

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	86184
Total RAM Bits	2648064
Number of I/O	180
Number of Gates	-
Voltage - Supply	1.14V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	325-TFBGA, FCBGA
Supplier Device Package	325-FCBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m2gl090ts-1fcsg325

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 1	High Temperature Data Retention (HTR)	9
Figure 2	Timing Model	. 15
Figure 3	Input Buffer AC Loading	17
Figure 4	Output Buffer AC Loading	18
Figure 5	Tristate Buffer for Enable Path Test Point	. 19
Figure 6	Timing Model for Input Register	. 65
Figure 7	I/O Register Input Timing Diagram	. 66
Figure 8	Timing Model for Output/Enable Register	. 68
Figure 9	I/O Register Output Timing Diagram	. 69
Figure 10	Input DDR Module	. 70
Figure 11	Input DDR Timing Diagram	71
Figure 12	Output DDR Module	. 73
Figure 13	Output DDR Timing Diagram	74
Figure 14	LUT-4	. 75
Figure 15	Sequential Module	. 76
Figure 16	Sequential Module Timing Diagram	77
Figure 17	Power-up to Functional Timing Diagram for SmartFusion2	. 115
Figure 18	Power-up to Functional Timing Diagram for IGLOO2	. 116
Figure 19	DEVRST_N to Functional Timing Diagram for SmartFusion2	. 117
Figure 20	DEVRST_N to Functional Timing Diagram for IGLOO2	. 119
Figure 21	I2C Timing Parameter Definition	125
Figure 22	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 128
Figure 23	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 131

Tables

Table 1 Table 2	IGLOO2 and SmartFusion2 Design Security Densities	. 4 4
Table 3	Absolute Maximum Ratings	5
Table 4	Recommended Operating Conditions	6
Table 5	FPGA Operating Limits	7
Table 6	Embedded Operating Elash Limits	. /
	Dovice Storage Temperature and Potention	. U
	Ligh Tomporture Deta Detation (JTD) Lifetime	. 0
	Package Thermal Desistance of Smart/Linemine 2 and ICL 002 Devices	10
		10
	SmartEurion2 and ICLOO2 Quiescent Supply Current (V = 1.2 V) Typical Process	12
	Sindiff usion and relevant Supply current $(v_{DD} - 1.2 v) - 1$ ypical Frocess	12
	Currents During Viority Cycle, 0° C < = T <= 05 °C = Typical Process	10
	Currents During Vering Cycle, $0 C \le T_J \le 65 C - Typical Process$	10
	Smartrusionz and IGLOOZ Quiescent Supply Current (V_{DD} = 1.26 V) – Worst-Case Process	13
	Average Junction Temperature and Voltage Defating Factors for Fabric Timing Delays	14
	Infusion Currents at Power up, -40° C <= $1_{\rm J}$ <= 100 °C – Typical Process	14
	Timing Model Parameters	15
Table 18	Maximum Data Rate Summary Table for Single-Ended I/O in Worst-Case Industrial Conditions	19
Table 19	Maximum Data Rate Summary Table for Voltage-Referenced I/O in Worst-Case	~~
T 1 1 00		20
Table 20	Maximum Data Rate Summary Table for Differential I/O in Worst-Case Industrial Conditions	20
Table 21	Maximum Frequency Summary Table for Single-Ended I/O in Worst-Case Industrial Conditions .	20
Table 22	Maximum Frequency Summary Table for Voltage-Referenced I/O in Worst-Case Industrial	
	Conditions	21
Table 23	Maximum Frequency Summary Table for Differential I/O in Worst-Case Industrial Conditions	21
Table 24	Input Capacitance, Leakage Current, and Ramp Time	22
Table 25	I/O Weak Pull-up/Pull-down Resistances for DDRIO I/O Bank	22
Table 26	I/O Weak Pull-Up/Pull-Down Resistances for MSIO I/O Bank	23
Table 27	I/O Weak Pull-up/Pull-down Resistances for MSIOD I/O Bank	23
Table 28	Schmitt Trigger Input Hysteresis	23
Table 29	LVTTL/LVCMOS 3.3 V DC Recommended DC Operating Conditions (Applicable to MSIO I/O Bank Only)	24
Table 30	LVTTL/LVCMOS 3.3 V Input Voltage Specification (Applicable to MSIO I/O Bank Only)	24
Table 31	LVCMOS 3.3 V DC Output Voltage Specification (Applicable to MSIO I/O Bank Only)	24
Table 32	LVTTL 3.3 V DC Output Voltage Specification (Applicable to MSIO I/O Bank Only)	24
Table 33	LVTTL/LVCMOS 3.3 V AC Maximum Switching Speed (Applicable to MSIO I/O Bank Only)	24
Table 34	LVTTL/LVCMOS 3.3 V Receiver Characteristics for MSIO I/O Bank (Input Buffers)	25
Table 35	LVTTL/LVCMOS 3.3 V Transmitter Characteristics for MSIO I/O Bank (Output and	
	Tristate Buffers)	25
Table 36	LVTTL/LVCMOS 3.3 V AC Test Parameter Specifications (Applicable to MSIO I/O Bank Only)	25
Table 37	LVTTL/LVCMOS 3.3 V Transmitter Drive Strength Specifications for MSIO I/O Bank	25
Table 38	LVCMOS 2.5 V DC Recommended DC Operating Conditions	26
Table 39	LVCMOS 2.5 V DC Input Voltage Specification	26
Table 40	LVCMOS 2.5 V DC Output Voltage Specification	26
Table 41	LVCMOS 2.5 V AC Minimum and Maximum Switching Speed	26
Table 42	LVCMOS 2.5 V AC Calibrated Impedance Option	26
Table 43	LVCMOS 2.5 V Receiver Characteristics (Input Buffers)	27
Table 44	LVCMOS 2.5 V Transmitter Characteristics for DDRIO Bank (Output and Tristate Buffers)	27
Table 45	LVCMOS 2.5 V AC Test Parameter Specifications	27
Table 46	LVCMOS 2.5 V Transmitter Drive Strength Specifications	27
Table 47	LVCMOS 2.5 V Transmitter Characteristics for MSIO Bank (Output and Tristate Buffers)	28
Table 48	LVCMOS 1.8 V DC Recommended Operating Conditions	29
Table 49	LVCMOS 1.8 V DC Input Voltage Specification	29
Table 50	LVCMOS 1.8 V DC Output Voltage Specification	29

