

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	86316
Total RAM Bits	2648064
Number of I/O	425
Number of Gates	-
Voltage - Supply	1.14V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m2gl090-fgg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Tables

Table 1 Table 2	IGLOO2 and SmartFusion2 Design Security Densities	. 4 4
Table 3	Absolute Maximum Ratings	5
Table 4	Recommended Operating Conditions	6
Table 5	FPGA Operating Limits	7
Table 6	Embedded Operating Elash Limits	. /
	Dovice Storage Temperature and Potention	. U
	Ligh Tomporture Deta Detation (JTD) Lifetime	. 0
	Package Thermal Desistance of Smart/Linemine 2 and ICL 002 Devices	10
		10
	SmartEurion2 and ICLOO2 Quiescent Supply Current (V = 1.2 V) Typical Process	12
	Sindiff usion and relevant Supply current $(v_{DD} - 1.2 v) - 1$ ypical Frocess	12
	Currents During Viority Cycle, 0° C < = T <= 05 °C = Typical Process	10
	Currents During Vering Cycle, $0 C \le T_J \le 65 C - Typical Process$	10
	Smartrusionz and IGLOOZ Quiescent Supply Current (V_{DD} = 1.26 V) – Worst-Case Process	13
	Average Junction Temperature and Voltage Defating Factors for Fabric Timing Delays	14
	Infusion Currents at Power up, -40° C <= $1_{\rm J}$ <= 100 °C – Typical Process	14
	Timing Model Parameters	15
Table 18	Maximum Data Rate Summary Table for Single-Ended I/O in Worst-Case Industrial Conditions	19
Table 19	Maximum Data Rate Summary Table for Voltage-Referenced I/O in Worst-Case	~~
T 1 1 00		20
Table 20	Maximum Data Rate Summary Table for Differential I/O in Worst-Case Industrial Conditions	20
Table 21	Maximum Frequency Summary Table for Single-Ended I/O in Worst-Case Industrial Conditions .	20
Table 22	Maximum Frequency Summary Table for Voltage-Referenced I/O in Worst-Case Industrial	
	Conditions	21
Table 23	Maximum Frequency Summary Table for Differential I/O in Worst-Case Industrial Conditions	21
Table 24	Input Capacitance, Leakage Current, and Ramp Time	22
Table 25	I/O Weak Pull-up/Pull-down Resistances for DDRIO I/O Bank	22
Table 26	I/O Weak Pull-Up/Pull-Down Resistances for MSIO I/O Bank	23
Table 27	I/O Weak Pull-up/Pull-down Resistances for MSIOD I/O Bank	23
Table 28	Schmitt Trigger Input Hysteresis	23
Table 29	LVTTL/LVCMOS 3.3 V DC Recommended DC Operating Conditions (Applicable to MSIO I/O Bank Only)	24
Table 30	LVTTL/LVCMOS 3.3 V Input Voltage Specification (Applicable to MSIO I/O Bank Only)	24
Table 31	LVCMOS 3.3 V DC Output Voltage Specification (Applicable to MSIO I/O Bank Only)	24
Table 32	LVTTL 3.3 V DC Output Voltage Specification (Applicable to MSIO I/O Bank Only)	24
Table 33	LVTTL/LVCMOS 3.3 V AC Maximum Switching Speed (Applicable to MSIO I/O Bank Only)	24
Table 34	LVTTL/LVCMOS 3.3 V Receiver Characteristics for MSIO I/O Bank (Input Buffers)	25
Table 35	LVTTL/LVCMOS 3.3 V Transmitter Characteristics for MSIO I/O Bank (Output and	
	Tristate Buffers)	25
Table 36	LVTTL/LVCMOS 3.3 V AC Test Parameter Specifications (Applicable to MSIO I/O Bank Only)	25
Table 37	LVTTL/LVCMOS 3.3 V Transmitter Drive Strength Specifications for MSIO I/O Bank	25
Table 38	LVCMOS 2.5 V DC Recommended DC Operating Conditions	26
Table 39	LVCMOS 2.5 V DC Input Voltage Specification	26
Table 40	LVCMOS 2.5 V DC Output Voltage Specification	26
Table 41	LVCMOS 2.5 V AC Minimum and Maximum Switching Speed	26
Table 42	LVCMOS 2.5 V AC Calibrated Impedance Option	26
Table 43	LVCMOS 2.5 V Receiver Characteristics (Input Buffers)	27
Table 44	LVCMOS 2.5 V Transmitter Characteristics for DDRIO Bank (Output and Tristate Buffers)	27
Table 45	LVCMOS 2.5 V AC Test Parameter Specifications	27
Table 46	LVCMOS 2.5 V Transmitter Drive Strength Specifications	27
Table 47	LVCMOS 2.5 V Transmitter Characteristics for MSIO Bank (Output and Tristate Buffers)	28
Table 48	LVCMOS 1.8 V DC Recommended Operating Conditions	29
Table 49	LVCMOS 1.8 V DC Input Voltage Specification	29
Table 50	LVCMOS 1.8 V DC Output Voltage Specification	29

