

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	146124
Total RAM Bits	5120000
Number of I/O	248
Number of Gates	-
Voltage - Supply	1.14V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BFBGA
Supplier Device Package	484-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m2gl150t-fcv484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Figures

Figure 1	High Temperature Data Retention (HTR)	9
Figure 2	Timing Model	. 15
Figure 3	Input Buffer AC Loading	17
Figure 4	Output Buffer AC Loading	18
Figure 5	Tristate Buffer for Enable Path Test Point	. 19
Figure 6	Timing Model for Input Register	. 65
Figure 7	I/O Register Input Timing Diagram	. 66
Figure 8	Timing Model for Output/Enable Register	. 68
Figure 9	I/O Register Output Timing Diagram	. 69
Figure 10	Input DDR Module	. 70
Figure 11	Input DDR Timing Diagram	71
Figure 12	Output DDR Module	. 73
Figure 13	Output DDR Timing Diagram	74
Figure 14	LUT-4	. 75
Figure 15	Sequential Module	. 76
Figure 16	Sequential Module Timing Diagram	77
Figure 17	Power-up to Functional Timing Diagram for SmartFusion2	. 115
Figure 18	Power-up to Functional Timing Diagram for IGLOO2	. 116
Figure 19	DEVRST_N to Functional Timing Diagram for SmartFusion2	. 117
Figure 20	DEVRST_N to Functional Timing Diagram for IGLOO2	. 119
Figure 21	I2C Timing Parameter Definition	125
Figure 22	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 128
Figure 23	SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)	. 131

Table 51	LVCMOS 1.8 V Minimum and Maximum AC Switching Speed	. 29
Table 52	LVCMOS 2.5 V Transmitter Characteristics for MSIOD Bank (Output and Tristate Buffers)	. 29
Table 53	LVCMOS 1.8 V Receiver Characteristics (Input Buffers)	. 30
Table 54	LVCMOS 1.8 V AC Calibrated Impedance Option	. 30
Table 55	LVCMOS 1.8 V AC Test Parameter Specifications	. 30
Table 56	LVCMOS 1.8 V Transmitter Drive Strength Specifications	. 30
Table 57	LVCMOS 1.8 V Transmitter Characteristics for DDRIO I/O Bank with Fixed Code (Output and	
	Tristate Buffers)	. 31
Table 58	LVCMOS 1.5 V DC Recommended Operating Conditions	. 32
Table 59	LVCMOS 1.5 V DC Input Voltage Specification	. 32
Table 60	LVCMOS 1.8 V Transmitter Characteristics for MSIO I/O Bank	. 32
Table 61	LVCMOS 1.8 V Transmitter Characteristics for MSIOD I/O Bank	. 32
Table 62	LVCMOS 1.5 V DC Output Voltage Specification	. 33
Table 63	LVCMOS 1.5 V AC Minimum and Maximum Switching Speed	. 33
Table 64	LVCMOS 1.5 V AC Calibrated Impedance Option	. 33
Table 65	VCMOS 1.5 V AC Test Parameter Specifications	33
Table 66	I VCMOS 1.5 V Transmitter Drive Strength Specifications	
Table 67	LVCMOS 1.5 V Receiver Characteristics for DDRIQ I/O Bank with Fixed Codes (Input Buffars)	34
Table 68	LVCMOS 1.5 V Receiver Characteristics for MSIO I/O Bank (Input Buffers)	34
Table 60	LVCMOS 1.5 V Receiver Characteristics for MSIOD I/O Dank (Input Buffers)	. 0 . 3/
Table 09	LVCMOS 1.5 V Transmitter Characteristics for DDPIO I/O Bank (Autout and Tristate Buffers)	24
	LVCMOS 1.5 V Transmitter Characteristics for DDR/IC/D bank (Output and Tristate Duriers)	. 34
Table 71	LVCMOS 1.3 V Transmitter Characteristics for MSTO TO Bank (Output and Tristate Buners)	. 30
	LVCMOS 1.2 V DC Recommended DC Operating Conditions	. 30
Table 73	LVCMOS 1.2 V DC input voltage specification	. 30
Table 74	LVCMOS 1.2 V DC Output Voltage Specification	. 36
Table 75	LVCMOS 1.2 V Minimum and Maximum AC Switching Speed	. 36
Table 76	LVCMOS 1.5 V Transmitter Characteristics for MSIOD I/O Bank (Output and Tristate Buffers)	. 36
Table 77	LVCMOS 1.2 V Receiver Characteristics for DDRIO I/O Bank with Fixed Code (Input Buffers)	. 37
Table 78	LVCMOS 1.2 V Receiver Characteristics for MSIO I/O Bank (Input Buffers)	. 37
Table 79	LVCMOS 1.2 V AC Calibrated Impedance Option	. 37
Table 80	LVCMOS 1.2 V AC Test Parameter Specifications	. 37
Table 81	LVCMOS 1.2 V Transmitter Drive Strength Specifications	. 37
Table 82	LVCMOS 1.2 V Receiver Characteristics for MSIOD I/O Bank (Input Buffers)	. 38
Table 83	LVCMOS 1.2 V Transmitter Characteristics for DDRIO I/O Bank (Output and Tristate Buffers)	. 38
Table 84	LVCMOS 1.2 V Transmitter Characteristics for MSIO I/O Bank (Output and Tristate Buffers)	. 38
Table 85	PCI/PCI-X DC Recommended Operating Conditions	. 39
Table 86	PCI/PCI-X DC Input Voltage Specification	. 39
Table 87	PCI/PCI-X DC Output Voltage Specification	. 39
Table 88	PCI/PCI-X Minimum and Maximum AC Switching Speed	. 39
Table 89	PCI/PCI-X AC Test Parameter Specifications	. 39
Table 90	LVCMOS 1.2 V Transmitter Characteristics for MSIOD I/O Bank (Output and Tristate Buffers)	. 39
Table 91	PCI/PCIX AC Switching Characteristics for Receiver for MSIO I/O Bank (Input Buffers)	. 40
Table 92	PCI/PCIX AC switching Characteristics for Transmitter for MSIO I/O Bank (Output and	
	Tristate Buffers)	. 40
Table 93	HSTL Recommended DC Operating Conditions	. 40
Table 94	HSTL DC Input Voltage Specification	40
Table 95	HSTL DC Output Voltage Specification Applicable to DDRIO I/O Bank Only	41
Table 96	HSTL DC Differential Voltage Specification	
Table 97	HSTL AC Differential Voltage Specifications	
Table 08	HSTL Minimum and Maximum AC Switching Speed <u>.</u>
Table 30	HSTL Impedance Specification	. – .
	HSTL Processor Characteristics for DDPIO I/O Pank with Fixed Code (Input Puffers)	. 41 12
	HSTL Receiver Characteristics for DDRIO I/O Bank with Fixed Code (hiput bullets)	. 4Z
		. 4Z
	DDD1/88TL2 DC Decommonded Operating Conditions	. 4Z
	DD4/SSTL2 DC Recommended Operating Conditions	. 43
		. 43
		. 43
	DUK 1/351L2 DU DIfferential Voltage Specification	. 43
101 able 107	551L2 Receiver Unaracteristics for DDRIU I/O Bank (Input Buffers)	. 44