2.3.4 Timing Model

This section describes timing model and timing parameters.

Figure 2 • Timing Model

The following table lists the timing model parameters in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Index	Symbol	Description	-1	Unit	For More Information
А	T _{PY}	Propagation delay of DDR3 receiver	1.605	ns	See Table 137, page 50
В	T _{ICLKQ}	Clock-to-Q of the input data register	0.16	ns	See Table 221, page 71
	T _{ISUD}	Setup time of the input data register	0.357	ns	See Table 221, page 71
С	Т _{RCKH}	Input high delay for global clock	1.53	ns	See Table 227, page 78
	T _{RCKL}	Input low delay for global clock	0.897	ns	See Table 227, page 78
D	T _{PY}	Input propagation delay of LVDS receiver	2.774	ns	See Table 167, page 56
E	T _{DP}	Propagation delay of a three-input AND gate	0.198	ns	See Table 223, page 76

Table 17 • Timing Model Parameters

Index	Symbol	Description	-1	Unit	For More Information
F	T _{DP}	Propagation delay of an OR gate	0.179	ns	See Table 223, page 76
G	T _{DP}	Propagation delay of an LVDS transmitter	2.136	ns	See Table 169, page 57
Н	T _{DP}	Propagation delay of a three-input XOR Gate	0.241	ns	See Table 223, page 76
1	T _{DP}	Propagation delay of LVCMOS 2.5 V transmitter, drive strength of 16 mA on the MSIO bank	2.412	ns	See Table 46, page 27
J	T _{DP}	Propagation delay of a two-input NAND gate	0.179	ns	See Table 223, page 76
К	T _{DP}	Propagation delay of LVCMOS 2.5 V transmitter, drive strength of 8 mA on the MSIO bank	2.309	ns	See Table 46, page 27
L	T _{CLKQ}	Clock-to-Q of the data register	0.108	ns	See Table 224, page 77
	T _{SUD}	Setup time of the data register	0.254	ns	See Table 224, page 77
М	T _{DP}	Propagation delay of a two-input AND gate	0.179	ns	See Table 223, page 76
Ν	T _{OCLKQ}	Clock-to-Q of the output data register	0.263	ns	See Table 220, page 69
	T _{OSUD}	Setup time of the output data register	0.19	ns	See Table 220, page 69
0	T _{DP}	Propagation delay of SSTL2, Class I transmitter on the MSIO bank	2.055	ns	See Table 114, page 45
Р	T _{DP}	Propagation delay of LVCMOS 1.5 V transmitter, drive strength of 12 mA, fast slew on the DDRIO bank	3.316	ns	See Table 70, page 34

 Table 17 • Timing Model Parameters (continued)

Table 22 • Maximum Frequency Summary Table for Voltage-Referenced I/O in Worst-Case Industrial Conditions