Table 214	LVPECL Recommended DC Operating Conditions	. 64
Table 215	LVPECL Receiver Characteristics for MSIO I/O Bank	. 65
Table 216	LVPECL DC Input Voltage Specification	. 65
Table 217	LVPECL DC Differential Voltage Specification	. 65
Table 218	LVPECL Minimum and Maximum AC Switching Speeds	. 65
Table 219	Input Data Register Propagation Delays	. 67
Table 220	Output/Enable Data Register Propagation Delays	. 69
Table 221	Input DDR Propagation Delays	. 71
Table 222	Output DDR Propagation Delays	. 74
Table 223	Combinatorial Cell Propagation Delays	. 76
Table 224	Register Delays	. 77
Table 225	150 Device Global Resource	. 78
Table 226	090 Device Global Resource	. 78
Table 227	050 Device Global Resource	. 78
Table 228	025 Device Global Resource	. 78
Table 229	010 Device Global Resource	. 79
Table 230	005 Device Global Resource	. 79
Table 231	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 1K × 18	. 79
Table 232	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 2K × 9	. 80
Table 233	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 4K × 4	. 81
Table 234	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 8K × 2	. 83
Table 235	RAM1K18 – Dual-Port Mode for Depth × Width Configuration 16K × 1	. 84
Table 236	RAM1K18 – Two-Port Mode for Depth × Width Configuration 512 × 36	. 85
Table 237	μSRAM (RAM64x18) in 64 × 18 Mode	. 86
Table 238	µSRAM (RAM64x16) in 64 × 16 Mode	. 87
Table 239	µSRAM (RAM128x9) in 128 × 9 Mode	. 88
Table 240	µSRAM (RAM128x8) in 128 × 8 Mode	. 89
Table 241	µSRAM (RAM256x4) in 256 × 4 Mode	. 91
Table 242	µSRAM (RAM512x2) in 512 × 2 Mode	. 92
Table 243	μSRAM (RAM1024x1) in 1024 × 1 Mode	. 93
Table 244	JTAG Programming (Fabric Only)	. 94
Table 245	JTAG Programming (eNVM Only)	. 95
Table 246	JTAG Programming (Fabric and eNVM)	. 95
Table 247	2 Step IAP Programming (Fabric Only)	. 95
Table 248	2 Step IAP Programming (eNVM Only)	. 96
Table 249	2 Step IAP Programming (Fabric and eNVM)	. 96
Table 250	SmartFusion2 Cortex-M3 ISP Programming (Fabric Only)	. 96
Table 251	SmartFusion2 Cortex-M3 ISP Programming (eNVM Only)	. 96
Table 252	SmartFusion2 Cortex-M3 ISP Programming (Fabric and eNVM)	. 97
Table 253	Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (Fabric Only)	. 97
Table 254	Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (eNVM Only)	. 97
Table 255	Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (Fabric and eNVM)	. 98
Table 256	JTAG Programming (Fabric Only)	. 99
Table 257	JTAG Programming (eNVM Only)	. 99
Table 258	JTAG Programming (Fabric and eNVM)	. 99
Table 259	2 Step IAP Programming (Fabric Only)	100
Table 260	2 Step IAP Programming (eNVM Only)	100
Table 261	2 Step IAP Programming (Fabric and eNVM)	100
Table 262	SmartFusion2 Cortex-M3 ISP Programming (Fabric Only)	101
Table 263	SmartFusion2 Cortex-M3 ISP Programming (eNVM Only)	101
Table 264	SmartFusion2 Cortex-M3 ISP Programming (Fabric and eNVM)	101
Table 265	Programming Times with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (Fabric Only)	102
Table 266	Programming Times with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (eNVM Only)	102
Table 267	Programming Limes with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (Fabric and eNVM)	102
Table 268	Math Blocks with all Registers Used	103
Table 269	Math Block with Input Bypassed and Output Registers Used	103
	Math Block with Input Register Used and Output in Bypass Mode	104
	Main block with input and Output in Bypass Mode	104
		104

1.9 Revision 3.0

In revision 3.0 of this document, the Theta B/C columns and FCS325 package was updated. For more information, see Table 9, page 10 (SAR 62002).

1.10 Revision 2.0

The following is a summary of the changes in revision 2.0 of this document.

