

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿXFl

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	56340
Total RAM Bits	1869824
Number of I/O	207
Number of Gates	-
Voltage - Supply	1.14V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	400-LFBGA
Supplier Device Package	400-VFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m2gl050t-vfg400

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 1	High Temperature Data Retention (HTR)	9
Figure 2	Timing Model	. 15
Figure 3	Input Buffer AC Loading	17
Figure 4	Output Buffer AC Loading	18
Figure 5	Tristate Buffer for Enable Path Test Point	. 19
Figure 6	Timing Model for Input Register	. 65
Figure 7	I/O Register Input Timing Diagram	. 66
Figure 8	Timing Model for Output/Enable Register	. 68
Figure 9	I/O Register Output Timing Diagram	. 69
Figure 10	Input DDR Module	. 70
Figure 11	Input DDR Timing Diagram	71
Figure 12	Output DDR Module	. 73
Figure 13	Output DDR Timing Diagram	74
Figure 14	LUT-4	. 75
Figure 15	Sequential Module	. 76
Figure 16	Sequential Module Timing Diagram	77
Figure 17	Power-up to Functional Timing Diagram for SmartFusion2	. 115
Figure 18	Power-up to Functional Timing Diagram for IGLOO2	. 116
Figure 19	DEVRST_N to Functional Timing Diagram for SmartFusion2	. 117
Figure 20	DEVRST_N to Functional Timing Diagram for IGLOO2	. 119
Figure 21	I2C Timing Parameter Definition	125
Figure 22	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 128
Figure 23	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 131

Table 214	LVPECL Recommended DC Operating Conditions	. 64
Table 215	LVPECL Receiver Characteristics for MSIO I/O Bank	. 65
Table 216	LVPECL DC Input Voltage Specification	. 65
Table 217	LVPECL DC Differential Voltage Specification	. 65
Table 218	LVPECL Minimum and Maximum AC Switching Speeds	. 65
Table 219	Input Data Register Propagation Delays	. 67
Table 220	Output/Enable Data Register Propagation Delays	. 69
Table 221	Input DDR Propagation Delays	. 71
Table 222	Output DDR Propagation Delays	. 74
Table 223	Combinatorial Cell Propagation Delays	. 76
Table 224	Register Delays	. 77
Table 225	150 Device Global Resource	. 78
Table 226	090 Device Global Resource	. 78
Table 227	050 Device Global Resource	. 78
Table 228	025 Device Global Resource	. 78
Table 229	010 Device Global Resource	. 79
Table 230	005 Device Global Resource	. 79
Table 231	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 1K × 18	. 79
Table 232	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 2K × 9	. 80
Table 233	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 4K × 4	. 81
Table 234	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 8K × 2	. 83
Table 235	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 16K × 1	. 84
Table 236	RAM1K18 – Two-Port Mode for Depth × Width Configuration 512 × 36	. 85
Table 237	μSRAM (RAM64x18) in 64 × 18 Mode	. 86
Table 238	µSRAM (RAM64x16) in 64 × 16 Mode	. 87
Table 239	µSRAM (RAM128x9) in 128 × 9 Mode	. 88
Table 240	µSRAM (RAM128x8) in 128 × 8 Mode	. 89
Table 241	µSRAM (RAM256x4) in 256 × 4 Mode	. 91
Table 242	µSRAM (RAM512x2) in 512 × 2 Mode	. 92
Table 243	μSRAM (RAM1024x1) in 1024 × 1 Mode	. 93
Table 244	JTAG Programming (Fabric Only)	. 94
Table 245	JTAG Programming (eNVM Only)	. 95
Table 246	JTAG Programming (Fabric and eNVM)	. 95
Table 247	2 Step IAP Programming (Fabric Only)	. 95
Table 248	2 Step IAP Programming (eNVM Only)	. 96
Table 249	2 Step IAP Programming (Fabric and eNVM)	. 96
Table 250	SmartFusion2 Cortex-M3 ISP Programming (Fabric Only)	. 96
Table 251	SmartFusion2 Cortex-M3 ISP Programming (eNVM Only)	. 96
Table 252	SmartFusion2 Cortex-M3 ISP Programming (Fabric and eNVM)	. 97
Table 253	Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (Fabric Only)	. 97
Table 254	Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (eNVM Only)	. 97
Table 255	Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (Fabric and eNVM)	. 98
Table 256	JTAG Programming (Fabric Only)	. 99
Table 257	JTAG Programming (eNVM Only)	. 99
Table 258	JTAG Programming (Fabric and eNVM)	. 99
Table 259	2 Step IAP Programming (Fabric Only)	100
Table 260	2 Step IAP Programming (eNVM Only)	100
Table 261	2 Step IAP Programming (Fabric and eNVM)	100
Table 262	SmartFusion2 Cortex-M3 ISP Programming (Fabric Only)	101
Table 263	SmartFusion2 Cortex-M3 ISP Programming (eNVM Only)	101
Table 264	SmartFusion2 Cortex-M3 ISP Programming (Fabric and eNVM)	101
Table 265	Programming Times with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (Fabric Only)	102
Table 266	Programming Times with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (eNVM Only)	102
Table 267	Programming Limes with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (Fabric and eNVM)	102
Table 268	Math Blocks with all Registers Used	103
Table 269	Math Block with Input Bypassed and Output Registers Used	103
	Math Block with Input Register Used and Output in Bypass Mode	104
	Main block with input and Output in Bypass Mode	104
		104

- Added Table 244, page 94 and Table 256, page 99 (SAR 73971).
- Updated the SerDes Electrical and Timing AC and DC Characteristics, page 121 (SAR 71171).
- Added the DEVRST_N Characteristics, page 116 (SAR 64100, 72103).
- Added Table 298, page 122 (SAR 71897).
- Updated Table 25, page 22, Table 26, page 23, and Table 27, page 23 (SAR 74570).
- Added 060 devices in Table 277, page 107, Table 278, page 108, and Table 279, page 108 (SAR 57898).
- Updated duty cycle parameter of crystal in Table 280, page 109 and Table 281, page 109 (SAR 57898).
- Added 32 KHz mode PLL acquisition time in Table 282, page 110 (SAR 68281).
- Updated Table 293, page 119 for 060 devices (SAR 57828).
- Updated Table 297, page 122 for CID value (SAR 70878).

