMPWH}	1.8		1.8		ns
Write clock minimum pulse width low	T _{CCLKMPWL}	1.8		1.8		ns
Write block setup time	T _{BLKCSU}	0.404		0.476		ns
Write block hold time	T _{BLKCHD}	0.007		0.008		ns
Write input data setup time	T _{DINCSU}	0.115		0.135		ns
Write input data hold time	T _{DINCHD}	0.15		0.177		ns
Write address setup time	T _{ADDRCSU}	0.088		0.104		ns
Write address hold time	T _{ADDRCHD}	0.128		0.15		ns
Write enable setup time	T _{WECSU}	0.397		0.467		ns
Write enable hold time	T _{WECHD}	-0.026		-0.03		ns
Maximum frequency	F _{MAX}		250		250	MHz

The following table lists the $\mu SRAM$ in 128 × 9 mode in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 239 • µSRAM (RAM128x9) in 128 × 9 Mode

		-	-1	-5	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Read clock period	T _{CY}	4		4		ns
Read clock minimum pulse width high	T _{CLKMPWH}	1.8		1.8		ns
Read clock minimum pulse width low	T _{CLKMPWL}	1.8		1.8		ns
Read pipeline clock period	T _{PLCY}	4		4		ns
Read pipeline clock minimum pulse width high	T _{PLCLKMPWH}	1.8		1.8		ns
Read pipeline clock minimum pulse width low	T _{PLCLKMPWL}	1.8		1.8		ns
Read access time with pipeline register	Τ		0.266		0.313	ns
Read access time without pipeline register	- CLK2Q		1.677		1.973	ns
Read address setup time in synchronous mode	т	0.301		0.354		ns
Read address setup time in asynchronous mode	- IADDRSU	1.856		2.184		ns
Read address hold time in synchronous mode	т	0.091		0.107		ns
Read address hold time in asynchronous mode	- IADDRHD	-0.778		-0.915		ns
Read enable setup time	T _{RDENSU}	0.278		0.327		ns
Read enable hold time	T _{RDENHD}	0.057		0.067		ns
Read block select setup time	T _{BLKSU}	1.839		2.163		ns
Read block select hold time	T _{BLKHD}	-0.65		-0.765		ns
Read block select to out disable time (when pipelined register is disabled)	T _{BLK2Q}		2.036		2.396	ns

Table 250 .	2 Stop IAD	Drogramming	(Eabria Only)
	Z SIEP IAF	Frogramming	(Fabric Only)

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	302672	4	39	6	Sec
010	568784	7	45	12	Sec
025	1223504	14	55	23	Sec
050	2424832	29	74	40	Sec
060	2418896	39	83	50	Sec
090	3645968	60	106	73	Sec
150	6139184	100	154	120	Sec

Table 260 • 2 Step IAP Programming (eNVM Only)

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	137536	2	59	5	Sec
010	274816	4	98	11	Sec
025	274816	4	100	10	Sec
050	2,78,528	3	107	9	Sec
060	268480	5	98	22	Sec
090	544496	10	174	43	Sec
150	544496	10	175	44	Sec

Table 261 • 2 Step IAP Programming (Fabric and eNVM)

	Image size				
M2S/M2GL Device	Bytes	Authenticate	Program	Verify	Unit
005	439296	6	78	11	Sec
010	842688	11	122	21	Sec
025	1497408	19	135	32	Sec
050	2695168	32	158	48	Sec
060	2686464	43	159	70	Sec
090	4190208	68	258	115	Sec
150	6682768	109	308	162	Sec

2.3.14 Math Block Timing Characteristics

The fundamental building block in any digital signal processing algorithm is the multiply-accumulate function. Each IGLOO2 and SmartFusion2 SoC math block supports 18×18 signed multiplication, dot product, and built-in addition, subtraction, and accumulation units to combine multiplication results efficiently. The following table lists the math blocks with all registers used in worst commercial-case conditions when $T_J = 85$ °C, $V_{DD} = 1.14$ V.