- Table 1, page 4 was updated (SAR 59056).
- Table 7, page 8 temperature and data retention information was updated SAR (61363).
- Storage Operating Table was updated and split into three tables Table 5, page 7, Table 7, page 8 (SAR 58725).
- Updated Theta B/C columns and FCS325 package in Table 9, page 10 (SAR 62002).
- Added 090-FCS325 thermal resistance to Table 9, page 10 (SAR 59384).
- TQ144 package was added to Table 9, page 10 (SAR 57708).
- Added PLL jitter data for the VF400 package (SAR 53162).
- Added Additional Worst Case IDD to Table 11, page 12 and Table 12, page 13 (SAR 59077).
- Table 13, page 13, Table 14, page 13, and Table 15, page 14 were added to verify Inrush currents (SAR 56348).
- Table 18, page 19 and Table 21, page 20 I/O speeds were replaced.
- Max speed was changed in Table 41, page 26 (SAR 57221) and in Table 52, page 29 (SAR 57113).
- Minimum and Maximum DC/AC Input and Output Levels Specification, page 29 and Table 49, page 29–Table 57, page 31 were added.
- Added Cload to Table 89, page 39 (SAR 56238).
- Removed "Rs" information in DDR Timing Measurement Table 123, page 47, Table 133, page 49, and Table 144, page 52.
- Updated drive programming for M/B-LVDS outputs (SAR 58154).
- Added an inverter bubble to DDR_IN latch in Figure 10, page 70 (SAR 61418).
- QF waveform in Figure 11, page 71 was updated (SAR 59816).
- uSRAM Write Clock minimum values were updated in Table 237, page 86–Table 243, page 93 (SAR 55236).
- Fixed typo in the 32 kHz Crystal (XTAL) oscillator accuracy data section (SAR 59669).
- The "On-Chip Oscillator" section was split, and the Embedded NVM (eNVM) Characteristics, page 104 was added. Table 277, page 107–Table 281, page 109 were revised.(SARs 57898 and 59669).
- PLL VCP Frequency and conditions were added to Table 282, page 110 (SAR 57416).
- Fixed typo for PLL jitter data in the 100-400 MHz range (SAR 60727).
- Updated FCCC information in Table 282, page 110 and Table 283, page 111 (SAR 60799).
- Device 025 specifications were added to Table 283, page 111 (SAR 51625).
- JTAG Table 284, page 112 was replaced (SAR 51188).
- Flash*Freeze Table 293, page 119 was replaced (SAR 57828).
- Added support for HCSL I/O Standard for SERDES reference clocks in Table 300, page 123 and Table 301, page 123 (SAR 50748).
- Tir and Tif parameters were added to Table 303, page 124 (SAR 52203).
- Speed grade consistency was fixed in tables throughout the datasheet (SAR 50722).
- Added jitter attenuation information (SAR 59405).

1.11 Revision 1.0

The following is a summary of the changes in revision 1.0 of this document.

• The IGLOO2 v2 and the SmartFusion2 v5 datasheets are combined into this single product family datasheet.

where

- θ_{JA} = Junction-to-air thermal resistance
- θ_{JB} = Junction-to-board thermal resistance
- θ_{JC} = Junction-to-case thermal resistance
- T_J = Junction temperature
- T_A = Ambient temperature
- T_B = Board temperature (measured 1.0 mm away from the package edge)
- T_C = Case temperature
- P = Total power dissipated by the device

Table 9 •	Package Thermal Resistance of SmartFusion2 and IGLOO2 Devices
-----------	---

	Still Air	1.0 m/s	2.5 m/s			
Device		θ_{JA}		θ _{JB}	θ_{JC}	Unit
005						
FG484	19.36	15.81	14.63	9.74	5.27	°C/W
VF256	41.30	38.16	35.30	28.41	3.94	°C/W
VF400	20.19	16.94	15.41	8.86	4.95	°C/W
TQ144	42.80	36.80	34.50	37.20	10.80	°C/W
010						
FG484	18.22	14.83	13.62	8.83	4.92	°C/W
VF256	37.36	34.26	31.45	24.84	7.89	°C/W
VF400	19.40	15.75	14.22	8.11	4.22	°C/W
TQ144	38.60	32.60	30.30	31.80	8.60	°C/W
025						
FG484	17.03	13.66	12.45	7.66	4.18	°C/W
VF256	33.85	30.59	27.85	21.63	6.13	°C/W
VF400	18.36	14.89	13.36	7.12	3.41	°C/W
FCS325	29.17	24.87	23.12	14.44	2.31	°C/W
050						
FG484	15.29	12.19	10.99	6.27	3.24	°C/W
FG896	14.70	12.50	10.90	7.20	4.90	°C/W
VF400	17.53	14.17	12.63	6.32	2.81	°C/W
FCS325	27.38	23.18	21.41	12.47	1.59	°C/W
060						
FG484	15.40	12.06	10.85	6.14	3.15	°C/W
FG676	15.49	12.21	11.06	7.07	3.87	°C/W
VF400	17.45	14.01	12.47	6.22	2.69	°C/W
FCS325	27.03	22.91	21.25	12.33	1.54	°C/W
090						
FG484	14.64	11.37	10.16	5.43	2.77	°C/W
FG676	14.52	11.19	10.37	6.17	3.24	°C/W
FCS325	26.63	22.26	20.13	14.24	2.50	°C/W

2.3.5.3 Tristate Buffer and AC Loading

The tristate path for enable path loadings is described in the respective specifications. The following figure shows the methodology of characterization illustrated by the enable path test point.

Figure 5 • Tristate Buffer for Enable Path Test Point

2.3.5.4 **I/O Speeds**

This section describes the maximum data rate summary of I/O in worst-case industrial conditions. See the individual I/O standards for operating conditions.