1. For flash programming and retention maximum limits, see Table 5, page 7. For recommended operating conditions, see Table 4, page 6.

 Table 4 •
 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Operating junction temperature	TJ	0	25	85	°C	Commercial
		-40	25	100	°C	Industrial
Programming junction temperatures ¹	TJ	0	25	85	°C	Commercial
		-40	25	100	°C	Industrial
DC core supply voltage. Must always power this pin.	V _{DD}	1.14	1.2	1.26	V	
Power supply for charge pumps	V _{PP}	2.375	2.5	2.625	V	2.5 V range
(for normal operation and programming) for the 005, 010, 025, 050, 060 devices		3.15	3.3	3.45	V	3.3 V range
Power supply for charge pumps (for normal operation and programming) for the 090 and 150 devices	V _{PP}	3.15	3.3	3.45	V	3.3 V range
Analog power pad for MDDR PLL	MSS_MDDR_PLL_VDDA	2.375	2.5	2.625	V	2.5 V range
		3.15	3.3	3.45	V	3.3 V range
Analog power pad for MDDR PLL	HPMS_MDDR_PLL_VDDA	2.375	2.5	2.625	V	2.5 V range
		3.15	3.3	3.45	V	3.3 V range
Analog power pad for FDDR PLL	FDDR_PLL_VDDA	2.375	2.5	2.625	V	2.5 V range
		3.15	3.3	3.45	V	3.3 V range
Analog power pad for MDDR PLL	PLL0_PLL1_MSS_MDDR_V	2.375	2.5	2.625	V	2.5 V range
	DDA	3.15	3.3	3.45	V	3.3 V range
Analog power pad for MDDR PLL	PLL0_PLL1_HPMS_MDDR_	2.375	2.5	2.625	V	2.5 V range
	VDDA	3.15	3.3	3.45	V	3.3 V range
Analog power pad for PLL0 to PLL5	CCC_XX[01]_PLL_VDDA	2.375	2.5	2.625	V	2.5 V range
		3.15	3.3	3.45	V	3.3 V range
High supply voltage for PLL	SERDES_[01]_PLL_VDDA	2.375	2.5	2.625	V	2.5 V range
SerDes[01]		3.15	3.3	3.45	V	3.3 V range
Analog power for SerDes[01] PLL Lane 0 to Lane 3. This is a 2.5 V SerDes internal PLL supply.	SERDES_[01]_L[0123]_VD DAPLL	2.375	2.5	2.625	V	
TX/RX analog I/O voltage. Low voltage power for the lanes of SerDesIF0. This is a 1.2 V SerDes PMA supply.	SERDES_[01]_L[0123]_VD DAIO	1.14	1.2	1.26	V	
PCIe/PCS power supply	SERDES_[01]_VDD	1.14	1.2	1.26	V	
1.2 V DC supply voltage	V _{DDIx}	1.14	1.2	1.26	V	
1.5 V DC supply voltage	V _{DDIx}	1.425	1.5	1.575	V	
1.8 V DC supply voltage	V _{DDIx}	1.71	1.8	1.89	V	
2.5 V DC supply voltage	V _{DDIx}	2.375	2.5	2.625	V	

