

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s5dvm10ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Subsystem	Brief Description
ENET	Ethernet Controller	Connectivity Peripherals	The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. Note: The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Solo/6DualLite errata document (IMX6SDLCE).
EPDC	Electrophoretic Display Controller	Peripherals	The EPDC is a feature-rich, low power, and high-performance direct-drive, active matrix EPD controller. It is specifically designed to drive E-INK TM EPD panels, supporting a wide variety of TFT backplanes. It is available in both i.MX 6DualLite and i.MX 6Solo.
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Block Mnemonic	Block Name	Subsystem	Brief Description
SSI-1 SSI-2 SSI-3	I2S/SSI/AC97 Interface	Connectivity Peripherals	The SSI is a full-duplex synchronous interface, which is used on the AP to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller in order to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously.
TEMPMON	Temperature Monitor	System Control Peripherals	The Temperature sensor IP is used for detecting die temperature. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed, therefore the read out value may not be the reflection of the temperature value of the entire die.
TZASC	Trust-Zone Address Space Controller	Security	The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.
UART-1 UART-2 UART-3 UART-4 UART-5	UART Interface	Connectivity Peripherals	 Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) Programmable baud rates up to 4 MHz. This is a higher max baud rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard and the i.MX31 UART modules. 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud IrDA 1.0 support (up to SIR speed of 115200 bps) Option to operate as 8-pins full UART, DCE, or DTE
USBOH3	USB 2.0 High Speed OTG and 3x HS Hosts	Connectivity Peripherals	 USBOH3 contains: One high-speed OTG module with integrated HS USB PHY One high-speed Host module with integrated HS USB PHY Two identical high-speed Host modules connected to HSIC USB ports.
VDOA	VDOA	Multimedia Peripherals	Video Data Order Adapter (VDOA): used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU.

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

4 Electrical Characteristics

This section provides the device and module-level electrical characteristics for the i.MX 6Solo/6DualLite processors.

4.1 Chip-Level Conditions

This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections.

For these characteristics,	Topic appears
Absolute Maximum Ratings	on page 22
BGA Case 2240 Package Thermal Resistance	on page 23
Operating Ranges	on page 24
External Clock Sources	on page 26
Maximal Supply Currents	on page 27
Low Power Mode Supply Currents	on page 29
USB PHY Current Consumption	on page 30
PCIe 2.0 Power Consumption	on page 30

4.1.1 Absolute Maximum Ratings

Table 7. Absolute Maximum Ratings

Parameter Description	Symbol	Min	Мах	Unit
Core supply voltages	VDDARM_IN VDDSOC_IN	-0.3	1.5	V
Internal supply voltages	VDDARM_CAP VDDSOC_CAP VDDPU_CAP	-0.3	1.3	V
GPIO supply voltage	Supplies denoted as I/O supply	-0.5	3.6	V
DDR I/O supply voltage	Supplies denoted as I/O supply	-0.4	1.975	V
LVDS I/O supply voltage	Supplies denoted as I/O supply	-0.3	2.8	V
VDD_SNVS_IN supply voltage	VDD_SNVS_IN	-0.3	3.3	V
VDDHIGH_IN supply voltage	VDDHIGH_IN	-0.3	3.6	V
USB VBUS	VBUS	_	5.25	V
Input voltage on USB_OTG_DP, USB_OTG_DN, USB_H1_DP, USB_H1_DN pins	USB_DP/USB_DN	-0.3	3.63	V
Input/output voltage range	V _{in} /V _{out}	-0.5	OVDD ¹ +0.3	V

Parameter Description	Symbol	Min	Мах	Unit
ESD damage immunity:	V _{esd}			
Human Body Model (HBM)Charge Device Model (CDM)		_	2000 500	V
Storage temperature range	T _{STORAGE}	-40	150	°C

Table 7. Absolute Maximum Ratings (continued)

¹ OVDD is the I/O supply voltage.