I/O	MSIO	MSIOD	DDRIO	Unit
PCI 3.3 V	630			Mbps
LVTTL 3.3 V	600			Mbps
LVCMOS 3.3 V	600			Mbps
LVCMOS 2.5 V	410	420	400	Mbps
LVCMOS 1.8 V	295	400	400	Mbps
LVCMOS 1.5 V	160	220	235	Mbps
LVCMOS 1.2 V	120	160	200	Mbps
LPDDR-LVCMOS 1.8 V mode			400	Mbps

Table 18 • Maximum Data Rate Summary Table for Single-Ended I/O in Worst-Case Industrial Conditions

Table 53 • LVCMOS 1.8 V AC Calibrated Impedance Option

Parameter	Symbol	Тур	Unit
Supported output driver calibrated impedance (for DDRIO I/O bank)	Rodt_cal	75, 60, 50, 33, 25, 20	Ω

Table 54 • LVCMOS 1.8 V AC Test Parameter Specifications					
Parameter	Symbol	Тур	Unit		
Measuring/trip point for data path	V _{TRIP}	0.9	V		
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2k	Ω		
Capacitive loading for enable path (T _{ZH} , T _{ZL} , T _{HZ} , T _{LZ})	C _{ENT}	5	pF		
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF		

Table 55 • LVCMOS 1.8 V Transmitter Drive Strength Specifications

Output Drive Selection		V _{OH} (V)	V _{OL} (V)	IOH (at Vou)	IOL (at Vou)	
MSIO I/O Bank	MSIOD I/O Bank	DDRIO I/O Bank	Min	Max	mA	mA
2 mA	2 mA	2 mA	V _{DDI} – 0.45	0.45	2	2
4 mA	4 mA	4 mA	V _{DDI} – 0.45	0.45	4	4
6 mA	6 mA	6 mA	V _{DDI} – 0.45	0.45	6	6
8 mA	8 mA	8 mA	V _{DDI} – 0.45	0.45	8	8
10 mA	10 mA	10 mA	V _{DDI} – 0.45	0.45	10	10
12 mA		12 mA	V _{DDI} – 0.45	0.45	12	12
		16 mA ¹	V _{DDI} – 0.45	0.45	16	16

1. 16 mA drive strengths, all slews, meets LPDDR JEDEC electrical compliance.

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 1.71 V

Table 56 • LVCMOS 1.8 V Receiver Characteristics (Input Buffers)

	On-Die Termination		Т _{РҮ}	٦	Г _{РҮS}	
	(ODT)	-1	-Std	-1	-Std	Unit
LVCMOS 1.8 V (for DDRIO I/O bank with Fixed Codes)	None	1.968	2.315	2.099	2.47	ns
	None	2.898	3.411	2.883	3.393	ns
	50	3.05	3.59	3.044	3.583	ns
LVCMOS 1.8 V	75	2.999	3.53	2.987	3.516	ns
(for MSIO I/O bank)	150	2.947	3.469	2.933	3.452	ns
	None	2.611	3.071	2.598	3.057	ns
	50	2.775	3.264	2.775	3.265	ns
LVCMOS 1.8 V	75	2.72	3.2	2.712	3.19	ns
(for MSIOD I/O bank)	150	2.666	3.137	2.655	3.123	ns

Parameter	Symbol	Min	Max	Unit
	HSTL Class	I		
DC output logic high	V _{OH}	V _{DDI} – 0.4		V
DC output logic low	V _{OL}		0.4	V
Output minimum source DC current (MSIO and DDRIO I/O banks)	I _{OH} at V _{OH}	-8.0		mA
Output minimum sink current (MSIO and DDRIO I/O banks)	I_{OL} at V_{OL}	8.0		mA
	HSTL Class	II		
DC output logic high	V _{OH}	V _{DDI} – 0.4		V
DC output logic low	V _{OL}		0.4	V
Output minimum source DC current	I _{OH} at V _{OH}	-16.0		mA
Output minimum sink current	I _{OL} at V _{OL}	16.0		mA

Table 95 • HSTL DC Output Voltage Specification Applicable to DDRIO I/O Bank Only

Table 96 • HSTL DC Differential Voltage Specification

Parameter	Symbol	Min	Unit
DC input differential voltage	V _{ID} (DC)	0.2	V

Table 97 • HSTL AC Differential Voltage Specifications

Parameter	Symbol	Min	Max	Unit
AC input differential voltage	V _{DIFF}	0.4		V
AC differential cross point voltage	V _x	0.68	0.9	V

Table 98 • HSTL Minimum and Maximum AC Switching Speed

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate	D _{MAX}	400	Mbps	AC loading: per JEDEC specifications

Table 99 • HSTL Impedance Specification

Parameter	Symbol	Тур	Unit	Conditions
Supported output driver calibrated impedance (for DDRIO I/O bank)	R _{REF}	25.5, 47.8	Ω	Reference resistance = 191Ω
Effective impedance value (ODT for DDRIO I/O bank only)	R _{TT}	47.8	Ω	Reference resistance = 191Ω

Table 100 • HSTL AC Test Parameter Specification

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	0.75	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	C _{ENT}	5	pF
Reference resistance for data test path for HSTL15 Class I (T_{DP})	RTT_TEST	50	Ω
Reference resistance for data test path for HSTL15 Class II (T_{DP})	RTT_TEST	25	Ω
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF

AC Switching Characteristics

Worst-case commercial conditions: T_J = 85 °C, V_{DD} = 1.14 V, worst-case V_{DDI} .