		-1		–Std		
Parameter	Symbol	Min	Max	Min	Max	Unit
Input, control register setup time	T _{MISU}	0.149		0.176		ns
Input, control register hold time	T _{MIHD}	1.68		1.976		ns
CDIN input setup time	T _{MOCDINSU}	0.185		0.218		ns
CDIN input hold time	T _{MOCDINHD}	0.08		0.094		ns
Synchronous reset/enable setup time	T _{MSRSTENSU}	-0.419		-0.493		ns
Synchronous reset/enable hold time	T _{MSRSTENHD}	0.011		0.013		ns
Asynchronous reset removal time	TMARSTREM	0		0		ns
Asynchronous reset recovery time	T _{MARSTREC}	0.088		0.104		ns
Output register clock to out delay	T _{MOCQ}		0.232		0.273	ns
CLK minimum period	T _{MCLKMP}	2.245		2.641		ns

Table 268 • Math Blocks with all Registers Used

The following table lists the math blocks with input bypassed and output registers used in worst commercial-case conditions when $T_J = 85 \text{ °C}$, $V_{DD} = 1.14 \text{ V}$.

Table 269 • Math Block with Input Bypassed and Output Registers Used

		-	1	–S	td	
Parameter	Symbol	Min	Max	Min	Max	Unit
Output register setup time	T _{MOSU}	2.294		2.699		ns
Output register hold time	T _{MOHD}	1.68		1.976		ns
CDIN input setup time	T _{MOCDINSU}	0.115		0.136		ns
CDIN input hold time	T _{MOCDINHD}	-0.444		-0.522		ns
Synchronous reset/enable setup time	T _{MSRSTENSU}	-0.419		-0.493		ns
Synchronous reset/enable hold time	T _{MSRSTENHD}	0.011		0.013		ns
Asynchronous reset removal time	TMARSTREM	0		0		ns
Asynchronous reset recovery time	T _{MARSTREC}	0.014		0.017		ns
Output register clock to out delay	T _{MOCQ}		0.232		0.273	ns
CLK minimum period	T _{MCLKMP}	2.179		2.563		ns

The following table lists the math blocks with input register used and output in bypass mode in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

		-	-1	-5	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Input register setup time	T _{MISU}	0.149		0.176		ns
Input register hold time	T _{MIHD}	0.185		0.218		ns
Synchronous reset/enable setup time	T _{MSRSTENSU}	0.08		0.094		ns
Synchronous reset/enable hold time	T _{MSRSTENHD}	-0.012		-0.014		ns
Asynchronous reset removal time	T _{MARSTREM}	-0.005		-0.005		ns
Asynchronous reset recovery time	T _{MARSTREC}	0.088		0.104		ns
Input register clock to output delay	T _{MICQ}		2.52		2.964	ns
CDIN to output delay	T _{MCDIN2Q}		1.951		2.295	ns

Table 270 • Math Block with Input Register Used and Output in Bypass Mode

The following table lists the math blocks with input and output in bypass mode in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 271 • Math Block with Input and Output in Bypass Mode

		-1	-Std	
Parameter	Symbol	Max	Max	Unit
Input to output delay	T _{MIQ}	2.568	3.022	ns
CDIN to output delay	T _{MCDIN2Q}	1.951	2.295	ns

2.3.15 Embedded NVM (eNVM) Characteristics

The following table lists the eNVM read performance in worst-case conditions when V_{DD} = 1.14 V, V_{PPNVM} = V_{PP} = 2.375 V.

Operating Temperature Range								
Symbol	Description	-1	-Std	-1	-Std	-1	-Std	Unit
TJ	Junction temperature range	–55 °C to	125 °C	–40 °C to	o 100 °C	0 °C to) 85 °C	°C
F _{MAXREAD}	eNVM maximum read frequency	25	25	25	25	25	25	MHz

Table 272 • eNVM Read Performance

The following table lists the eNVM page programming in worst-case conditions when V_{DD} = 1.14 V, V_{PPNVM} = V_{PP} = 2.375 V.