1/0	MSIO	MSIOD	DDRIO	Unit
LPDDR			200	MHz
HSTL1.5 V			200	MHz
SSTL 2.5 V	255	350	200	MHz
SSTL 1.8 V			334	MHz
SSTL 1.5 V			334	MHz

Table 23 • Maximum Frequency Summary Table for Differential I/O in Worst-Case Industrial Conditions Industrial Conditions

I/O	MSIO	MSIOD	Unit
LVPECL (input only)	450		MHz
LVDS 3.3 V	267.5		MHz
LVDS 2.5 V	267.5	350	MHz
RSDS	260	350	MHz
BLVDS	250		MHz
MLVDS	250		MHz
Mini-LVDS	260	350	MHz

Table 43 • LVCMOS 2.5 V AC Test Parameter Specifications

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	1.2	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ωσ
Capacitive loading for enable path $(T_{ZH}, T_{ZL}, T_{HZ}, T_{LZ})$	C _{ENT}	5	pF
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF

Table 44 • LVCMOS 2.5 V Transmitter Drive Strength Specifications

Output Drive Selection			VOH (V)	VOL (V)	IOH (at VOH) mA	IOL (at VOL) mA
MSIO I/O Bank	MSIOD I/O Bank	DDRIO I/O Bank (With Software Default Fixed Code)	Min	Max	_	
2 mA	2 mA	2 mA	V _{DDI} – 0.4	0.4	2	2
4 mA	4 mA	4 mA	V _{DDI} – 0.4	0.4	4	4
6 mA	6 mA	6 mA	V _{DDI} – 0.4	0.4	6	6
8 mA	8 mA	8 mA	V _{DDI} – 0.4	0.4	8	8
12 mA	12 mA	12 mA	V _{DDI} – 0.4	0.4	12	12
16 mA		16 mA	V _{DDI} – 0.4	0.4	16	16

Note: For board design considerations, output slew rates extraction, detailed output buffer resistances, and I/V Curve, use the corresponding IBIS models located at: www.microsemi.com/soc/download/ibis/default.aspx.

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 2.375 V

Table 45 • LVCMOS 2.5 V Receiver Characteristics (Input Buffers)

	On-Die Termination	T _{PY}		T _{PYS}		
	(ODT)	-1	-Std	-1	-Std	Unit
LVCMOS 2.5 V (for DDRIO I/O bank)	None	1.823	2.145	1.932	2.274	ns
LVCMOS 2.5 V (for MSIO I/O bank)	None	2.486	2.925	2.495	2.935	ns
LVCMOS 2.5 V (for MSIOD I/O bank)	None	2.29	2.694	2.305	2.712	ns

Table 46 • LVCMOS 2.5 V Transmitter Characteristics for DDRIO Bank (Output and Tristate Buffers)

Output Drive Selection	Slow	Т	DP	1	ZL	T	ZH	Т	HZ ¹	тı	_z ¹	_
	Siew Control	-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
2 mA	Slow	3.657	4.302	3.393	3.991	3.675	4.323	3.894	4.582	3.552	4.18	ns
	Medium	3.374	3.97	3.139	3.693	3.396	3.995	3.635	4.277	3.253	3.828	ns
	Medium fast	3.239	3.811	3.036	3.572	3.261	3.836	3.519	4.141	3.128	3.681	ns
	Fast	3.224	3.793	3.029	3.563	3.246	3.818	3.512	4.132	3.119	3.67	ns

Table 198 • Mini-LVDS AC Impedance Specifications

Parameter	Symbol	Тур	Unit
Termination resistance	R _T	100	Ω

Table 199 • Mini-LVDS AC Test Parameter Specifications

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	Cross point	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path $(T_{ZH}, T_{ZL}, T_{HZ}, T_{LZ})$	C _{ENT}	5	pF

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 2.375 V.

Table 200 • Mini-LVDS AC Switching Characteristics for Receiver (for MSIO I/O Bank - Input Buffers)

On-Die Termination (ODT)	-1	-Std	Unit
None	2.855	3.359	ns
100	2.85	3.353	ns
None	2.602	3.061	ns
100	2.597	3.055	ns

 Table 201 • Mini-LVDS AC Switching Characteristics for Transmitter for MSIO I/O Bank (Output and Tristate Buffers)

Т	0P	T	ZL	Т	ZH	Т	HZ	Т	LZ	Unit
-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	
2.097	2.467	2.308	2.715	2.296	2.701	1.964	2.31	1.949	2.293	ns

Table 202 • Mini-LVDS AC Switching Characteristics for Transmitter (for MSIOD I/O Bank - Output and Tristate Buffers)