4.1.2 Thermal Resistance

4.1.2.1 BGA Case 2240 Package Thermal Resistance

Table 8 displays the thermal resistance data.

Table 8. Thermal Resistance Data

Rating	Test Conditions	Symbol	Value	Unit
Junction to Ambient ¹	Single-layer board (1s); natural convection ² Four-layer board (2s2p); natural convection ²	${\sf R}_{ heta JA} \ {\sf R}_{ heta JA}$	38 23	°C/W °C/W
Junction to Ambient ¹	Single-layer board (1s); airflow 200 ft/min ^{2,3} Four-layer board (2s2p); airflow 200 ft/min ^{2,3}	${\sf R}_{ heta JA} \ {\sf R}_{ heta JA}$	30 20	°C/W °C/W
Junction to Board ^{1,4}		$R_{ extsf{ heta}JB}$	14	°C/W
Junction to Case ^{1,5}		$R_{ extsf{ heta}JC}$	6	°C/W
Junction to Package Top ^{1,6}	Natural Convection	Ψ_{JT}	2	°C/W

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.1.3 **Operating Ranges**

Table 9 provides the operating ranges of the i.MX 6Solo/6DualLite processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)*.

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment
Run mode: LDO enabled	VDDARM_IN	1.350 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.225 V minimum for operation up to 996 MHz.
		1.275 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.150 V minimum for operation up to 792 MHz.
		1.175 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.05 V minimum for operation up to 396 MHz.
	VDDSOC_IN ³	1.275 ^{2,4}	—	1.5	V	VPU = 328 MHz, VDDSOC and VDDPU LDO<br outputs (VDDSOC_CAP and VDDPU_CAP) = 1.225 V maximum and 1.15 V minimum.
Run mode: LDO bypassed	VDDARM_IN	1.250	—	1.3	V	LDO bypassed for operation up to 996 MHz
		1.150	—	1.3	V	LDO bypassed for operation up to 792 MHz
		1.05	—	1.3	V	LDO bypassed for operation up to 396 MHz
	VDDSOC_IN	1.15 ⁴	—	1.225	V	LDO bypassed for operation VPU = 328 MHz</td
Standby/DSM mode	VDDARM_IN	0.9	—	1.3	V	Refer to Table 13, "Stop Mode Current and Power Consumption," on page 29.
	VDDSOC_IN	0.9	—	1.225	V	
VDDHIGH internal regulator	VDDHIGH_IN	2.8	—	3.3	V	Must match the range of voltges that the rechargeable backup battery supports.
Backup battery supply range	VDD_SNVS_IN ⁵	2.9	_	3.3	V	Should be supplied from the same supply as VDDHIGH_IN if the system does not require keeping real time and other data on OFF state.
USB supply voltages	USB_OTG_VBUS	4.4	—	5.25	V	
	USB_H1_VBUS	4.4	—	5.25	V	
DDR I/O supply voltage	NVCC_DRAM	1.14	1.2	1.3	V	LPDDR2, DDR3-U
		1.425	1.5	1.575	V	DDR3
		1.283	1.35	1.45	V	DDR3_L
Supply for RGMII I/O power group ⁶	NVCC_RGMII	1.15	_	2.625	V	1.15 V – 1.30 V in HSIC 1.2 V mode 1.43 V – 1.58 V in RMGII 1.5 V mode 1.70 V – 1.90 V in RMGII 1.8 V mode 2.25 V – 2.625 V in RMGII 2.5 V mode

Table	9.	Operati	ing	Ranges
-------	----	---------	-----	--------

- ¹ t_{SKD} = I t_{PHLD} t_{PLHD} I, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.
- ² Measurement levels are 20-80% from output voltage.

4.8 Output Buffer Impedance Parameters

This section defines the I/O impedance parameters of the i.MX 6Solo/6DualLite processors for the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes
- LVDS I/O

NOTE

GPIO and DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 7).