Figure 1 • High Temperature Data Retention (HTR)

2.3.1.1 Overshoot/Undershoot Limits

For AC signals, the input signal may undershoot during transitions to -1.0 V for no longer than 10% of the period. The current during the transition must not exceed 100 mA.

For AC signals, the input signal may overshoot during transitions to V_{CCI} + 1.0 V for no longer than 10% of the period. The current during the transition must not exceed 100 mA.

Note: The above specifications do not apply to the PCI standard. The IGLOO2 and SmartFusion2 PCI I/Os are compliant with the PCI standard including the PCI overshoot/undershoot specifications.

2.3.1.2 Thermal Characteristics

The temperature variable in the Microsemi SoC Products Group Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption causes the chip's junction temperature to be higher than the ambient, case, or board temperatures.

EQ1 through EQ3 give the relationship between thermal resistance, temperature gradient, and power.

$$\theta_{JA} = \frac{T_J - T_A}{P}$$

EQ 1

$$\theta_{JB} = \frac{T_J - T_B}{P}$$

$$\theta_{\rm JC} = \frac{T_{\rm J} - T_{\rm C}}{P}$$

EQ 3

2.3.2 Power Consumption

The following sections describe the power consumptions of the devices.

2.3.2.1 Quiescent Supply Current

Table 10 • Quiescent Supply Current Characteristics

	Modes and Configurations					
Power Supplies/Blocks	Non-Flash*Freeze	Flash*Freeze				
FPGA Core	On	Off				
V _{DD} /SERDES_[01]_VDD ¹	On	On				
V _{PP} /V _{PPNVM}	On	On				
HPMS_MDDR_PLL_VDDA/FDDR_PLL_VDDA/ CCC_XX[01]_PLL_VDDA/PLL0_PLL1_HPMS_MDDR_VDD A	0 V	0 V				
SERDES_[01]_PLL_VDDA ²	0 V	0 V				
SERDES_[01]_L[0123]_VDDAPLL/VDD_2V5 ²	On	On				
SERDES_[01]_L[0123]_VDDAIIO ²	On	On				
V _{DDlx} ^{3, 4}	On	On				
V _{REFx}	On	On				
MSSDDR CLK	32 kHz	32 kHz				
RAM	On	Sleep state				
System controller	50 MHz	50 MHz				
50 MHz oscillator (enable/disable)	Enable	Disabled				
1 MHz oscillator (enable/disable)	Disabled	Disabled				
Crystal oscillator (enable/disable)	Disabled	Disabled				

1. SERDES_[01]_VDD Power Supply is shorted to V_{DD} .

2. SerDes and DDR blocks to be unused.

3. V_{DDIx} has been set to ON for test conditions as described. Banks on the east side should always be powered with the appropriate V_{DDI} bank supplies. For details on bank power supplies, see "Recommendation for Unused Bank Supplies" table in the *AC393: SmartFusion2 and IGLO02 Board Design Guidelines Application Note.*

4. No Differential (that is to say, LVDS) I/Os or ODT attributes to be used.

Table 11 • SmartFusion2 and IGLOO2 Quiescent Supply Current (V_{DD} = 1.2 V) – Typical Process

Symbol	Modes	005	010	025	050	060	090	150	Unit	Conditions
IDC1	Non- Flash*Freeze	6.2	6.9	8.9	13.1	15.3	15.4	27.5	mA	Typical (T _J = 25 °C)
		24.0	28.4	40.6	67.8	80.6	81.4	144.7	mA	Commercial (T _J = 85 °C)
		35.2	41.9	60.5	102.1	121.4	122.6	219.1	mA	Industrial (T _J = 100 °C)

2.3.5.2 Output Buffer and AC Loading

The following figure shows the output buffer and AC loading.