	T _{DP}			Γ _{ZL}	T _{ZH}		T _{HZ}		T _{LZ}		Unit
	-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	
No pre-emphasis	1.614	1.899	1.562	1.837	1.553	1.826	1.593	1.874	1.578	1.856	ns
Min pre-emphasis	1.604	1.887	1.745	2.053	1.731	2.036	1.892	2.225	1.861	2.189	ns
Med pre-emphasis	1.521	1.79	1.753	2.062	1.737	2.043	1.9	2.235	1.868	2.197	ns
Max pre-emphasis	1.492	1.754	1.762	2.073	1.745	2.052	1.91	2.247	1.876	2.206	ns

The following table lists the input data register propagation delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 219 • Input Data Register Propagation Delays

		Measuring Nodes			
Parameter	Symbol	(from, to) ¹	-1	-Std	Unit
Bypass delay of the input register	T _{IBYP}	F, G	0.353	0.415	ns
Clock-to-Q of the input register	T _{ICLKQ}	E, G	0.16	0.188	ns
Data setup time for the input register	T _{ISUD}	A, E	0.357	0.421	ns
Data hold time for the input register	T _{IHD}	A, E	0	0	ns
Enable setup time for the input register	T _{ISUE}	B, E	0.46	0.542	ns
Enable hold time for the input register	T _{IHE}	B, E	0	0	ns
Synchronous load setup time for the input register	T _{ISUSL}	D, E	0.46	0.542	ns
Synchronous load hold time for the input register	T _{IHSL}	D, E	0	0	ns
Asynchronous clear-to-Q of the input register (ADn=1)	T _{IALN2Q}	C, G	0.625	0.735	ns
Asynchronous preset-to-Q of the input register (ADn=0)	_	C, G	0.587	0.69	ns
Asynchronous load removal time for the input register	T _{IREMALN}	C, E	0	0	ns
Asynchronous load recovery time for the input register	T _{IRECALN}	C, E	0.074	0.087	ns
Asynchronous load minimum pulse width for the input register	T _{IWALN}	C, C	0.304	0.357	ns
Clock minimum pulse width high for the input register	TICKMPWH	E, E	0.075	0.088	ns
Clock minimum pulse width low for the input register	TICKMPWL	E, E	0.159	0.187	ns

1. For the derating values at specific junction temperature and voltage supply levels, see Table 16, page 14 for derating values.

2.3.9 DDR Module Specification

This section describes input and output DDR module and timing specifications.

2.3.9.1 Input DDR Module

Figure 10 • Input DDR Module

Table 221 • Input DDR Propagation Delays (continued)

Symbol	Description	Measuring Nodes (from, to)	-1	-Std	Unit
T _{DDRIWAL}	Asynchronous load minimum pulse width for input DDR	F, F	0.304	0.357	ns
T _{DDRICKMPWH}	Clock minimum pulse width high for input DDR	В, В	0.075	0.088	ns
T _{DDRICKMPWL}	Clock minimum pulse width low for input DDR	В, В	0.159	0.187	ns

2.3.10.2 Timing Characteristics

The following table lists the combinatorial cell propagation delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 223 • Combinatorial Cell Propagation Delays

Combinatorial Cell	Equation	Symbol	-1	-Std	Unit
INV	Y = !A	T _{PD}	0.1	0.118	ns
AND2	$Y = A \cdot B$	T _{PD}	0.164	0.193	ns
NAND2	Y = !(A · B)	T _{PD}	0.147	0.173	ns
OR2	Y = A + B	T _{PD}	0.164	0.193	ns
NOR2	Y = !(A + B)	T _{PD}	0.147	0.173	ns
XOR2	Y = A ⊕ B	T _{PD}	0.164	0.193	ns
XOR3	$Y=A\oplusB\oplusC$	T _{PD}	0.225	0.265	ns
AND3	$Y = A \cdot B \cdot C$	T _{PD}	0.209	0.246	ns
AND4	$Y = A \cdot B \cdot C \cdot D$	T _{PD}	0.287	0.338	ns

2.3.10.3 Sequential Module

IGLOO2 and SmartFusion2 SoC FPGAs offer a separate flip-flop which can be used independently from the LUT. The flip-flop can be configured as a register or a latch and has a data input and optional enable, synchronous load (clear or preset), and asynchronous load (clear or preset).