4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)

4.9.4.1 DDR3/DDR3L Parameters

Figure 22 shows the basic timing parameters. The timing parameters for this diagram appear in Table 41.

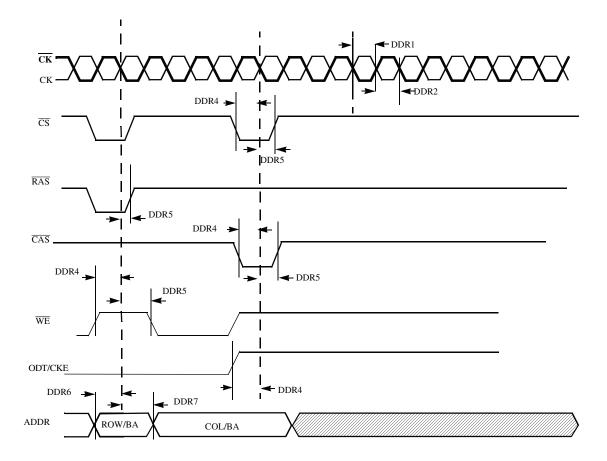
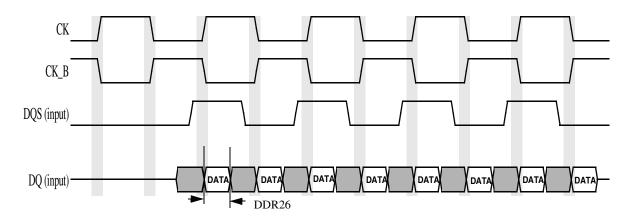



Figure 22. DDR3 Command and Address Timing Parameters

ID	Parameter	Sumbol	CK = 40	Unit		
U	Farameter	Symbol	Min	Мах	onit	
DDR1	CK clock high-level width	tсн	0.47	0.53	tск	
DDR2	CK clock low-level width	tCL	0.47	0.53	tск	
DDR4	CS, RAS, CAS, CKE, WE, ODT setup time	tis	800	_	ps	
DDR5	CS, RAS, CAS, CKE, WE, ODT hold time	tıн	580	—	ps	
DDR6	Address output setup time	tis	800	_	ps	
DDR7	Address output hold time	tıн	580	_	ps	

Table 41. DDR3/DDR3L Ti	ming Parameter Table
-------------------------	----------------------

Figure 24 shows the read DDR3/DDR3L timing parameters. The timing parameters for this diagram appear in Table 43.

Figure 24. DDR3/DDR3L Read Cycle

Table 43. DDR3/DDR3L Read Cycle

	ID Parameter		CK = 400 MHz		Unit
			Min	Max	onne
DDR26	Minimum required DQ valid window width		450	—	ps

¹ To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window.

² All measurements are in reference to Vref level.

 $^3\,$ Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

4.10.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)

Figure 32 to Figure 34 show the write and read timing of Source Synchronous Mode.

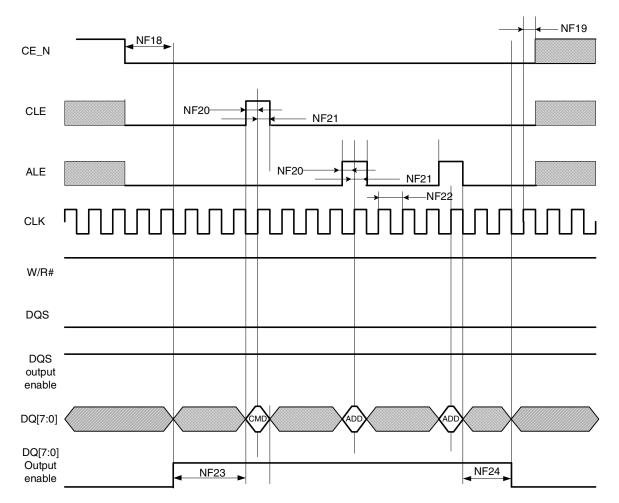


Figure 32. Source Synchronous Mode Command and Address Timing Diagram

4.11.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing, eMMC4.4 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.