Figure 4 • Output Buffer AC Loading

Voltage-Referenced, Singled-Ended I/O Test Setup

Differential I/O Test Setup

Table 22 • Maximum Frequency Summary Table for Voltage-Referenced I/O in Worst-Case Industrial Conditions

1/0	MSIO	MSIOD	DDRIO	Unit
LPDDR			200	MHz
HSTL1.5 V			200	MHz
SSTL 2.5 V	255	350	200	MHz
SSTL 1.8 V			334	MHz
SSTL 1.5 V			334	MHz

Table 23 • Maximum Frequency Summary Table for Differential I/O in Worst-Case Industrial Conditions Industrial Conditions

I/O	MSIO	MSIOD	Unit
LVPECL (input only)	450		MHz
LVDS 3.3 V	267.5		MHz
LVDS 2.5 V	267.5	350	MHz
RSDS	260	350	MHz
BLVDS	250		MHz
MLVDS	250		MHz
Mini-LVDS	260	350	MHz

Output		Т	DP		ZL		Г _{ZH}	Т	HZ ¹	Т	LZ ¹	_
Selection Contro	Control	-1	-Std	-1	-Std	-1	-Std	-1	-Std	-1	-Std	Unit
2 mA	Slow	2.735	3.218	3.371	3.966	3.618	4.257	6.03	7.095	5.705	6.712	ns
4 mA	Slow	2.426	2.854	2.992	3.521	3.221	3.79	6.738	7.927	6.298	7.41	ns
6 mA	Slow	2.433	2.862	2.81	3.306	3.031	3.566	7.123	8.38	6.596	7.76	ns

Table 72 • LVCMOS 1.5 V Transmitter Characteristics for MSIOD I/O Bank (Output and Tristate Buffers)

1. Delay increases with drive strength are inherent to built-in slew control circuitry for simultaneous switching output (SSO) management.

2.3.5.10 1.2 V LVCMOS

LVCMOS 1.2 is a general standard for 1.2 V applications and is supported in IGLOO2 FPGAs and SmartFusion2 SoC FPGAs in compliance to the JEDEC specification JESD8-12A.

Minimum and Maximum DC/AC Input and Output Levels Specification

Table 73 • LVCMOS 1.2 V DC Recommended DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{DDI}	1.140	1.2	1.26	V

Table 74 • LVCMOS 1.2 V DC Input Voltage Specification

Parameter	Symbol	Min	Max	Unit
DC input logic high (for MSIOD and DDRIO I/O banks)	V _{IH} (DC)	0.65 × V _{DDI}	1.26	V
DC input logic high (for MSIO I/O bank)	V _{IH} (DC)	0.65 × V _{DDI}	3.45	V
DC input logic low	V _{IL} (DC)	-0.3	$0.35 \times V_{DDI}$	V
Input current high ¹	I _{IH} (DC)			
Input current low ¹	I _{IL} (DC)			

1. See Table 24, page 22.

Table 75 • LVCMOS 1.2 V DC Output Voltage Specification

Parameter	Symbol	Min	Max	Unit
DC output logic high	V _{OH}	$V_{DDI} \times 0.75$		V
DC output logic low	V _{OL}		V _{DDI} × 0.25	V

Table 76 • LVCMOS 1.2 V Minimum and Maximum AC Switching Speed

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate (for DDRIO I/O bank)	D _{MAX}	200	Mbps	AC loading: 17 pF load, maximum drive/slew
Maximum data rate (for MSIO I/O bank)	D _{MAX}	120	Mbps	AC loading: 17 pF load, maximum drive/slew
Maximum data rate (for MSIOD I/O bank)	D _{MAX}	160	Mbps	AC loading: 17 pF load, maximum drive/slew

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 3.0 V

 Table 91 •
 PCI/PCIX AC Switching Characteristics for Receiver for MSIO I/O Bank (Input Buffers)