Figure 15 • Sequential Module

Table 233 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 4K × 4 (continued)

		-1		-8		
Parameter	Symbol	Min	Max	Min	Max	Unit
Pipelined clock minimum pulse width low	T _{PLCLKMPWL}	1.125		1.323		ns
Read access time with pipeline register			0.323		0.38	ns
Read access time without pipeline register	T _{CLK2Q}		2.273		2.673	ns
Access time with feed-through write timing	-		1.511		1.778	ns
Address setup time	T _{ADDRSU}	0.543		0.638		ns
Address hold time	T _{ADDRHD}	0.274		0.322		ns
Data setup time	T _{DSU}	0.334		0.393		ns
Data hold time	T _{DHD}	0.082		0.096		ns
Block select setup time	T _{BLKSU}	0.207		0.244		ns
Block select hold time	T _{BLKHD}	0.216		0.254		ns
Block select to out disable time (when pipelined register is disabled)	T _{BLK2Q}		1.511		1.778	ns
Block select minimum pulse width	T _{BLKMPW}	0.186		0.219		ns
Read enable setup time	T _{RDESU}	0.516		0.607		ns
Read enable hold time	T _{RDEHD}	0.071		0.083		ns
Pipelined read enable setup time (A_DOUT_EN, B_DOUT_EN)	T _{RDPLESU}	0.248		0.291		ns
Pipelined read enable hold time (A_DOUT_EN, B_DOUT_EN)	T _{RDPLEHD}	0.102		0.12		ns
Asynchronous reset to output propagation delay	T _{R2Q}		1.507		1.773	ns
Asynchronous reset removal time	T _{RSTREM}	0.506		0.595		ns
Asynchronous reset recovery time	T _{RSTREC}	0.004		0.005		ns
Asynchronous reset minimum pulse width	T _{RSTMPW}	0.301		0.354		ns
Pipelined register asynchronous reset removal time	T _{PLRSTREM}	-0.279		-0.328		ns
Pipelined register asynchronous reset recovery time	T _{PLRSTREC}	0.327		0.385		ns
Pipelined register asynchronous reset minimum pulse width	T _{PLRSTMPW}	0.282		0.332		ns
Synchronous reset setup time	T _{SRSTSU}	0.226		0.265		ns
Synchronous reset hold time	T _{SRSTHD}	0.036		0.043		ns
Write enable setup time	T _{WESU}	0.458		0.539		ns
Write enable hold time	T _{WEHD}	0.048		0.057		ns
Maximum frequency	F _{MAX}		400		340	MHz

The following table lists the RAM1K18 – dual-port mode for depth × width configuration 16K × 1 in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 235 • RAM1K18 – Dual-Port Mode for Depth × Width Configuration 16K × 1

		-1		–Std		
Parameter	Symbol	Min	Max	Min	Max	Unit
Clock period	T _{CY}	2.5		2.941		ns
Clock minimum pulse width high	T _{CLKMPWH}	1.125		1.323		ns
Clock minimum pulse width low	T _{CLKMPWL}	1.125		1.323		ns
Pipelined clock period	T _{PLCY}	2.5		2.941		ns
Pipelined clock minimum pulse width high	T _{PLCLKMPWH}	1.125		1.323		ns
Pipelined clock minimum pulse width low	T _{PLCLKMPWL}	1.125		1.323		ns
Read access time with pipeline register			0.32		0.377	ns
Read access time without pipeline register	T _{CLK2Q}		2.269		2.669	ns
Access time with feed-through write timing	-		1.51		1.777	ns
Address setup time	T _{ADDRSU}	0.626		0.737		ns
Address hold time	T _{ADDRHD}	0.274		0.322		ns
Data setup time	T _{DSU}	0.322		0.378		ns
Data hold time	T _{DHD}	0.082		0.096		ns
Block select setup time	T _{BLKSU}	0.207		0.244		ns
Block select hold time	T _{BLKHD}	0.216		0.254		ns
Block select to out disable time (when pipelined register is disabled)	T _{BLK2Q}		1.51		1.777	ns
Block select minimum pulse width	T _{BLKMPW}	0.186		0.219		ns
Read enable setup time	T _{RDESU}	0.53		0.624		ns
Read enable hold time	T _{RDEHD}	0.071		0.083		ns
Pipelined read enable setup time (A_DOUT_EN, B_DOUT_EN)	T _{RDPLESU}	0.248		0.291		ns
Pipelined read enable hold time (A_DOUT_EN, B_DOUT_EN)	T _{RDPLEHD}	0.102		0.12		ns
Asynchronous reset to output propagation delay	T _{R2Q}		1.547		1.82	ns
Asynchronous reset removal time	T _{RSTREM}	0.506		0.595		ns
Asynchronous reset recovery time	T _{RSTREC}	0.004		0.005		ns
Asynchronous reset minimum pulse width	T _{RSTMPW}	0.301		0.354		ns
Pipelined register asynchronous reset removal time	T _{PLRSTREM}	-0.279		-0.328		ns
Pipelined register asynchronous reset recovery time	T _{PLRSTREC}	0.327		0.385		ns
Pipelined register asynchronous reset minimum pulse width	T _{PLRSTMPW}	0.282		0.332		ns
Synchronous reset setup time	T _{SRSTSU}	0.226		0.265		ns
Synchronous reset hold time	T _{SRSTHD}	0.036		0.043		ns
Write enable setup time	T _{WESU}	0.454		0.534		ns
Write enable hold time	TWEHD	0.048		0.057		ns
Maximum frequency	F _{MAX}		400		340	MHz