4.11.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing

Figure 42 depicts the timing of SD/eMMC4.3, and Table 53 lists the SD/eMMC4.3 timing characteristics.

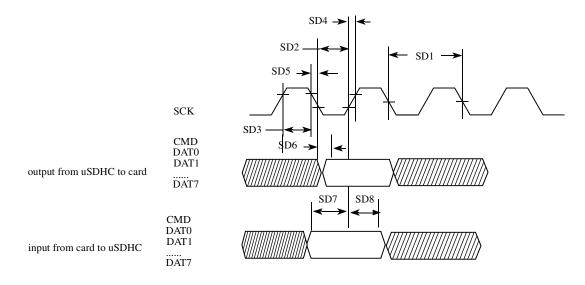


Figure 42. SD/eMMC4.3 Timing

ID	Parameter	Symbols	Min	Мах	Unit			
	Card Input Clock							
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz			
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz			
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz			
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz			
SD2	Clock Low Time	t _{WL}	7	—	ns			
SD3	Clock High Time	t _{WH}	7	—	ns			
SD4	Clock Rise Time	t _{TLH}	—	3	ns			
SD5	Clock Fall Time	t _{THL}	—	3	ns			
	uSDHC Output/Card Inputs CMD, DAT (Reference to CLK)							
SD6	uSDHC Output Delay	t _{OD}	-6.6	3.6	ns			

Table 53. S	SD/eMMC4.3	Interface	Timing	Specification
-------------	------------	-----------	--------	---------------

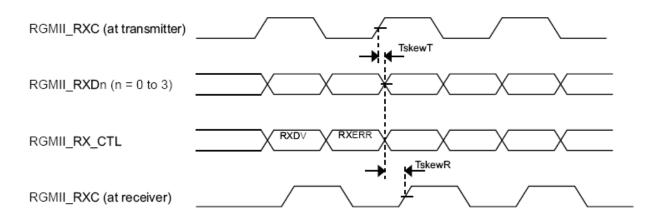


Figure 51. RGMII Receive Signal Timing Diagram Original

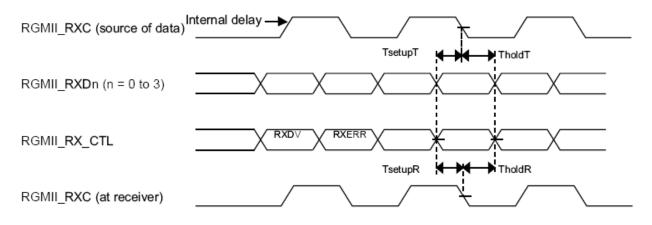
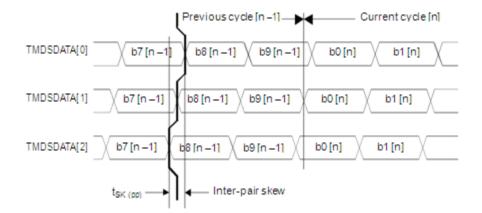
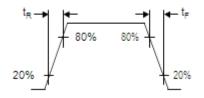
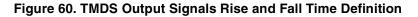


Figure 52. RGMII Receive Signal Timing Diagram with Internal Delay


4.11.6 Flexible Controller Area Network (FLEXCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* to see which pins expose Tx and Rx pins; these ports are named TXCAN and RXCAN, respectively.


4.11.7 HDMI Module Timing Parameters


4.11.7.1 Latencies and Timing Information

Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.