	-	Г _{РҮ}	Т	PYS	
On-Die Termination (ODT)	-1	-Std	-1	-Std	Unit
None	2.229	2.623	2.238	2.633	ns

 Table 92 •
 PCI/PCIX AC switching Characteristics for Transmitter for MSIO I/O Bank (Output and Tristate Buffers)

T	DP	Т	ZL	Tz	ZH	T	HZ	Т	LZ	
-1	-Std	Unit								
2.146	2.525	2.043	2.404	2.084	2.452	6.095	7.171	5.558	6.539	ns

2.3.6 Memory Interface and Voltage Referenced I/O Standards

This section describes High-Speed Transceiver Logic (HSTL) memory interface and voltage reference I/O standards.

2.3.6.1 High-Speed Transceiver Logic (HSTL)

The HSTL standard is a general purpose high-speed bus standard sponsored by IBM (EIA/JESD8-6). IGLOO2 FPGA and SmartFusion2 SoC FPGA devices support two classes of the 1.5 V HSTL. These differential versions of the standard require a differential amplifier input buffer and a push-pull output buffer.

Minimum and Maximum DC/AC Input and Output Levels Specification (Applicable to DDRIO Bank Only)

Table 93 •	HSTL Recommended DO	0 0	perating	Conditions
------------	---------------------	-----	----------	------------

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{DDI}	1.425	1.5	1.575	V
Termination voltage	V _{TT}	0.698	0.750	0.803	V
Input reference voltage	V _{REF}	0.698	0.750	0.803	V

Table 94 • HSTL DC Input Voltage Specification

Parameter	Symbol	Min	Max	Unit
DC input logic high	V _{IH} (DC)	V _{REF} + 0.1	1.575	V
DC input logic low	V _{IL} (DC)	-0.3	V _{REF} – 0.1	V
Input current high ¹	I _{IH} (DC)			
Input current low ¹	I _{IL} (DC)			

1. See Table 24, page 22.

Table 100 • HSTL AC Test Parameter Specification

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	0.75	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	C _{ENT}	5	pF
Reference resistance for data test path for HSTL15 Class I (T_{DP})	RTT_TEST	50	Ω
Reference resistance for data test path for HSTL15 Class II (T_{DP})	RTT_TEST	25	Ω
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF

AC Switching Characteristics

Worst-case commercial conditions: T_J = 85 °C, V_{DD} = 1.14 V, worst-case V_{DDI} .

Table 101 •	HSTL Rece	eiver Characteristic	s for DDRIO I/O	Bank with Fix	ed Code (Input Buffers
-------------	-----------	----------------------	-----------------	---------------	------------------------

			T _{PY}			
	On-Die Termination (ODT)	-1	-Std	Unit		
Pseudo differential	None	1.605	1.888	ns		
	47.8	1.614	1.898	ns		
True differential	None	1.622	1.909	ns		
	47.8	1.628	1.916	ns		

Table 102 • HSTL Transmitter Characteristics for DDRIO I/O Bank (Output and Tristate Buffers)

	٦	Г _{DP}		T _{ZL}		Т _{ZH}		т _{нz}		T _{LZ}	
	-1	-Std	-1	-Std	-1	-Std	–1	-Std	–1	-Std	Unit
				ŀ	HSTL Cla	ss I					
Single-ended	2.6	3.059	2.514	2.958	2.514	2.958	2.431	2.86	2.431	2.86	ns
Differential	2.621	3.083	2.648	3.115	2.647	3.113	2.925	3.442	2.923	3.44	ns
				ŀ	ISTL Cla	ss II					
Single-ended	2.511	2.954	2.488	2.927	2.49	2.93	2.409	2.833	2.411	2.836	ns
Differential	2.528	2.974	2.552	3.003	2.551	3.001	2.897	3.409	2.896	3.408	ns

2.3.6.2 Stub-Series Terminated Logic

Stub-Series Terminated Logic (SSTL) for 2.5 V (SSTL2), 1.8 V (SSTL18), and 1.5 V (SSTL15) is supported in IGLOO2 and SmartFusion2 SoC FPGAs. SSTL2 is defined by JEDEC standard JESD8-9B and SSTL18 is defined by JEDEC standard JESD8-15. IGLOO2 SSTL I/O configurations are designed to meet double data rate standards DDR/2/3 for general purpose memory buses. Double data rate standards are designed to meet their JEDEC specifications as defined by JEDEC standard JESD79F for DDR, JEDEC standard JESD79-2F for DDR, JEDEC standard JESD79-3D for DDR3, and JEDEC standard JESD209A for LPDDR.