The following table lists the RAM1K18 – two-port mode for depth × width configuration 512 × 36 in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 236 • RAM1K18 – Two-Port Mode for Depth × Width Configuration 512 × 36

		-1		-Std		
Parameter	Symbol	Min	Max	Min	Max	Unit
Clock period	T _{CY}	2.5		2.941		ns
Clock minimum pulse width high	T _{CLKMPWH}	1.125		1.323		ns
Clock minimum pulse width low	T _{CLKMPWL}	1.125		1.323		ns
Pipelined clock period	T _{PLCY}	2.5		2.941		ns
Pipelined clock minimum pulse width high	T _{PLCLKMPWH}	1.125		1.323		ns
Pipelined clock minimum pulse width low	T _{PLCLKMPWL}	1.125		1.323		ns
Read access time with pipeline register	т		0.334		0.393	ns
Read access time without pipeline register	CLK2Q		2.25		2.647	ns
Address setup time	T _{ADDRSU}	0.313		0.368		ns
Address hold time	T _{ADDRHD}	0.274		0.322		ns
Data setup time	T _{DSU}	0.337		0.396		ns
Data hold time	T _{DHD}	0.111		0.13		ns
Block select setup time	T _{BLKSU}	0.207		0.244		ns
Block select hold time	T _{BLKHD}	0.201		0.237		ns
Block select to out disable time (when pipelined register is disabled)	T _{BLK2Q}		2.25		2.647	ns
Block select minimum pulse width	T _{BLKMPW}	0.186		0.219		ns
Read enable setup time	T _{RDESU}	0.449		0.528		ns
Read enable hold time	T _{RDEHD}	0.167		0.197		ns
Pipelined read enable setup time (A_DOUT_EN, B_DOUT_EN)	T _{RDPLESU}	0.248		0.291		ns
Pipelined read enable hold time (A_DOUT_EN, B_DOUT_EN)	T _{RDPLEHD}	0.102		0.12		ns
Asynchronous reset to output propagation delay	T _{R2Q}		1.506		1.772	ns
Asynchronous reset removal time	T _{RSTREM}	0.506		0.595		ns
Asynchronous reset recovery time	T _{RSTREC}	0.004		0.005		ns
Asynchronous reset minimum pulse width	T _{RSTMPW}	0.301		0.354		ns
Pipelined register asynchronous reset removal time	T _{PLRSTREM}	-0.279		-0.328		ns
Pipelined register asynchronous reset recovery time	T _{PLRSTREC}	0.327		0.385		ns
Pipelined register asynchronous reset minimum pulse width	T _{PLRSTMPW}	0.282		0.332		ns
Synchronous reset setup time	T _{SRSTSU}	0.226		0.265		ns
Synchronous reset hold time	T _{SRSTHD}	0.036		0.043		ns
Write enable setup time	T _{WESU}	0.39		0.458		ns
Write enable hold time	T _{WEHD}	0.242		0.285		ns
Maximum frequency	F _{MAX}		400		340	MHz

Table 239 • µSRAM (RAM128x9) in 128 × 9 Mode (continued)

		-	-1	–Std		
Parameter	Symbol	Min	Max	Min	Max	Unit
Read asynchronous reset removal time (pipelined clock)		-0.023		-0.027		ns
Read asynchronous reset removal time (non-pipelined clock)	T _{RSTREM}	0.046		0.054		ns
Read asynchronous reset recovery time (pipelined clock)		0.507		0.597		ns
Read asynchronous reset recovery time (non-pipelined clock)	T _{RSTREC}	0.236		0.278		ns
Read asynchronous reset to output propagation delay (with pipelined register enabled)	T _{R2Q}		0.835		0.982	ns
Read synchronous reset setup time	T _{SRSTSU}	0.271		0.319		ns
Read synchronous reset hold time	T _{SRSTHD}	0.061		0.071		ns
Write clock period	T _{CCY}	4		4		ns
Write clock minimum pulse width high	T _{CCLKMPWH}	1.8		1.8		ns
Write clock minimum pulse width low	T _{CCLKMPWL}	1.8		1.8		ns
Write block setup time	T _{BLKCSU}	0.404		0.476		ns
Write block hold time	T _{BLKCHD}	0.007		0.008		ns
Write input data setup time	T _{DINCSU}	0.115		0.135		ns
Write input data hold time	T _{DINCHD}	0.15		0.177		ns
Write address setup time	T _{ADDRCSU}	0.088		0.104		ns
Write address hold time	T _{ADDRCHD}	0.128		0.15		ns
Write enable setup time	T _{WECSU}	0.397		0.467		ns
Write enable hold time	T _{WECHD}	-0.026		-0.03		ns
Maximum frequency	F _{MAX}		250		250	MHz