Symbol	mbol Parameter Conditions		Min.	Тур.	Max.	Unit				
	TMDS Drivers Specifications									
_	Maximum serial data rate	—	—	—	3.4	Gbps				
F TMDSCLK	TMDSCLK frequency	On TMDSCLKP/N outputs	25	—	340	MHz				
P TMDSCLK	TMDSCLK period	RL = 50 Ω See Figure 56.	2.94	_	40	ns				
^t CDC	TMDSCLK duty cycle	$t = t / P TMDSCLK$ $RL = 50 \Omega$ See Figure 56.	40	50	60	%				
^t CPH	TMDSCLK high time	RL = 50 Ω See Figure 56.	4	5	6	UI ¹				
t CPL	TMDSCLK low time	RL = 50 Ω See Figure 56.	4	5	6	UI ¹				
—	TMDSCLK jitter ²	RL = 50 Ω	—	—	0.25	UI ¹				
t SK(p)	Intra-pair (pulse) skew	$RL = 50 \Omega$ See Figure 58.	—		0.15	UI ¹				

Table 63. Switching Characteristics

^t SK(pp)	Inter-pair skew	$RL = 50 \Omega$ See Figure 59.	_	_	1	UI ¹
t _R	Differential output signal rise time	20-80% RL = 50 Ω See Figure 60.	75	_	0.4 UI	ps
t _F	Differential output signal fall time	$\begin{array}{l} 20-80\%\\ \text{RL}=50\ \Omega\\ \text{See Figure 60.} \end{array}$	75	—	0.4 UI	ps
_	Differential signal overshoot	Referred to 2x V _{SWING}	_	—	15	%
—	Differential signal undershoot	Referred to $2x V_{SWING}$	_	—	25	%

Table 63. Switching Characteristics (continued)

¹ UI means TMDS clock unit.

² Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3.

4.11.9 I²C Module Timing Parameters

This section describes the timing parameters of the I^2C module. Figure 61 depicts the timing of I^2C module, and Table 64 lists the I^2C module timing characteristics.

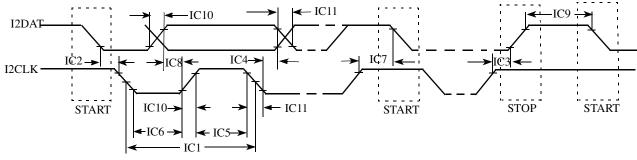


Figure 61. I²C Bus Timing

Table 64. I²C Module Timing Parameters

ID	ID Parameter		ard Mode	Fast Mode		Unit
			Мах	Min	Max	
IC1	I2CLK cycle time	10	_	2.5		μs
IC2	Hold time (repeated) START condition	4.0	_	0.6		μs
IC3	Set-up time for STOP condition	4.0	_	0.6		μs
IC4	Data hold time	0 ¹	3.45 ²	0 ¹	0.9 ²	μs
IC5	HIGH Period of I2CLK Clock	4.0	_	0.6		μs
IC6	LOW Period of the I2CLK Clock	4.7	_	1.3		μs
IC7	Set-up time for a repeated START condition	4.7	_	0.6		μs

4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels

4.11.10.6.1 IPU Display Operating Signals

The IPU uses four control signals and data to operate a standard synchronous interface:

- IPP_DISP_CLK—Clock to display
- HSYNC—Horizontal synchronization
- VSYNC—Vertical synchronization
- DRDY—Active data

All synchronous display controls are generated on the base of an internally generated "local start point". The synchronous display controls can be placed on time axis with DI's offset, up and down parameters. The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only.

4.11.10.6.2 LCD Interface Functional Description

Figure 65 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is:

- DI_CLK internal DI clock is used for calculation of other controls.
- IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, IPP_DISP_CLK runs continuously.
- HSYNC causes the panel to start a new line. (Usually IPP_PIN_2 is used as HSYNC.)
- VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. (Usually IPP_PIN_3 is used as VSYNC.)
- DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. (DRDY can be used either synchronous or asynchronous generic purpose pin as well.)