Table 107 • SSTL2 AC Differential Voltage Specifications

Parameter	Symbol	Min	Мах	Unit
AC input differential voltage	V _{DIFF} (AC)	0.7		V
AC differential cross point voltage	V _x (AC)	0.5 × V _{DDI} – 0.2	0.5 × V _{DDI} + 0.2	V

Table 108 • SSTL2 Minimum and Maximum AC Switching Speeds

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate (for DDRIO I/O bank)	D _{MAX}	400	Mbps	AC loading: per JEDEC specifications
Maximum data rate (for MSIO I/O bank)	D _{MAX}	575	Mbps	AC loading: 17pF load
Maximum data rate (for MSIOD I/O bank)	D _{MAX}	700	Mbps	AC loading: 3 pF / 50 Ω load
		510	Mbps	AC loading: 17pF load

Table 109 • SSTL2 AC Impedance Specifications

Parameter	Тур	Unit	Conditions
Supported output driver calibrated	20, 42	Ω	Reference resistor = 150 Ω
impedance (for DDRIO I/O bank)			

Table 110 • DDR1/SSTL2 AC Test Parameter Specifications

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	1.25	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path $(T_{ZH}, T_{ZL}, T_{HZ}, T_{LZ})$	C _{ENT}	5	pF
Reference resistance for data test path for SSTL2 Class I (T_{DP})	RTT_TEST	50	Ω
Reference resistance for data test path for SSTL2 Class II (T_{DP})	RTT_TEST	25	Ω
Capacitive loading for data path (T _{DP})	C _{LOAD}	5	pF

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 2.375 V

Table 111 •	SSTL2 Receiver	Characteristics	for DDR	IO I/O	Bank (Input	t Buffers)
-------------	----------------	-----------------	---------	--------	-------------	------------

	On-Die			
	Termination (ODT)	-1	-Std	Unit
Pseudo differential	None	1.549	1.821	ns
True differential	None	1.589	1.87	ns

Table 185 • M-LVDS DC Voltage Specification Output Voltage Specification (for MSIO I/O Bank Only)

Parameter	Symbol	Min	Тур	Max	Unit
DC output logic high	V _{OH}	1.25	1.425	1.6	V
DC output logic low	V _{OL}	0.9	1.075	1.25	V

Table 186 • M-LVDS Differential Voltage Specification

Parameter	Symbol	Min	Max	Unit
Differential output voltage swing (for MSIO I/O bank only)	V _{OD}	300	650	mV
Output common mode voltage (for MSIO I/O bank only)	V _{OCM}	0.3	2.1	V
Input common mode voltage	V _{ICM}	0.3	1.2	V
Input differential voltage	V _{ID}	50	2400	mV

Table 187 • M-LVDS Minimum and Maximum AC Switching Speed for MSIO I/O Bank

Parameter	Symbol	Max	Unit	Conditions
Maximum data rate	D _{MAX}	500	Mbps	AC loading: 2 pF / 100 Ω differential load

Table 188 • M-LVDS AC Impedance Specifications

Parameter	Symbol	Тур	Unit
Termination resistance	R _T	50	Ω

Table 189 • M-LVDS AC Test Parameter Specifications

Parameter	Symbol	Тур	Unit
Measuring/trip point for data path	V _{TRIP}	Cross point	V
Resistance for enable path (T_{ZH} , T_{ZL} , T_{HZ} , T_{LZ})	R _{ENT}	2K	Ω
Capacitive loading for enable path (T _{ZH} , T _{ZL} , T _{HZ} , T _{LZ})	C _{ENT}	5	pF

AC Switching Characteristics

Worst commercial-case conditions: T_J = 85 °C, V_{DD} = 1.14 V, V_{DDI} = 2.375 V

Table 190 • M-LVDS AC Switching Characteristics for Receiver (for MSIO I/O Bank -Input Buffers)

		T _{PY}		
On-Die Termination (ODT)	-1	-Std	Unit	
None	2.738	3.221	ns	
100	2.735	3.218	ns	

The following table lists the output/enable propagation delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

Table 220 •	Output/Enable Data	Register Pr	opagation Delays
-------------	--------------------	--------------------	------------------