Table 101 •	HSTL Rece	eiver Characteristic	s for DDRIO I/O	Bank with Fix	ed Code (Input Buffers
-------------	-----------	----------------------	-----------------	---------------	------------------------

			T _{PY}	
	On-Die Termination (ODT)	-1	-Std	Unit
Pseudo differential	None	1.605	1.888	ns
	47.8	1.614	1.898	ns
True differential	None	1.622	1.909	ns
	47.8	1.628	1.916	ns

Table 102 • HSTL Transmitter Characteristics for DDRIO I/O Bank (Output and Tristate Buffers)

	T _{DP}			T _{ZL}		Т _{ZH}	_{ZH} T _{HZ} T _{LZ}				
	-1	-Std	-1	-Std	-1	-Std	–1	-Std	–1	-Std	Unit
HSTL Class I											
Single-ended	2.6	3.059	2.514	2.958	2.514	2.958	2.431	2.86	2.431	2.86	ns
Differential	2.621	3.083	2.648	3.115	2.647	3.113	2.925	3.442	2.923	3.44	ns
				ŀ	ISTL Cla	ss II					
Single-ended	2.511	2.954	2.488	2.927	2.49	2.93	2.409	2.833	2.411	2.836	ns
Differential	2.528	2.974	2.552	3.003	2.551	3.001	2.897	3.409	2.896	3.408	ns

2.3.6.2 Stub-Series Terminated Logic

Stub-Series Terminated Logic (SSTL) for 2.5 V (SSTL2), 1.8 V (SSTL18), and 1.5 V (SSTL15) is supported in IGLOO2 and SmartFusion2 SoC FPGAs. SSTL2 is defined by JEDEC standard JESD8-9B and SSTL18 is defined by JEDEC standard JESD8-15. IGLOO2 SSTL I/O configurations are designed to meet double data rate standards DDR/2/3 for general purpose memory buses. Double data rate standards are designed to meet their JEDEC specifications as defined by JEDEC standard JESD79F for DDR, JEDEC standard JESD79-2F for DDR, JEDEC standard JESD79-3D for DDR3, and JEDEC standard JESD209A for LPDDR.

	٦	Г _{DP}	T	Γzl		т _{zн}	٦	Гнг		T _{LZ}	
	-1	-Std	-1	-Std	-1	-Std	–1	-Std	-1	-Std	Unit
			SSTL	18 Class	s I (for DI	drio I/o	Bank)				
Single-ended	2.383	2.804	2.23	2.623	2.229	2.622	2.202	2.591	2.201	2.59	ns
Differential	2.413	2.84	2.797	3.29	2.797	3.29	2.282	2.685	2.282	2.685	ns
			SSTL1	18 Class	II (for D	DRIO I/O	Bank)				
Single-ended	2.281	2.683	2.196	2.584	2.195	2.583	2.171	2.555	2.17	2.554	ns
Differential	2.315	2.724	2.698	3.173	2.698	3.173	2.242	2.639	2.242	2.639	ns

Table 128 • DDR2/SSTL18 Transmitter Characteristics (Output and Tristate Buffers)

2.3.6.5 Stub-Series Terminated Logic 1.5 V (SSTL15)

SSTL15 Class I and Class II are supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs, and also comply with the reduced and full drive double data rate (DDR3) standard. IGLOO2 FPGA and SmartFusion2 SoC FPGA I/Os supports both standards for single-ended signaling and differential signaling for SSTL18. This standard requires a differential amplifier input buffer and a push-pull output buffer.

Minimum and Maximum DC/AC Input and Output Levels Specification

The following table lists the SSTL15 DC voltage specifications for DDRIO bank.

Table 129 • SSTL15 DC Recommended DC Operating Conditions (for DDRIO I/O Bank Only)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply voltage	V _{DDI}	1.425	1.5	1.575	V
Termination voltage	V _{TT}	0.698	0.750	0.803	V
Input reference voltage	V_{REF}	0.698	0.750	0.803	V

Table 130 • SSTL15 DC Input Voltage Specification (for DDRIO I/O Bank Only)

Parameter	Symbol	Min	Мах	Unit
DC input logic high	V _{IH} (DC)	V _{REF} + 0.1	1.575	V
DC input logic low	V _{IL} (DC)	-0.3	V _{REF} – 0.1	V
Input current high ¹	I _{IH} (DC)			
Input current low ¹	I _{IL} (DC)			

1. See Table 24, page 22.

Parameter	Symbol	Min	Max	Unit						
DDR3/SSTL1	DDR3/SSTL15 Class I (DDR3 Reduced Drive)									
DC output logic high	V _{OH}	$0.8 \times V_{DDI}$		V						
DC output logic low	V _{OL}		$0.2 \times V_{DDI}$	V						
Output minimum source DC current	I _{OH} at V _{OH}	6.5		mA						
Output minimum sink current	$\rm I_{OL}$ at $\rm V_{OL}$	-6.5		mA						
DDR3/SST	L15 Class II (DDR3 Full D	rive)							
DC output logic high	V _{OH}	$0.8 \times V_{DDI}$		V						
DC output logic low	V _{OL}		$0.2 \times V_{DDI}$	V						
Output minimum source DC current	I _{OH} at V _{OH}	7.6		mA						
Output minimum sink current	$\rm I_{OL}$ at $\rm V_{OL}$	-7.6		mA						

Table 131 • SSTL15 DC Output Voltage Specification (for DDRIO I/O Bank Only)

Table 132 •	SSTL15 DC D	ifferential Voltage	Specification	(for	DDRIO I/C) Bank	Only)
-------------	-------------	---------------------	----------------------	------	-----------	--------	-------

Parameter	Symbol	Min	Unit
DC input differential voltage	V _{ID}	0.2	V

Note: To meet JEDEC electrical compliance, use DDR3 full drive transmitter.