1.4 Revision 8.0

The following is a summary of the changes in revision 8.0 of this document.

- Updated Table 11, page 12 (SAR 69218).
- Updated Table 12, page 13 (SAR 69218).
- Updated Table 283, page 111 (SAR 69000).

1.5 Revision 7.0

The following is a summary of the changes in revision 7.0 of this document.

Updated Table 1, page 4(SAR 68620).

1.6 Revision 6.0

The following is a summary of the changes in revision 6.0 of this document.

- Updated Table 5, page 7 (SAR 65949).
- Updated Table 9, page 10 (SAR 62995).
- Updated Table 123, page 47 and Table 133, page 49 (SAR 67210).
- Added Embedded NVM (eNVM) Characteristics, page 104 (SAR 52509).
- Updated Table 277, page 107 (SAR 64855).
- Updated Table 282, page 110 (SAR 65958 and SAR 56666).
- Added DDR Memory Interface Characteristics, page 120 (SAR 66223).
- Added SFP Transceiver Characteristics, page 120 (SAR 63105).
- Updated Table 302, page 123 and Table 309, page 129 (SAR 66314).

1.7 Revision 5.0

The following is a summary of the changes in revision 5.0 of this document.

- Updated Table 1, page 4.
- Updated Table 4, page 6 for T₁ symbol information.
- Updated Table 5, page 7 (SAR 63109).
- Updated Table 9, page 10.
- Updated Table 282, page 110 (SAR 62012).
- Added Table 290, page 116 (SAR 64100).
- Added Table 306, page 128, Table 307, page 128 (SAR 50424).

1.8 Revision 4.0

The following is a summary of the changes in revision 4.0 of this document.

- Updated Table 1, page 4. Changed the Status of 090 devices to "Production" (SAR 62750).
- Updated Figure 10, page 70. Removed inverter bubble from DDR_IN latch (SAR 61418).
- Updated SerDes Electrical and Timing AC and DC Characteristics, page 121 (SAR 62836).

2.2 References

The following documents are recommended references:

- PB0121: IGLOO2 Product Brief
- DS0124: IGLO02 Pin Descriptions
- PB0115: SmartFusion2 SoC FPGA Product Brief
- DS0115: SmartFusion2 Pin Descriptions

All product documentation for IGLOO2 and SmartFusion2 is available at: http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#overview

2.3 Electrical Specifications

2.3.1 Operating Conditions

The following table lists the stress limits. Stress applied above the specified limit may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the recommended operating conditions specified in the following table are not implied.

Table 3 • Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
DC core supply voltage. Must always power this pin.	V _{DD}	-0.3	1.32	V
Power supply for charge pumps (for normal operation and programming). Must always power this pin.	V _{PP}	-0.3	3.63	V
Analog power pad for MDDR PLL	MSS_MDDR_PLL_VDDA	-0.3	3.63	V
Analog power pad for MDDR PLL	HPMS_MDDR_PLL_VDDA	-0.3	3.63	V
Analog power pad for FDDR PLL	FDDR_PLL_VDDA	-0.3	3.63	V
Analog power pad for MDDR PLL	PLL0_PLL1_MSS_MDDR_VDDA	-0.3	3.63	V
Analog power pad for MDDR PLL	PLL0_PLL1_HPMS_MDDR_VDDA	-0.3	3.63	V
Analog power pad for PLL0–5	CCC_XX[01]_PLL_VDDA	-0.3	3.63	V
High supply voltage for PLL SerDes[01]	SERDES_[01]_PLL_VDDA	-0.3	3.63	V
Analog power for SerDes[01] PLL lane0 to lane3. This is a 2.5 V SerDes internal PLL supply.	SERDES_[01]_L[0123]_VDDAPLL	-0.3	2.75	V
TX/RX analog I/O voltage. Low voltage power for the lanes of SerDesIF0. This is a 1.2 V SerDes PMA supply.	SERDES_[01]_L[0123]_VDDAIO	-0.3	1.32	V
PCIe/PCS power supply	SERDES_[01]_VDD	-0.3	1.32	V
DC FPGA I/O buffer supply voltage for MSIO I/O bank	V _{DDIx}	-0.3	3.63	V
DC FPGA I/O buffer supply voltage for MSIOD/DDRIO I/O banks	V _{DDIx}	-0.3	2.75	V
I/O Input voltage for MSIO I/O bank	VI	-0.3	3.63	V
I/O Input voltage for MSIOD/DDRIO I/O bank	VI	-0.3	2.75	V
Analog sense circuit supply of embedded nonvolatile memory (eNVM). Must be shorted to V_{PP} .	V _{PPNVM}	-0.3	3.63	V
Storage temperature ¹	T _{STG}	-65	150	°C
Junction temperature	TJ	-55	135	°C

where

- θ_{JA} = Junction-to-air thermal resistance
- θ_{JB} = Junction-to-board thermal resistance
- θ_{JC} = Junction-to-case thermal resistance
- T_J = Junction temperature
- T_A = Ambient temperature
- T_B = Board temperature (measured 1.0 mm away from the package edge)
- T_C = Case temperature
- P = Total power dissipated by the device