		Measuring			
Parameter	Symbol	(from, to) ¹	-1	-Std	Unit
Bypass delay of the output/enable register	T _{OBYP}	F, G or H, I	0.353	0.415	ns
Clock-to-Q of the output/enable register	T _{OCLKQ}	E, G or E, I	0.263	0.309	ns
Data setup time for the output/enable register	T _{OSUD}	A, E or J, E	0.19	0.223	ns
Data hold time for the output/enable register	T _{OHD}	A, E or J, E	0	0	ns
Enable setup time for the output/enable register	T _{OSUE}	B, E	0.419	0.493	ns
Enable hold time for the output/enable register	T _{OHE}	B, E	0	0	ns
Synchronous load setup time for the output/enable register	T _{OSUSL}	D, E	0.196	0.231	ns
Synchronous load hold time for the output/enable register	T _{OHSL}	D, E	0	0	ns
Asynchronous clear-to-q of the output/enable register (ADn = 1)	T _{OALN2Q}	C, G or C, I	0.505	0.594	ns
Asynchronous preset-to-q of the output/enable register (ADn = 0)	-	C, G or C, I	0.528	0.621	ns
Asynchronous load removal time for the output/enable register	TOREMALN	C, E	0	0	ns
Asynchronous load recovery time for the output/enable register	T _{ORECALN}	C, E	0.034	0.04	ns
Asynchronous load minimum pulse width for the output/enable register	T _{OWALN}	C, C	0.304	0.357	ns
Clock minimum pulse width high for the output/enable register	T _{OCKMPWH}	E, E	0.075	0.088	ns
Clock minimum pulse width low for the output/enable register	TOCKMPWL	E, E	0.159	0.187	ns

1. For the derating values at specific junction temperature and voltage supply levels, see Table 16, page 14 for derating values.

2.3.9.4 Output DDR Module

2.3.9.5 Timing Characteristics

The following table lists the output DDR propagation delays in worst commercial-case conditions when T_J = 85 °C, V_{DD} = 1.14 V.

		Measuring Nodes			
Symbol	Description	(from, to)	-1	-Std	Unit
T _{DDROCLKQ}	Clock-to-out of DDR for output DDR	E, G	0.263	0.309	ns
T _{DDROSUDF}	Data_F data setup for output DDR	F, E	0.143	0.168	ns
T _{DDROSUDR}	Data_R data setup for output DDR	A, E	0.19	0.223	ns
T _{DDROHDF}	Data_F data hold for output DDR	F, E	0	0	ns
T _{DDROHDR}	Data_R data hold for output DDR	A, E	0	0	ns
T _{DDROSUE}	Enable setup for input DDR	B, E	0.419	0.493	ns
T _{DDROHE}	Enable hold for input DDR	B, E	0	0	ns
T _{DDROSUSLN}	Synchronous load setup for input DDR	D, E	0.196	0.231	ns
T _{DDROHSLN}	Synchronous load hold for input DDR	D, E	0	0	ns
T _{DDROAL2Q}	Asynchronous load-to-out for output DDR	C, G	0.528	0.621	ns
T _{DDROREMAL}	Asynchronous load removal time for output DDR	C, E	0	0	ns
T _{DDRORECAL}	Asynchronous load recovery time for output DDR	C, E	0.034	0.04	ns

Table 222 • Output DDR Propagation Delays

Table 240 • µSRAM (RAM128x8) in 128 × 8 Mode (continued)

		-	·1	-8	Std	
Parameter	Symbol	Min	Max	Min	Max	Unit
Read address hold time in synchronous mode	T	0.091		0.107		ns
Read address hold time in asynchronous mode	- 'ADDRHD	-0.778		-0.915		ns
Read enable setup time	T _{RDENSU}	0.278		0.327		ns
Read enable hold time	T _{RDENHD}	0.057		0.067		ns
Read block select setup time	T _{BLKSU}	1.839		2.163		ns
Read block select hold time	T _{BLKHD}	-0.65		-0.765		ns
Read block select to out disable time (when pipelined register is disabled)	T _{BLK2Q}		2.036		2.396	ns
Read asynchronous reset removal time (pipelined clock)		-0.023		-0.027		ns
Read asynchronous reset removal time (non-pipelined clock)	T _{RSTREM}	0.046		0.054		ns
Read asynchronous reset recovery time (pipelined clock)		0.507		0.597		ns
Read asynchronous reset recovery time (non-pipelined clock)	T _{RSTREC}	0.236		0.278		ns
Read asynchronous reset to output propagation delay (with pipelined register enabled)	T _{R2Q}		0.835		0.982	ns
Read synchronous reset setup time	T _{SRSTSU}	0.271		0.319		ns
Read synchronous reset hold time	T _{SRSTHD}	0.061		0.071		ns
Write clock period	T _{CCY}	4		4		ns
Write clock minimum pulse width high	T _{CCLKMPWH}	1.8		1.8		ns
Write clock minimum pulse width low	T _{CCLKMPWL}	1.8		1.8		ns
Write block setup time	T _{BLKCSU}	0.404		0.476		ns
Write block hold time	T _{BLKCHD}	0.007		0.008		ns
Write input data setup time	T _{DINCSU}	0.115		0.135		ns
Write input data hold time	T _{DINCHD}	0.15		0.177		ns
Write address setup time	T _{ADDRCSU}	0.088		0.104		ns
Write address hold time	T _{ADDRCHD}	0.128		0.15		ns
Write enable setup time	TWECSU	0.397		0.467		ns
Write enable hold time	T _{WECHD}	-0.026		-0.03		ns
Maximum frequency	F _{MAX}		250		250	MHz