The following table lists the $\mu SRAM$ in 128 × 8 mode in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 240 • µSRAM (RAM128x8) in 128 × 8 Mode

		-	-1	–Std		
Parameter	Symbol	Min	Max	Min	Max	Unit
Read clock period	T _{CY}	4		4		ns
Read clock minimum pulse width high	T _{CLKMPWH}	1.8		1.8		ns
Read clock minimum pulse width low	T _{CLKMPWL}	1.8		1.8		ns
Read pipeline clock period	T _{PLCY}	4		4		ns
Read pipeline clock minimum pulse width high	T _{PLCLKMPWH}	1.8		1.8		ns
Read pipeline clock minimum pulse width low	T _{PLCLKMPWL}	1.8		1.8		ns
Read access time with pipeline register	т		0.266		0.313	ns
Read access time without pipeline register	- CLK2Q		1.677		1.973	ns
Read address setup time in synchronous mode	т	0.301		0.354		ns
Read address setup time in asynchronous mode	- 'ADDRSU	1.856		2.184		ns

Table 254 • Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (eNVM Only) (continued)

M2S/M2GL	Auto Programming	Programming Auto Update Recovery		
Device	100 kHz	25 MHz	12.5 MHz	Unit
150	161	161	161	Sec

Table 255 • Programming Times with 100 kHz, 25 MHz, and 12.5 MHz SPI Clock Rates (Fabric and eNVM)

M2S/M2GL	Auto Programming M2S/M2GL Programming Auto Update Recovery		Programming Recovery	
Device	100 kHz	25 MHz	12.5 MHz	Unit
005	47	27	28	Sec
010	77	35	35	Sec
025	150	42	41	Sec
050	33 ¹	Not Supported	Not Supported	Sec
060	291	83	82	Sec
090	427	109	108	Sec
150	708	157	160	Sec
005	41	48	49	Sec
010	86	87	87	Sec
025	87	85	86	Sec
050	85	Not Supported	Not Supported	Sec
060	78	86	86	Sec
090	154	162	162	Sec
150	161	161	161	Sec
005	87	67	66	Sec
010	161	113	113	Sec
025	229	120	121	Sec
050	112	Not Supported	Not Supported	Sec
060	368	161	158	Sec
090	582	261	260	Sec
150	867	309	310	Sec

1. Auto Programming in 050 device is done through SC_SPI, and SPI CLK is set to 6.25 $\,$ MHz.

The following table lists the programming times in worst-case conditions when $T_J = 100$ °C, $V_{DD} = 1.14$ V. External SPI flash part# AT25DF641-s3H is used during this measurement.

Table 256 • JTAG Programming (Fabric Only)

M2S/M2GL Device	Image size Bytes	Program	Verify	Unit
005	302672	44	10	Sec
010	568784	50	18	Sec
025	1223504	73	26	Sec
050	2424832	88	54	Sec
060	2418896	99	54	Sec
090	3645968	135	126	Sec
150	6139184	177	193	Sec

Table 257 • JTAG Programming (eNVM Only)

M2S/M2GL Device	Image size Bytes	Program	Verify	Unit
005	137536	61	4	Sec
010	274816	100	9	Sec
025	274816	100	9	Sec
050	2,78,528	106	8	Sec
060	268480	98	8	Sec
090	544496	176	15	Sec
150	544496	177	15	Sec

Table 258 • JTAG Programming (Fabric and eNVM)

M2S/M2GL Device	Image size Bytes	Program	Verify	Unit
005	439296	71	11	Sec
010	842688	129	20	Sec
025	1497408	142	35	Sec
050	2695168	184	59	Sec
060	2686464	180	70	Sec
090	4190208	288	147	Sec
150	6682768	338	231	Sec

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	302672	6	41	8	Sec
010	568784	10	48	14	Sec
025	1223504	21	61	29	Sec
050	2424832	39	82	50	Sec
060	2418896	44	87	54	Sec
090	3645968	66	112	79	Sec
150	6139184	108	162	128	Sec