Table 9 •	Package Thermal Resistance of SmartFusion2 and IGLOO2 Devices
-----------	---

	Still Air	1.0 m/s	2.5 m/s			
Device		θ_{JA}		θ _{JB}	θ_{JC}	Unit
005						
FG484	19.36	15.81	14.63	9.74	5.27	°C/W
VF256	41.30	38.16	35.30	28.41	3.94	°C/W
VF400	20.19	16.94	15.41	8.86	4.95	°C/W
TQ144	42.80	36.80	34.50	37.20	10.80	°C/W
010						
FG484	18.22	14.83	13.62	8.83	4.92	°C/W
VF256	37.36	34.26	31.45	24.84	7.89	°C/W
VF400	19.40	15.75	14.22	8.11	4.22	°C/W
TQ144	38.60	32.60	30.30	31.80	8.60	°C/W
025						
FG484	17.03	13.66	12.45	7.66	4.18	°C/W
VF256	33.85	30.59	27.85	21.63	6.13	°C/W
VF400	18.36	14.89	13.36	7.12	3.41	°C/W
FCS325	29.17	24.87	23.12	14.44	2.31	°C/W
050						
FG484	15.29	12.19	10.99	6.27	3.24	°C/W
FG896	14.70	12.50	10.90	7.20	4.90	°C/W
VF400	17.53	14.17	12.63	6.32	2.81	°C/W
FCS325	27.38	23.18	21.41	12.47	1.59	°C/W
060						
FG484	15.40	12.06	10.85	6.14	3.15	°C/W
FG676	15.49	12.21	11.06	7.07	3.87	°C/W
VF400	17.45	14.01	12.47	6.22	2.69	°C/W
FCS325	27.03	22.91	21.25	12.33	1.54	°C/W
090						
FG484	14.64	11.37	10.16	5.43	2.77	°C/W
FG676	14.52	11.19	10.37	6.17	3.24	°C/W
FCS325	26.63	22.26	20.13	14.24	2.50	°C/W

Table 9 • Package Thermal Resistance of SmartFusion2 and IGLOO2 Devices (continued)

	Still Air	1.0 m/s	2.5 m/s			
Device		θ_{JA}		θ _{JB}	θ_{JC}	Unit
150						
FC1152	9.08	6.81	5.87	2.56	0.38	°C/W
FCS536	15.01	12.06	10.76	3.69	1.55	°C/W
FCV484	16.21	13.11	11.84	6.73	0.10	°C/W

2.3.1.2.1 Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JEDEC (JESD-51), but it has little relevance in the actual performance of the product. It must be used with caution, but it is useful for comparing the thermal performance of one package with another.

The maximum power dissipation allowed is calculated using EQ4.

Maximum power allowed = $\frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{JA}}$

EQ 4

The absolute maximum junction temperature is 100 °C. EQ5 shows a sample calculation of the absolute maximum power dissipation allowed for the M2GL050T-FG896 package at commercial temperature and in still air, where:

$$\theta_{JA}$$
 = 14.7 °C/W (taken from Table 9, page 10).
T_A = 85 °C

Maximum power allowed =
$$\frac{100 \text{ °C} - 85 \text{ °C}}{14.7 \text{ °C/W}}$$
 = 1.088 W

EQ 5

The power consumption of a device can be calculated using the Microsemi SoC Products Group power calculator. The device's power consumption must be lower than the calculated maximum power dissipation by the package.

If the power consumption is higher than the device's maximum allowable power dissipation, a heat sink may be attached to the top of the case, or the airflow inside the system must be increased.

2.3.1.2.2 Theta-JB

Junction-to-board thermal resistance (θ_{JB}) measures the ability of the package to dissipate heat from the surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance from the junction to the board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

2.3.1.2.3 Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable to packages used with external heat sinks. Constant temperature is applied to the surface, which acts as a boundary condition.

This only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration.

2.3.1.3 ESD Performance

See RT0001: Microsemi Corporation - SoC Products Reliability Report for information about ESD.

Symbol	Modes	005	010	025	050	060	090	150	Unit	Conditions
IDC2	Flash*Freeze	1.4	2.6	3.7	5.1	5.0	5.1	8.9	mA	Typical (T _J = 25 °C)
	12.0	20.0	26.6	35.3	35.4	35.7	57.8	mA	Commercial (T _J = 85 °C)	
		18.5	30.8	41.0	54.5	54.5	55.0	89.0	mA	Industrial (T _J = 100 °C)

Table 11 • SmartFusion2 and IGLOO2 Quiescent Supply Current (V_{DD} = 1.2 V) – Typical Process

Table 12 • SmartFusion2 and IGLOO2 Quiescent Supply Current (V_{DD} = 1.26 V) – Worst-Case Process

Symbol	Modes	005	010	025	050	060	090	150	Unit	Conditions
IDC1	Non- Flash*Freeze	43.8	57.0	84.6	132.3	161.4	163.0	242.5	mA	Commercial (T _J = 85 °C)
		65.3	85.7	127.8	200.9	245.4	247.8	369.0	mA	Industrial (T _J = 100 °C)
IDC2	Flash*Freeze	29.1	45.6	51.7	62.7	69.3	70.0	84.8	mA	Commercial (T _J = 85 °C)
		44.9	70.3	79.7	96.5	106.8	107.8	130.6	mA	Industrial (T _J = 100 °C)

2.3.2.2 Programming Currents

The following tables represent programming, verify and Inrush currents for SmartFusion2 SoC and IGLOO2 FPGA devices.