Table 133 • SSTL15 AC SSTL15 Minimum and Maximum AC Switching Speed (for DDRIO I/O Bank Only)

Parameter	Symbol	Min	Мах	Unit
AC input differential voltage	V _{DIFF} (AC)	0.3		V
AC differential cross point voltage	V _x (AC)	0.5 × V _{DDI} – 0.150	0.5 × V _{DDI} + 0.150	V

Table 134 • SSTL15 Minimum and Maximum AC Switching Speed (for DDRIO I/O Bank Only)

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate	D _{MAX}	667	Mbps	AC loading: per JEDEC specifications

Table 135 • SSTL15 AC Calibrated Impedance Option (for DDRIO I/O Bank Only)

Parameter	Symbol	Тур	Unit	Conditions
Supported output driver calibrated impedance	R _{REF}	34, 40	Ω	Reference resistor = 240 Ω
Effective impedance value (ODT)	R _{TT}	20, 30, 40, 60, 120	Ω	Reference resistor = 240 Ω

2.3.6.6 Low Power Double Data Rate (LPDDR)

LPDDR reduced and full drive low power double data rate standards are supported in IGLOO2 FPGA and SmartFusion2 SoC FPGA I/Os. This standard requires a differential amplifier input buffer and a push-pull output buffer.

Minimum and Maximum DC/AC Input and Output Levels Specification

Table 139 • LPDDR DC Recommended DC Operating Conditions

Parameter	Symbol	Min	Тур	Max
Supply voltage	V _{DDI}	1.71	1.8	1.89
Termination voltage	V _{TT}	0.838	0.900	0.964
Input reference voltage	V _{REF}	0.838	0.900	0.964

Table 140 • LPDDR DC Input Voltage Specification

Parameter	Symbol	Min	Max
DC input logic high	V _{IH} (DC)	$0.7 \times V_{DDI}$	1.89
DC input logic low	V _{IL} (DC)	-0.3	$0.3 \times V_{DDI}$
Input current high ¹	I _{IH} (DC)		
Input current low ¹	I _{IL} (DC)		

1. See Table 24, page 22.

Table 141 • LPDDR DC Output Voltage Specification Reduced Drive

Parameter	Symbol	Min	Мах
DC output logic high	V _{OH}	$0.9 \times V_{DDI}$	
DC output logic low	V _{OL}		0.1 × V _{DDI}
Output minimum source DC current	I _{OH} at V _{OH}	0.1	
Output minimum sink current	$I_{\rm OL}$ at $V_{\rm OL}$	-0.1	

Table 142 • LPDDR DC Output Voltage Specification Full Drive¹

Parameter	Symbol	Min	Max
DC output logic high	V _{OH}	$0.9 \times V_{DDI}$	
DC output logic low	V _{OL}		0.1 × V _{DDI}
Output minimum source DC current	I _{OH} at V _{OH}	0.1	
Output minimum sink current	I _{OL} at V _{OL}	-0.1	

1. To meet JEDEC Electrical Compliance, use LPDDR Full Drive Transmitter.

Table 143 • LPDDR DC Differential Voltage Specification

Parameter	Symbol	Min
DC input differential voltage	V _{ID} (DC)	$0.4 \times V_{\text{DDI}}$

2.3.9 DDR Module Specification

This section describes input and output DDR module and timing specifications.

2.3.9.1 Input DDR Module

Figure 10 • Input DDR Module

2.3.9.5 Timing Characteristics

The following table lists the output DDR propagation delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

		Measuring Nodes			
Symbol	Description	(from, to)	-1	-Std	Unit
T _{DDROCLKQ}	Clock-to-out of DDR for output DDR	E, G	0.263	0.309	ns
T _{DDROSUDF}	Data_F data setup for output DDR	F, E	0.143	0.168	ns
T _{DDROSUDR}	Data_R data setup for output DDR	A, E	0.19	0.223	ns
T _{DDROHDF}	Data_F data hold for output DDR	F, E	0	0	ns
T _{DDROHDR}	Data_R data hold for output DDR	A, E	0	0	ns
T _{DDROSUE}	Enable setup for input DDR	B, E	0.419	0.493	ns
T _{DDROHE}	Enable hold for input DDR	B, E	0	0	ns
T _{DDROSUSLN}	Synchronous load setup for input DDR	D, E	0.196	0.231	ns
T _{DDROHSLN}	Synchronous load hold for input DDR	D, E	0	0	ns
T _{DDROAL2Q}	Asynchronous load-to-out for output DDR	C, G	0.528	0.621	ns
T _{DDROREMAL}	Asynchronous load removal time for output DDR	C, E	0	0	ns
T _{DDRORECAL}	Asynchronous load recovery time for output DDR	C, E	0.034	0.04	ns

Table 222 • Output DDR Propagation Delays

The following figure shows a configuration with SD = 0 (synchronous clear) and ADn = 1 (asynchronous clear) for a flip-flop (LAT = 0).