Table 273 • eNVM Page Programming

		Operating Temperature Range						
Symbol	Description	-1	-Std	-1	-Std	-1	-Std	Unit
TJ	Junction temperature range	–55 °C to ′	125 °C	–40 °C to	100 °C	0 °C to 8	5 °C	°C
T _{PAGEPGM}	eNVM page programming time	40	40	40	40	40	40	ms

The following table lists the IGLOO2 DEVRST_N to functional times in worst-case industrial conditions when T_J = 100 °C, V_{DD} = 1.14 V.

Table 292 • DEVRST_N to Functional Times for IGLOO2

						Maximum Power-up to Functional Time for IGLOO2 (uS)				
Symbol	From	То	Description	005	010	025	050	060	090	150
T _{POR2OUT}	POWER_ON _RESET_N	Output available at I/O	Fabric to output	114	116	113	113	115	115	114
T _{DEVRST2OUT}	DEVRST_N	Output available at I/O	V _{DD} at its minimum threshold level to output	314	353	314	307	343	341	341
T _{DEVRST2POR}	DEVRST_N	POWER_O N_RESET_ N	V _{DD} at its minimum threshold level to fabric	200	238	201	195	230	229	227
T _{DEVRST2WPU}	DEVRST_N	DDRIO Inbuf weak pull	DEVRST_N to Inbuf weak pull	208	202	197	193	216	215	215
	DEVRST_N	MSIO Inbuf weak pull	DEVRST_N to Inbuf weak pull	208	202	197	193	216	215	215
	DEVRST_N	MSIOD Inbuf weak pull	DEVRST_N to Inbuf weak pull	208	202	197	193	216	215	215

Table 293 • Flash*Freeze Entry and Exit Times (continued)

		Entry/Exit Timing FCLK = 100MHz		Entry/Exit Timing FCLK = 3 MHz		
Parameter	Symbol	005, 010, 025, 060, 090, and 150	050	All Devices	Unit	Conditions
Exit time with respect to the	TFF_EXIT	1.5	1.5	1.5	ms	eNVM and MSS/HPMS PLL = ON during F*F
fabric PLL lock ¹		1.5	1.5	1.5	ms	eNVM and MSS/HPMS PLL = OFF during F*F and both are turned back on at exit
Exit time with respect to the fabric buffer output	TFF_EXIT	21	15	21	μs	eNVM and MSS/HPMS PLL = ON during F*F
	abric buffer butput		65	55	65	μs

1. PLL Lock Delay set to 1024 cycles (default).

2.3.28 DDR Memory Interface Characteristics

The following table lists the DDR memory interface characteristics in worst-case industrial conditions when T_J = 100 °C, V_{DD} = 1.14 V.

Table 294 •	DDR Memo	ry Interface	Characteristics
-------------	----------	--------------	-----------------

	Supported		
Standard	Min	Max	Unit
DDR3	667	667	Mbps
DDR2	667	667	Mbps
LPDDR	50	400	Mbps

2.3.29 SFP Transceiver Characteristics

IGLOO2 and SmartFusion2 SerDes complies with small form-factor pluggable (SFP) requirements as specified in SFP INF-80741. The following table provides the electrical characteristics.

The following table lists the SFP transceiver electrical characteristics in worst-case industrial conditions when T_J = 100 °C, V_{DD} = 1.14 V.

Table 295 • SFP Transceiver Electrical Characteristics

		Differer		
Pin	Direction	Min	Max	Unit
RD+/- ¹	Output	1600	2400	mV
TD+/- ²	Input	350	2400	mV

1. Based on default SerDes transmitter settings for PCIe Gen1. Lower amplitudes are available through programming changes to TX_AMP setting.

2. Based on Input Voltage Common-Mode (VICM) = 0 V. Requires AC Coupling.