Table 13 • Currents During Program Cycle, 0 °C < = T_J <= 85 °C – Typical Process

Power Supplies	Voltage (V)	005	010	025	050	060	090	150 ¹	Unit
V _{DD}	1.26	46	53	55	58	30	42	52	mA
V _{PP}	3.46	8	11	6	10	9	12	12	mA
V _{PPNVM}	3.46	1	2	2	3	3	3		mA
V _{DDI}	2.62	31	16	17	1	12	12	81	mA
	3.46	62	31	36	1	12	17	84	mA
Number of banks		7	8	8	10	10	9	19	

1. V_{PP} and V_{PPNVM} are internally shorted.

Table 14 • Currents During Verify Cycle, 0 °C <= T_J <= 85 °C – Typical Process

Power Supplies	Voltage (V)	005	010	025	050	060	090	150 ¹	Unit
V _{DD}	1.26	44	53	55	58	33	41	51	mA
V _{PP}	3.46	6	5	3	15	8	11	12	mA
V _{PPNVM}	3.46	1	0	0	1	1	1		mA
V _{DDI}	2.62	31	16	17	1	12	11	81	mA
	3.46	61	32	36	1	12	17	84	mA
Number of banks		7	8	8	10	10	9	19	

1. V_{PP} and V_{PPNVM} are internally shorted.

Table 34 • LVTTL/LVCMOS 3.3 V AC Test Parameter Specifications (Applicable to MSIO I/O Bank Only)

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	1.4	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path $(T_{ZH}, T_{ZL}, T_{HZ}, T_{LZ})$	C _{ENT}	5	pF
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF

Table 35 •	LVTTL/LVCMOS 3.3 V	Transmitter Drive Strend	oth Specifications	for MSIO I/O Bank
1 4010 00			gui opeenioulione	

Output Drive Selection	V _{OH} (V)	V _{OL} (V)	IOH (at V _{OH}) mA	IOL (at V _{OL}) mA
2 mA	V _{DDI} – 0.4	0.4	2	2
4 mA	V _{DDI} – 0.4	0.4	4	4
8 mA	V _{DDI} – 0.4	0.4	8	8
12 mA	V _{DDI} – 0.4	0.4	12	12
16 mA	$V_{DDI} - 0.4$	0.4	16	16
20 mA	V _{DDI} – 0.4	0.4	20	20

Note: For a detailed I/V curve, use the corresponding IBIS models: www.microsemi.com/soc/download/ibis/default.aspx.

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 3.0 V

Table 36 • LVTTL/LVCMOS 3.3 V Receiver Characteristics for MSIO I/O Bank (Input Buffers)

On-Die Termination	T _{PY} T _{PYS}					
(ODT)	-1	-Std	-1	-Std	Unit	
None	2.262	2.663	2.289	2.695	ns	

Table 37 • LVTTL/LVCMOS 3.3 V Transmitter Characteristics for MSIO I/O Bank (Output and Tristate Buffers)

Output	Claur	1	Г _{DP}	-	Γ _{ZL}	1	Ггн	Т	HZ ¹	Т	LZ ¹	
Selection	Control	-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
2 mA	Slow	3.192	3.755	3.47	4.083	2.969	3.494	1.856	2.183	3.337	3.926	ns
4 mA	Slow	2.331	2.742	2.673	3.145	2.526	2.973	3.034	3.569	4.451	5.236	ns
8 mA	Slow	2.135	2.511	2.33	2.741	2.297	2.703	4.532	5.331	4.825	5.676	ns
12 mA	Slow	2.052	2.414	2.107	2.479	2.162	2.544	5.75	6.764	5.445	6.406	ns
16 mA	Slow	2.062	2.425	2.072	2.438	2.145	2.525	5.993	7.05	5.625	6.618	ns
20 mA	Slow	2.148	2.527	1.999	2.353	2.088	2.458	6.262	7.367	5.876	6.913	ns

1. Delay increases with drive strength are inherent to built-in slew control circuitry for simultaneous switching output (SSO) management.

Output	Slow	Т	DP	T _{ZL}		т _{zн}		Т	1 HZ	T _{LZ} 1		
Selection	Control	-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
4 mA	Slow	3.095	3.641	2.705	3.182	3.088	3.633	4.738	5.575	4.348	5.116	ns
	Medium	2.825	3.324	2.488	2.927	2.823	3.321	4.492	5.285	4.063	4.781	ns
	Medium fast	2.701	3.178	2.384	2.804	2.698	3.173	4.364	5.135	3.945	4.642	ns
	Fast	2.69	3.165	2.377	2.796	2.687	3.161	4.359	5.129	3.94	4.636	ns
6 mA	Slow	2.919	3.434	2.491	2.93	2.902	3.414	5.085	5.983	4.674	5.5	ns
	Medium	2.65	3.118	2.279	2.681	2.642	3.108	4.845	5.701	4.375	5.148	ns
	Medium fast	2.529	2.975	2.176	2.56	2.521	2.965	4.724	5.558	4.259	5.011	ns
	Fast	2.516	2.96	2.168	2.551	2.508	2.95	4.717	5.55	4.251	5.002	ns
8 mA	Slow	2.863	3.368	2.427	2.855	2.844	3.346	5.196	6.114	4.769	5.612	ns
	Medium	2.599	3.058	2.217	2.608	2.59	3.047	4.952	5.827	4.471	5.261	ns
	Medium fast	2.483	2.921	2.114	2.487	2.473	2.91	4.832	5.685	4.364	5.134	ns
	Fast	2.467	2.902	2.106	2.478	2.457	2.89	4.826	5.678	4.348	5.116	ns
12 mA	Slow	2.747	3.232	2.296	2.701	2.724	3.204	5.39	6.342	4.938	5.81	ns
	Medium	2.493	2.934	2.102	2.473	2.483	2.921	5.166	6.078	4.65	5.471	ns
	Medium fast	2.382	2.803	2.006	2.36	2.371	2.789	5.067	5.962	4.546	5.349	ns
	Fast	2.369	2.787	1.999	2.352	2.357	2.773	5.063	5.958	4.538	5.339	ns
16 mA	Slow	2.677	3.149	2.213	2.604	2.649	3.116	5.575	6.56	5.08	5.977	ns
	Medium	2.432	2.862	2.028	2.386	2.421	2.848	5.372	6.32	4.801	5.649	ns
	Medium fast	2.324	2.734	1.937	2.278	2.311	2.718	5.297	6.233	4.7	5.531	ns
	Fast	2.313	2.721	1.929	2.269	2.3	2.706	5.296	6.231	4.699	5.529	ns