Table 245 • JTAG Programming (eNVM Only)

M2S/M2GL				
Device	Image size Bytes	Program	Verify	Unit
005	137536	39	4	Sec
010	274816	78	9	Sec
025	274816	78	9	Sec
050	278528	84	8	Sec
060	268480	76	8	Sec
090	544496	154	15	Sec
150	544496	155	15	Sec

Table 246 • JTAG Programming (Fabric and eNVM)

M2S/M2GL Device	Image size Bytes	Program	Verify	Unit
005	439296	59	11	Sec
010	842688	107	20	Sec
025	1497408	120	35	Sec
050	2695168	162	59	Sec
060	2686464	158	70	Sec
090	4190208	266	147	Sec
150	6682768	316	231	Sec

Table 247 • 2 Step IAP Programming (Fabric Only)

M2S/M2GL Device	Image size Bytes	Authenticate	Program	Verify	Unit
005	302672	4	17	6	Sec
010	568784	7	23	12	Sec
025	1223504	14	33	23	Sec
050	2424832	29	52	40	Sec
060	2418896	39	61	50	Sec
090	3645968	60	84	73	Sec
150	6139184	100	132	120	Sec

The following table lists the IGLOO2 DEVRST_N to functional times in worst-case industrial conditions when T_J = 100 °C, V_{DD} = 1.14 V.

Table 292 • DEVRST_N to Functional Times for IGLOO2

			Maximum Power-up to Functional Time for IGLOO2 (uS)					IGLOO2		
Symbol	From	То	Description	005	010	025	050	060	090	150
T _{POR2OUT}	POWER_ON _RESET_N	Output available at I/O	Fabric to output	114	116	113	113	115	115	114
T _{DEVRST2OUT}	DEVRST_N	Output available at I/O	V _{DD} at its minimum threshold level to output	314	353	314	307	343	341	341
T _{DEVRST2POR}	DEVRST_N	POWER_O N_RESET_ N	V _{DD} at its minimum threshold level to fabric	200	238	201	195	230	229	227
T _{DEVRST2WPU}	DEVRST_N	DDRIO Inbuf weak pull	DEVRST_N to Inbuf weak pull	208	202	197	193	216	215	215
	DEVRST_N	MSIO Inbuf weak pull	DEVRST_N to Inbuf weak pull	208	202	197	193	216	215	215
	DEVRST_N	MSIOD Inbuf weak pull	DEVRST_N to Inbuf weak pull	208	202	197	193	216	215	215

2.3.32 CAN Controller Characteristics

The following table lists the CAN controller characteristics in worst-case industrial conditions when T_J = 100 °C, V_{DD} = 1.14 V.

Table 306 • CAN Controller Characteristics

Parameter	Description	-1	-Std	Unit
FCANREFCLK ¹	Internally sourced CAN reference clock frequency	160	136	MHz
BAUDCANMAX	Maximum CAN performance baud rate	1	1	Mbps
BAUDCANMIN	Minimum CAN performance baud rate	0.05	0.05	Mbps

1. PCLK to CAN controller must be a multiple of 8 MHz.

2.3.33 USB Characteristics

The following table lists the USB characteristics in worst-case industrial conditions when $T_J = 100$ °C, $V_{DD} = 1.14$ V.

Table 307 •	USB Characteristics	

Parameter	Description	-1	-Std	Unit
FUSBREFCLK	Internally sourced USB reference clock frequency	166	142	MHz
TUSBCLK	USB clock period	16.66	16.66	ns
TUSBPD	Clock to USB data propagation delay	9.0	9.0	ns
TUSBSU	Setup time for USB data	6.0	6.0	ns
TUSBHD	Hold time for USB data	0	0	ns