Table 262 • SmartFusion2 Cortex-M3 ISP Programming (Fabric Only)

Table 263 •	SmartFusion2 Cortex-M3 ISP	Programming	(eNVM Only)
-------------	----------------------------	-------------	-------------

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	137536	3	64	4	Sec
010	274816	4	104	7	Sec
025	274816	4	104	8	Sec
050	2,78,528	4	102	8	Sec
060	268480	6	102	8	Sec
090	544496	10	179	15	Sec
150	544496	10	180	15	Sec

Table 264 • SmartFusion2 Cortex-M3 ISP Programming (Fabric and eNVM)

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	439296	9	83	11	Sec
010	842688	15	129	21	Sec
025	1497408	26	143	35	Sec
050	2695168	43	163	55	Sec
060	2686464	48	165	60	Sec
090	4190208	75	266	91	Sec
150	6682768	117	318	141	Sec

	Auto Programming	Auto Update	Programming Recovery	
M2S/M2GL Device	100 kHz	25 MHz	12.5 MHz	Unit
005	69	49	50	Sec
010	99	57	57	Sec
025	150	64	63	Sec
050	55 ¹	Not Supported	Not Supported	Sec
060	313	105	104	Sec
090	449	131	130	Sec
150	730	179	183	Sec

Table 265 • Programming Times with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (Fabric Only)

1. Auto programming in 050 device is done through SC_SPI, and SPI CLK is set to 6.25 MHz.

Table 266 • Programming Times with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (eNVM Only)

	Auto Programming	Auto Update	Programming Recovery	
M2S/M2GL Device	100 kHz	25 MHz	12.5 MHz	Unit
005	63	70	71	Sec
010	108	109	109	Sec
025	109	107	108	Sec
050	107	Not Supported	Not Supported	Sec
060	100	108	108	Sec
090	176	184	184	Sec
150	183	183	183	Sec

Table 267 • Programming Times with 100 kHz, 25 MHz. and 12.5 MHz SPI Clock Rates (Fabric and eNVM)

	Auto Programming	Auto Update	Programming Recovery	
M2S/M2GL Device	100 kHz	25 MHz	12.5 MHz	Unit
005	109	89	88	Sec
010	183	135	135	Sec
025	251	142	143	Sec
050	134	Not Supported	Not Supported	Sec
060	390	183	180	Sec
090	604	283	282	Sec
150	889	331	332	Sec

2.3.20 On-Chip Oscillator

The following tables describe the electrical characteristics of the available on-chip oscillators in the IGLOO2 FPGAs and SmartFusion2 SoC FPGAs.

Parameter	Symbol	Тур	Max	Unit	Condition
Operating frequency	F50RC	50		MHz	
Accuracy	ACC50RC	1	4	%	050 devices
		1	5	%	005, 025, and 060 devices
		1	6.3	%	090 devices
		1	7.1	%	010 and 150 devices
Output duty cycle	CYC50RC	49–51	46.5–53.5	%	
Output jitter (peak to peak)	JIT50RC				Period Jitter
		200	300	ps	005, 010, 050, and 060 devices
		200	400	ps	150 devices
		300	500	ps	025 and 090 devices
					Cycle-to-Cycle Jitter
		200	300	ps	005 and 050 devices
		320	420	ps	010, 060, and 150 devices
		320	850	ps	025 and 090 devices
Operating current	IDYN50RC	6.5		mA	

Table 280 • Electrical Characteristics of the 50 MHz RC Oscillator

Table 281 • Electrical Characteristics of the 1 MHz RC Oscillator

Parameter	Symbol	Тур	Max	Unit	Condition
Operating frequency	F1RC	1		MHz	
Accuracy	ACC1RC	1	3	%	005, 010, 025, and 050 devices
		1	4.5	%	060, and 150 devices
		1	5.6	%	090 devices
Output duty cycle	CYC1RC	49–51	46.5–53.5	%	005, 010, 025, 050, 090 and 150 devices
		49-51	46.0-54.0	%	060 devices
Output jitter (peak to peak) JIT1RC					Period Jitter
		10	20	ns	005, 010, 025, and 050 devices
		10	28	ns	060, 090 and 150 devices
					Cycle-to-Cycle Jitter
		10	20	ns	005, 010, and 050 devices
		10	35	ns	025, 060, and 150 devices
		10	45	ns	090 devices
Operating current	IDYN1RC	0.1		mA	
Startup time	SU1RC		17	μs	050, 090, and 150 devices
			18	μs	005, 010, and 025 devices