Table 46 • LVCMOS 2.5 V Transmitter Characteristics for DDRIO Bank (Output and Tristate Buffers) (continued)

1. Delay increases with drive strength are inherent to built-in slew control circuitry for simultaneous switching output (SSO) management.

Table 47 •	LVCMOS 2.5 V Transmitter	Characteristics for MSIO	D Bank (Output and ⁻	Tristate Buffers)
------------	--------------------------	---------------------------------	---------------------------------	-------------------

Output		1	T _{DP}		T _{ZL}		T _{ZH}		T _{HZ} 1		T _{LZ} 1	
Selection	Siew Control	-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
2 mA	Slow	3.48	4.095	3.855	4.534	3.785	4.453	2.12	2.494	3.45	4.059	ns
4 mA	Slow	2.583	3.039	3.042	3.579	3.138	3.691	4.143	4.874	4.687	5.513	ns
6 mA	Slow	2.392	2.815	2.669	3.139	2.82	3.317	4.909	5.775	5.083	5.98	ns
8 mA	Slow	2.309	2.717	2.565	3.017	2.74	3.223	5.812	6.837	5.523	6.497	ns
12 mA	Slow	2.333	2.745	2.437	2.867	2.626	3.089	6.131	7.213	5.712	6.72	ns
16 mA	Slow	2.412	2.838	2.335	2.747	2.533	2.979	6.54	7.694	6.007	7.067	ns

1. Delay increases with drive strength are inherent to built-in slew control circuitry for simultaneous switching output (SSO) management.

Table 100 • HSTL AC Test Parameter Specification

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	0.75	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	C _{ENT}	5	pF
Reference resistance for data test path for HSTL15 Class I (T_{DP})	RTT_TEST	50	Ω
Reference resistance for data test path for HSTL15 Class II (T_{DP})	RTT_TEST	25	Ω
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF

AC Switching Characteristics

Worst-case commercial conditions: T_J = 85 °C, V_{DD} = 1.14 V, worst-case V_{DDI} .

Table 101 •	HSTL Rece	eiver Characteristic	s for DDRIO I/O	Bank with Fix	ed Code (Input Buffers
-------------	-----------	----------------------	-----------------	---------------	------------------------

		Τ _{ΡΥ}				
	On-Die Termination (ODT)	-1	-Std	Unit		
Pseudo differential	None	1.605	1.888	ns		
	47.8	1.614	1.898	ns		
True differential	None	1.622	1.909	ns		
	47.8	1.628	1.916	ns		

Table 102 • HSTL Transmitter Characteristics for DDRIO I/O Bank (Output and Tristate Buffers)

	T _{DP}		T _{ZL}			Т _{ZH}		т _{нz}		T _{LZ}	
	-1	-Std	-1	-Std	-1	-Std	–1	-Std	–1	-Std	Unit
				ŀ	HSTL Cla	ss I					
Single-ended	2.6	3.059	2.514	2.958	2.514	2.958	2.431	2.86	2.431	2.86	ns
Differential	2.621	3.083	2.648	3.115	2.647	3.113	2.925	3.442	2.923	3.44	ns
				ŀ	ISTL Cla	ss II					
Single-ended	2.511	2.954	2.488	2.927	2.49	2.93	2.409	2.833	2.411	2.836	ns
Differential	2.528	2.974	2.552	3.003	2.551	3.001	2.897	3.409	2.896	3.408	ns

2.3.6.2 Stub-Series Terminated Logic

Stub-Series Terminated Logic (SSTL) for 2.5 V (SSTL2), 1.8 V (SSTL18), and 1.5 V (SSTL15) is supported in IGLOO2 and SmartFusion2 SoC FPGAs. SSTL2 is defined by JEDEC standard JESD8-9B and SSTL18 is defined by JEDEC standard JESD8-15. IGLOO2 SSTL I/O configurations are designed to meet double data rate standards DDR/2/3 for general purpose memory buses. Double data rate standards are designed to meet their JEDEC specifications as defined by JEDEC standard JESD79F for DDR, JEDEC standard JESD79-2F for DDR, JEDEC standard JESD79-3D for DDR3, and JEDEC standard JESD209A for LPDDR.