2.3.10.3.1 Timing Characteristics

The following table lists the register delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Tuble 224 Tregister Delays				
Parameter	Symbol	-1	-Std	Unit
Clock-to-Q of the core register	T _{CLKQ}	0.108	0.127	ns
Data setup time for the core register	T _{SUD}	0.254	0.298	ns
Data hold time for the core register	T _{HD}	0	0	ns
Enable setup time for the core register	T _{SUE}	0.335	0.394	ns
Enable hold time for the core register	T _{HE}	0	0	ns
Synchronous load setup time for the core register	T _{SUSL}	0.335	0.394	ns
Synchronous load hold time for the core register	T _{HSL}	0	0	ns
Asynchronous Clear-to-Q of the core register (ADn = 1)	т	0.473	0.556	ns
Asynchronous preset-to-Q of the core register (ADn = 0)	— ^I ALN2Q	0.451	0.531	ns
Asynchronous load removal time for the core register	T _{REMALN}	0	0	ns
Asynchronous load recovery time for the core register	T _{RECALN}	0.353	0.415	ns
Asynchronous load minimum pulse width for the core register	T _{WALN}	0.266	0.313	ns
Clock minimum pulse width high for the core register	T _{CKMPWH}	0.065	0.077	ns
Clock minimum pulse width low for the core register	T _{CKMPWL}	0.139	0.164	ns

Table 224 • Register Delays

2.3.11 Global Resource Characteristics

The IGLOO2 and SmartFusion2 SoC FPGA devices offer a powerful, low skew global routing network which provides an effective clock distribution throughout the FPGA fabric. See *UG0445: IGLOO2 FPGA* and *SmartFusion2 SoC FPGA Fabric User Guide* for the positions of various global routing resources.

The following table lists the 150 device global resources in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

			-1	-	-Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Input low delay for global clock	T _{RCKL}	0.83	0.911	0.831	0.913	ns
Input high delay for global clock	Т _{RCKH}	1.457	1.588	1.715	1.869	ns
Maximum skew for global clock	T _{RCKSW}		0.131		0.154	ns

Table 225 • 150 Device Global Resource

The following table lists the 090 device global resources in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 226 • 090 Device Global Resource

			-1	_	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Input low delay for global clock	T _{RCKL}	0.835	0.888	0.833	0.886	ns
Input high delay for global clock	Т _{RCKH}	1.405	1.489	1.654	1.752	ns
Maximum skew for global clock	T _{RCKSW}		0.084		0.098	ns

The following table lists the 050 device global resources in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 227 • 050 Device Global Resource

			-1	-	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Input low delay for global clock	T _{RCKL}	0.827	0.897	0.826	0.896	ns
Input high delay for global clock	Т _{RCKH}	1.419	1.53	1.671	1.8	ns
Maximum skew for global clock	T _{RCKSW}		0.111		0.129	ns

The following table lists the 025 device global resources in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 228 • 025 Device Global Resource

			-1	_	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Input low delay for global clock	T _{RCKL}	0.747	0.799	0.745	0.797	ns
Input high delay for global clock	T _{RCKH}	1.294	1.378	1.522	1.621	ns
Maximum skew for global clock	T _{RCKSW}		0.084		0.099	ns

Table 250 .	2 Stop IAD	Drogramming	(Eabria Only)
	Z SIEP IAF	Frogramming	(Fabric Only)

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	302672	4	39	6	Sec
010	568784	7	45	12	Sec
025	1223504	14	55	23	Sec
050	2424832	29	74	40	Sec
060	2418896	39	83	50	Sec
090	3645968	60	106	73	Sec
150	6139184	100	154	120	Sec

Table 260 • 2 Step IAP Programming (eNVM Only)

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	137536	2	59	5	Sec
010	274816	4	98	11	Sec
025	274816	4	100	10	Sec
050	2,78,528	3	107	9	Sec
060	268480	5	98	22	Sec
090	544496	10	174	43	Sec
150	544496	10	175	44	Sec

Table 261 • 2 Step IAP Programming (Fabric and eNVM)

	Image size				
M2S/M2GL Device	Bytes	Authenticate	Program	Verify	Unit
005	439296	6	78	11	Sec
010	842688	11	122	21	Sec
025	1497408	19	135	32	Sec
050	2695168	32	158	48	Sec
060	2686464	43	159	70	Sec
090	4190208	68	258	115	Sec
150	6682768	109	308	162	Sec

The following table lists the math blocks with input register used and output in bypass mode in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

		-	-1	-5	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Input register setup time	T _{MISU}	0.149		0.176		ns
Input register hold time	T _{MIHD}	0.185		0.218		ns
Synchronous reset/enable setup time	T _{MSRSTENSU}	0.08		0.094		ns
Synchronous reset/enable hold time	T _{MSRSTENHD}	-0.012		-0.014		ns
Asynchronous reset removal time	T _{MARSTREM}	-0.005		-0.005		ns
Asynchronous reset recovery time	T _{MARSTREC}	0.088		0.104		ns
Input register clock to output delay	T _{MICQ}		2.52		2.964	ns
CDIN to output delay	T _{MCDIN2Q}		1.951		2.295	ns

Table 270 • Math Block with Input Register Used and Output in Bypass Mode

The following table lists the math blocks with input and output in bypass mode in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 271 • Math Block with Input and Output in Bypass Mode

		-1	-Std	
Parameter	Symbol	Max	Max	Unit
Input to output delay	T _{MIQ}	2.568	3.022	ns
CDIN to output delay	T _{MCDIN2Q}	1.951	2.295	ns

2.3.15 Embedded NVM (eNVM) Characteristics

The following table lists the eNVM read performance in worst-case conditions when V_{DD} = 1.14 V, V_{PPNVM} = V_{PP} = 2.375 V.