Table 122 • SSTL18 DC Differential Voltage Specification

Parameter	Symbol	Min	Unit
DC input differential voltage	V _{ID} (DC)	0.3	V

Table 123 • SSTL18 AC Differential Voltage Specifications (Applicable to DDRIO Bank Only)

Parameter	Symbol	Min	Мах	Unit
AC input differential voltage	V _{DIFF} (AC)	0.5		V
AC differential cross point voltage	V _x (AC)	0.5 × V _{DDI} – 0.175	0.5 × V _{DDI} + 0.175	V

Table 124 • SSTL18 Minimum and Maximum AC Switching Speed (Applicable to DDRIO Bank Only)

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate (for DDRIO I/O bank)	D _{MAX}	667	Mbps	AC loading: per JEDEC specification

Table 125 • SSTL18 AC Impedance Specifications (Applicable to DDRIO Bank Only)

Parameter	Symbol	Тур	Unit	Conditions
Supported output driver calibrated impedance (for DDRIO I/O bank)	R _{REF}	20, 42	Ω	Reference resistor = 150 Ω
Effective impedance value (ODT)	R _{TT}	50, 75, 150	Ω	Reference resistor = 150 Ω

Table 126 • SSTL18 AC Test Parameter Specifications (Applicable to DDRIO Bank Only)

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	0.9	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	C _{ENT}	5	pF
Reference resistance for data test path for SSTL18 Class I (T_{DP})	RTT_TEST	50	Ω
Reference resistance for data test path for SSTL18 Class II (T $_{\rm DP})$	RTT_TEST	25	Ω
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 1.71 V

Table 127 • DDR2/SSTL18 Receiver Characteristics for DDRIO I/O Bank with Fixed Code

			T _{PY}		
	On-Die Termination (ODT)	-1	-Std	Unit	
Pseudo differential	None	1.567	1.844	ns	
True differential	None	1.588	1.869	ns	

	medium	3.246	3.819	2.686	3.16	3.236	3.807	5.542	6.52	4.936	5.807	ns
	medium_fast	3.066	3.607	2.525	2.971	3.054	3.593	5.405	6.359	4.811	5.66	ns
	fast	3.046	3.584	2.513	2.957	3.034	3.57	5.401	6.353	4.803	5.651	ns
10 mA	slow	3.498	4.115	2.878	3.386	3.481	4.096	6.046	7.113	5.444	6.404	ns
	medium	3.138	3.692	2.569	3.023	3.126	3.678	5.782	6.803	5.129	6.034	ns
	medium_fast	2.966	3.489	2.414	2.841	2.951	3.472	5.666	6.665	5.013	5.897	ns
	fast	2.945	3.464	2.401	2.826	2.93	3.448	5.659	6.658	5.003	5.886	ns
12 mA	slow	3.417	4.02	2.807	3.303	3.401	4.002	6.083	7.156	5.464	6.428	ns
	medium	3.076	3.618	2.519	2.964	3.063	3.604	5.828	6.856	5.176	6.089	ns
	medium_fast	2.913	3.427	2.376	2.795	2.898	3.41	5.725	6.736	5.072	5.966	ns
	fast	2.894	3.405	2.362	2.78	2.879	3.388	5.715	6.724	5.064	5.957	ns
16 mA	slow	3.366	3.96	2.751	3.237	3.348	3.939	6.226	7.324	5.576	6.56	ns
	medium	3.03	3.565	2.47	2.906	3.017	3.55	5.981	7.036	5.282	6.214	ns
	medium_fast	2.87	3.377	2.328	2.739	2.854	3.358	5.895	6.935	5.18	6.094	ns
	fast	2.853	3.357	2.314	2.723	2.837	3.338	5.889	6.929	5.177	6.09	ns

Table 159 • LPDDR-LVCMOS 1.8 V AC Switching Characteristics for Transmitter for DDRIO I/O Bank (Output and Tristate Buffers) (continued)

1. Delay increases with drive strength are inherent to built-in slew control circuitry for simultaneous switching output (SSO) management).

2.3.7 Differential I/O Standards

Configuration of the I/O modules as a differential pair is handled by Microsemi SoC Products Group Libero software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input register (InReg), Output register (OutReg), Enable register (EnReg), and Double Data Rate registers (DDR).

2.3.7.1 LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard.

Minimum and Maximum Input and Output Levels

Table 160 • LVDS Recommended DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{DDI}	2.375	2.5	2.625	V	2.5 V range
Supply voltage	V _{DDI}	3.15	3.3	3.45	V	3.3 V range

Table 161 • LVDS DC Input Voltage Specification

Parameter	Symbol	Min	Max	Unit	Conditions
DC Input voltage	VI	0	2.925	V	2.5 V range
DC input voltage	VI	0	3.45	V	3.3 V range
Input current high ¹	I _{IH} (DC)				
Input current low ¹	I _{IL} (DC)				

1. See Table 24, page 22.

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 2.375 V.

Table 180 • B-LVDS AC Switching Characteristics for Receiver for MSIO I/O Bank (Input Buffers)

On-Die Termination (ODT)	-1	-Std	Unit
None	2.738	3.221	ns
100	2.735	3.218	ns

Table 181 • B-LVDS AC Switching Characteristics for Receiver for MSIOD I/O Bank (Input Buffers)

On-Die Termination (ODT)	-1	-Std	Unit
None	2.495	2.934	ns
100	2.495	2.935	ns

Table 182 • B-LVDS AC Switching Characteristics for Transmitter (for MSIO I/O Bank - Output and Tristate Buffers)

1	DP	1	ſzl	1	zн		T _{HZ} T _L		Γ _{LZ}	
-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
2.258	2.656	2.343	2.756	2.329	2.74	2.12	2.494	2.123	2.497	ns

2.3.7.3 M-LVDS

M-LVDS specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers.

Minimum and Maximum Input and Output Levels

Table 183 • M-LVDS Recommended DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage ¹	V _{DDI}	2.375	2.5	2.625	V

1. Only M-LVDS TYPE I is supported.

Table 184 • M-LVDS DC Input Voltage Specification

Parameter	Symbol	Min	Max	Unit
DC input voltage	VI	0	2.925	V
Input current high ¹	I _{IH} (DC)			
Input current low ²	I _{IL} (DC)			

1. See Table 24, page 22.

Table 185 • M-LVDS DC Voltage Specification Output Voltage Specification (for MSIO I/O Bank Only)

Parameter	Symbol	Min	Тур	Max	Unit
DC output logic high	V _{OH}	1.25	1.425	1.6	V
DC output logic low	V _{OL}	0.9	1.075	1.25	V

Table 186 • M-LVDS Differential Voltage Specification

Parameter	Symbol	Min	Max	Unit
Differential output voltage swing (for MSIO I/O bank only)	V _{OD}	300	650	mV
Output common mode voltage (for MSIO I/O bank only)	V _{OCM}	0.3	2.1	V
Input common mode voltage	V _{ICM}	0.3	1.2	V
Input differential voltage	V _{ID}	50	2400	mV

Table 187 • M-LVDS Minimum and Maximum AC Switching Speed for MSIO I/O Bank

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate	D _{MAX}	500	Mbps	AC loading: 2 pF / 100 Ω differential load

Table 188 • M-LVDS AC Impedance Specifications

Parameter	Symbol	Тур	Unit
Termination resistance	R _T	50	Ω

Table 189 • M-LVDS AC Test Parameter Specifications

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	Cross point	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path (T _{ZH} , T _{ZL} , T _{HZ} , T _{LZ})	C _{ENT}	5	pF

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 2.375 V

Table 190 • M-LVDS AC Switching Characteristics for Receiver (for MSIO I/O Bank -Input Buffers)

On-Die Termination (ODT)	-1	-Std	Unit
None	2.738	3.221	ns
100	2.735	3.218	ns

2.3.8.2 Output/Enable Register

Table 242 • µSRAM (RAM512x2) in 512 × 2 Mode (continued)

			-1	_	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Write clock period	T _{CCY}	4		4		ns
Write clock minimum pulse width high	T _{CCLKMPWH}	1.8		1.8		ns
Write clock minimum pulse width low	T _{CCLKMPWL}	1.8		1.8		ns
Write block setup time	T _{BLKCSU}	0.404		0.476		ns
Write block hold time	T _{BLKCHD}	0.007		0.008		ns
Write input data setup time	T _{DINCSU}	0.101		0.118		ns
Write input data hold time	T _{DINCHD}	0.137		0.161		ns
Write address setup time	T _{ADDRCSU}	0.088		0.104		ns
Write address hold time	T _{ADDRCHD}	0.247		0.29		ns
Write enable setup time	T _{WECSU}	0.397		0.467		ns
Write enable hold time	T _{WECHD}	-0.03		-0.03		ns
Maximum frequency	F _{MAX}		250		250	MHz

The following table lists the µSRAM in 1024 × 1 mode in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 243 • µSRAM (RAM1024x1) in 1024 × 1 Mode

		_	-1	-:	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Read clock period	T _{CY}	4		4		ns
Read clock minimum pulse width high	T _{CLKMPWH}	1.8		1.8		ns
Read clock minimum pulse width low	T _{CLKMPWL}	1.8		1.8		ns
Read pipeline clock period	T _{PLCY}	4		4		ns
Read pipeline clock minimum pulse width high	T _{PLCLKMPWH}	1.8		1.8		ns
Read pipeline clock minimum pulse width low	T _{PLCLKMPWL}	1.8		1.8		ns
Read access time with pipeline register	т		0.27		0.31	ns
Read access time without pipeline register	- 'CLK2Q		1.78		2.1	ns
Read address setup time in synchronous mode	т	0.301		0.354		ns
Read address setup time in asynchronous mode	- 'ADDRSU	1.978		2.327		ns
Read address hold time in synchronous mode	-	0.137		0.161		ns
Read address hold time in asynchronous mode	- 'ADDRHD	-0.6		-0.71		ns
Read enable setup time	T _{RDENSU}	0.278		0.327		ns
Read enable hold time	T _{RDENHD}	0.057		0.067		ns
Read block select setup time	T _{BLKSU}	1.839		2.163		ns
Read block select hold time	T _{BLKHD}	-0.65		-0.77		ns
Read block select to out disable time (when pipelined register is disabled)	T _{BLK2Q}		2.16		2.54	ns
Read asynchronous reset removal time (pipelined clock)	т	-0.02		-0.03		ns
Read asynchronous reset removal time (non-pipelined clock)	'RSTREM	0.046		0.054		ns

Table 251 • SmartFusion2 Cortex-M3 ISP Programming (eNVM Only) (continued)

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
150	544496	10	158	15	Sec

Table 252 • SmartFusion2 Cortex-M3 ISP Programming (Fabric and eNVM)

M2S/M2GL Device	lmage size Bytes	Authenticate	Program	Verify	Unit
005	439296	9	61	11	Sec
010	842688	15	107	21	Sec
025	1497408	26	121	35	Sec
050	2695168	43	141	55	Sec
060	2686464	48	143	60	Sec
090	4190208	75	244	91	Sec
150	6682768	117	296	141	Sec

Table 253 • Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (Fabric Only)

M2S/M2GL	Auto Programming	Auto Update	Programming Recovery		
Device	100 kHz	25 MHz	12.5 MHz	Unit	
005	47	27	28	Sec	
010	77	35	35	Sec	
025	150	42	41	Sec	
050	33 ¹	Not Supported	Not Supported	Sec	
060	291	83	82	Sec	
090	427	109	108	Sec	
150	708	157	160	Sec	

1. Auto Programming in 050 device is done through SC_SPI, and SPI CLK is set to 6.25 MHz.

Table 254 • Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (eNVM Only)

M2S/M2GL	Auto Programming	Auto Update	Programming Recovery		
Device	100 kHz	25 MHz	12.5 MHz	Unit	
005	41	48	49	Sec	
010	86	87	87	Sec	
025	87	85	86	Sec	
050	85	Not Supported	Not Supported	Sec	
060	78	86	86	Sec	
090	154	162	162	Sec	