			Opera	ting Temp	erature Ra	inge		
Symbol	Description	-1	-Std	-1	-Std	-1	-Std	Unit
TJ	Junction temperature range	–55 °C to	125 °C	–40 °C to	o 100 °C	0 °C to) 85 °C	°C
F _{MAXREAD}	eNVM maximum read frequency	25	25	25	25	25	25	MHz

Table 272 • eNVM Read Performance

The following table lists the eNVM page programming in worst-case conditions when V_{DD} = 1.14 V, V_{PPNVM} = V_{PP} = 2.375 V.

Table 273 • eNVM Page Programming

			Opera	ating Tempe	erature R	lange		
Symbol	Description	-1	-Std	-1	-Std	-1	-Std	Unit
TJ	Junction temperature range	–55 °C to ′	25 °C	–40 °C to	100 °C	0 °C to 8	5 °C	°C
T _{PAGEPGM}	eNVM page programming time	40	40	40	40	40	40	ms

2.3.27 Flash*Freeze Timing Characteristics

The following table lists the Flash*Freeze entry and exit times in worst-case industrial conditions when T_J = 100 °C, V_{DD} = 1.14 V.

Table 293 •	Flash*Freeze Ent	try and Exit Times

		Entry/Exit Timing FCLK = 100MHz		Entry/Exit Timing FCLK = 3 MHz				
Parameter	Symbol	005, 010, 025, 060, 090, and 150	050	All Devices	Unit	Conditions		
Entry time	TFF_ENTRY	160	150	320	μs	eNVM and MSS/HPMS PLL = ON		
		215	200	430	μs	eNVM and MSS/HPMS PLL= OFF		
Exit time with respect to the MSS PLL Lock	TFF_EXIT	100	100	140	μs	eNVM and MSS/HPMS PLL = ON during F*F		
		136	120	190	μs	eNVM = ON and MSS/HPMS PLL = OFF during F*F and MSS/HPMS PLL turned back on at exit		
		200	200	285	μs	eNVM and MSS/HPMS PLL = OFF during F*F and both are turned back on at exit		
		200	200	285	μs	eNVM = OFF and MSS/HPMS PLL = ON during F*F and eNVM turned back on at exit		

Symbol	Description	Min	Тур	Max	Unit	Conditions				
sp2	SPI_[0 1]_CLK minimum pulse width high									
	SPI_[0 1]_CLK = PCLK/2	6			ns					
	SPI_[0 1]_CLK = PCLK/4	12.05			ns					
	SPI_[0 1]_CLK = PCLK/8	24.1			ns					
	SPI_[0 1]_CLK = PCLK/16	0.05			μs					
	SPI_[0 1]_CLK = PCLK/32	0.095			μs					
	SPI_[0 1]_CLK = PCLK/64	0.195			μs					
	SPI_[0 1]_CLK = PCLK/128	0.385			μs					
sp3	SPI_[0 1]_CLK minimum pulse width low									
	SPI_[0 1]_CLK = PCLK/2	6			ns					
	SPI_[0 1]_CLK = PCLK/4	12.05			ns					
	SPI_[0 1]_CLK = PCLK/8	24.1			ns					
	SPI_[0 1]_CLK = PCLK/16	0.05			μs					
	SPI_[0 1]_CLK = PCLK/32	0.095			μs					
	SPI_[0 1]_CLK = PCLK/64	0.195			μs					
	SPI_[0 1]_CLK = PCLK/128	0.385			μs					
sp4	SPI_[0 1]_CLK, SPI_[0 1]_DO, SPI_[0 1]_SS rise time (10%–90%) ¹		2.77		ns	I/O Configuration: LVCMOS 2.5 V - 8 mA AC loading: 35 pF test conditions: Typical voltage, 25 °C				
sp5	SPI_[0]1]_CLK, SPI_[0]1]_DO, SPI_[0]1]_SS fall time (10%–90%) ¹		2.906		ns	I/O Configuration: LVCMOS 2.5 V - 8 mA AC loading: 35 pF test conditions: Typical voltage, 25 °C				
SPI master configuration (applicable for 005, 010, 025, and 050 devices)										
sp6m	SPI_[0 1]_DO setup time ²	(SPI_x_CLK_period/2) - 8.0			ns					
sp7m	SPI_[0 1]_DO hold time ²	(SPI_x_CLK_period/2) – 2.5			ns					
sp8m	SPI_[0 1]_DI setup time ²	12			ns					
sp9m	SPI_[0 1]_DI hold time ²	2.5			ns					
SPI slave configuration (applicable for 005, 010, 025, and 050 devices)										
sp6s	SPI_[0 1]_DO setup time ²	(SPI_x_CLK_period/2) – 17.0			ns					
sp7s	SPI_[0 1]_DO hold time ²	(SPI_x_CLK_period/2) + 3.0			ns					
sp8s	SPI_[0 1]_DI setup time ²	2			ns					
sp9s	SPI_[0 1]_DI hold time ²	7			ns					

Table 310 • SPI Characteristics for All Devices (continued)