Service	Conditions	Timing	Unit
SHA256	512 bits	540	kbps
	1024 bits	780	kbps
	2048 bits	950	kbps
	24 kbits	1140	kbps
HMAC	512 bytes	820	kbps
	1024 bytes	890	kbps
	2048 bytes	930	kbps
	24 kbytes	980	kbps
KeyTree		1.8	ms
Challenge-response	PUF = OFF	25	ms
	PUF = ON	7	ms
ECC point multiplication		590	ms
ECC point addition		8	ms

Table 276 • Cryptographic Block Characteristics (continued)

1. Using cypher block chaining (CBC) mode.

2.3.19 Crystal Oscillator

The following table describes the electrical characteristics of the crystal oscillator in the IGLOO2 FPGA and SmartFusion2 SoC FPGAs.

Table 277 •	Electrical	Characteristics	of the C	rystal	Oscillator -	– High	Gain	Mode	(20	MHz)
									•	

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Operating frequency	FXTAL		20		MHz	
Accuracy	ACCXTAL			0.0047	%	005, 010, 025, 050, 060, and 090 devices
				0.0058	%	150 devices
Output duty cycle	CYCXTAL		49–51	47–53	%	
Output period jitter (peak to peak)	JITPERXTAL		200	300	ps	
Output cycle to cycle jitter (peak to peak)	JITCYCXTAL		200	300	ps	010, 025, 050, and 060 devices
			250	410	ps	150 devices
			250	550	ps	005 and 090 devices
Operating current	IDYNXTAL		1.5		mA	010, 050, and 060 devices
			1.65		mA	005, 025, 090, and 150 devices
Input logic level high	VIHXTAL	0.9 V _{PP}			V	
Input logic level low	VILXTAL			0.1 V _{PP}	V	

2.3.20 On-Chip Oscillator

The following tables describe the electrical characteristics of the available on-chip oscillators in the IGLOO2 FPGAs and SmartFusion2 SoC FPGAs.

Parameter	Symbol	Тур	Max	Unit	Condition
Operating frequency	F50RC	50		MHz	
Accuracy	ACC50RC	1	4	%	050 devices
		1	5	%	005, 025, and 060 devices
		1	6.3	%	090 devices
		1	7.1	%	010 and 150 devices
Output duty cycle	CYC50RC	49–51	46.5–53.5	%	
Output jitter (peak to peak)	JIT50RC				Period Jitter
		200	300	ps	005, 010, 050, and 060 devices
		200	400	ps	150 devices
		300	500	ps	025 and 090 devices
					Cycle-to-Cycle Jitter
		200	300	ps	005 and 050 devices
		320	420	ps	010, 060, and 150 devices
		320	850	ps	025 and 090 devices
Operating current	IDYN50RC	6.5		mA	

Table 280 • Electrical Characteristics of the 50 MHz RC Oscillator

Table 281 • Electrical Characteristics of the 1 MHz RC Oscillator

Parameter	Symbol	Тур	Max	Unit	Condition
Operating frequency	F1RC	1		MHz	
Accuracy	ACC1RC	1	3	%	005, 010, 025, and 050 devices
		1	4.5	%	060, and 150 devices
		1	5.6	%	090 devices
Output duty cycle	CYC1RC	49–51	46.5–53.5	%	005, 010, 025, 050, 090 and 150 devices
		49-51	46.0-54.0	%	060 devices
Output jitter (peak to peak) JIT1RC					Period Jitter
		10	20	ns	005, 010, 025, and 050 devices
		10	28	ns	060, 090 and 150 devices
					Cycle-to-Cycle Jitter
		10	20	ns	005, 010, and 050 devices
		10	35	ns	025, 060, and 150 devices
		10	45	ns	090 devices
Operating current	IDYN1RC	0.1		mA	
Startup time	SU1RC		17	μs	050, 090, and 150 devices
			18	μs	005, 010, and 025 devices

Table 303 • I2C Characteristics (continued)

Parameter	Symbol	Min	Тур	Мах	Unit	Conditions
Maximum data rate	D _{MAX}			400	Kbps	Fast mode
				100	Kbps	Standard mode
Pulse width of spikes which must be suppressed by the input filter	T _{FILT}		50		ns	Fast mode

1. These values are provided for MSIO Bank–LVTTL 8 mA Low Drive at 25 °C, typical conditions. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website: http://www.microsemi.com/soc/download/ibis/default.aspx.

 These maximum values are provided for information only. Minimum output buffer resistance values depend on V_{DDIx}, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website: http://www.microsemi.com/soc/download/ibis/default.aspx.

3. R(PULL-DOWN-MAX) = (VOLspec)/IOLspec.

4. R(PULL-UP-MAX) = (VDDImax–VOHspec)/IOHspec.

The following table lists the I²C switching characteristics in worst-case industrial conditions when $T_{J} = 100$ °C, $V_{DD} = 1.14$ V

Table 304 • I2C Switching Characteristics

		-1	Std	
Parameter	Symbol	Min	Min	Unit
Low period of I2C_x_SCL	T _{LOW}	1	1	PCLK cycles
High period of I2C_x_SCL	T _{HIGH}	1	1	PCLK cycles
START hold time	T _{HD;STA}	1	1	PCLK cycles
START setup time	T _{SU;STA}	1	1	PCLK cycles
DATA hold time	T _{HD;DAT}	1	1	PCLK cycles
DATA setup time	T _{SU;DAT}	1	1	PCLK cycles
STOP setup time	T _{SU;STO}	1	1	PCLK cycles

Figure 21 • I²C Timing Parameter Definition