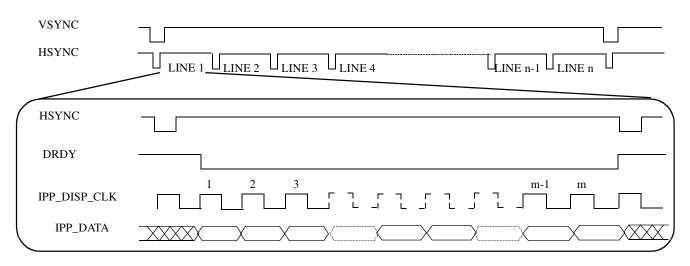
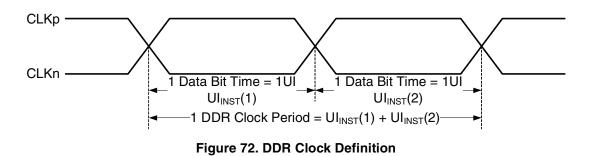



Figure 65. Interface Timing Diagram for TFT (Active Matrix) Panels

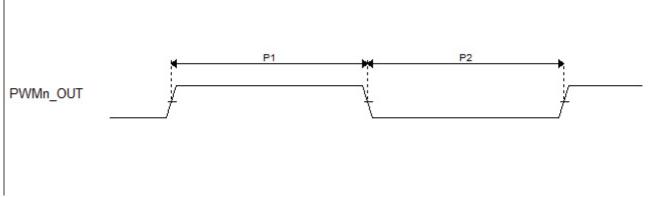
Symbol	Parameters	Test Conditions	MIN	ТҮР	МАХ	Unit
$\Delta V_{CMTX(LF)}$	Common level variation between 50 MHz and 450 MHz.	80 Ω<= RL< = 125 Ω			25	mVp
	LP Line D	rivers AC Specifications	•			•
t _{rlp,} t _{flp}	Single ended output rise/fall time	15% to 85%, C _L <70 pF			25	ns
t _{reo}		30% to 85%, C _L <70 pF			35	ns
$\delta V/\delta t_{SR}$	Signal slew rate	15% to 85%, C _L <70 pF			120	mV/ns
CL	Load capacitance		0		70	pF
	HS Line Re	eceiver AC Specifications	•	1		•
$\Delta V_{CMRX(HF)}$	Common mode interference beyond 450 MHz				200	mVpp
$\Delta V_{CMRX(LF)}$	Common mode interference between 50 MHz and 450 MHz.		-50		50	mVpp
C _{CM}	Common mode termination				60	pF
	LP Line Re	eceiver AC Specifications	1	1		1
e _{SPIKE}	Input pulse rejection				300	Vps
T _{MIN}	Minimum pulse response		50			ns
V _{INT}	Pk-to-Pk interference voltage				400	mV
f _{INT}	Interference frequency		450			MHz
	Model Parameters used for Dr	river Load switching perforr	nance eva	luation		1
C _{PAD}	Equivalent Single ended I/O PAD capacitance.				1	pF
C _{PIN}	Equivalent Single ended Package + PCB capacitance.				2	pF
L _S	Equivalent wire bond series inductance				1.5	nH
R _S	Equivalent wire bond series resistance				0.15	Ω
RL	Load resistance		80	100	125	Ω

Table 72. Electrical and Timing Information

4.11.12.6 High-Speed Clock Timing

4.11.14 PCIe PHY Parameters

The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.


4.11.14.1 PCIE_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 200 Ω . 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration.

4.11.15 Pulse Width Modulator (PWM) Timing Parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

Figure 84 depicts the timing of the PWM, and Table 74 lists the PWM timing parameters.

Figure	84.	PWM	Timing
--------	-----	-----	--------

Table 74. PWM Output Timing Parameters

ID	Parameter	Min	Мах	Unit
	PWM Module Clock Frequency	0	ipg_clk	MHz
P1	PWM output pulse width high	15		ns
P2	PWM output pulse width low	15		ns

ID	Parameter		Мах	Unit		
Synchronous Internal Clock Operation						
SS42	SRXD setup before (Tx) CK falling	10.0	—	ns		
SS43	SS43 SRXD hold after (Tx) CK falling		_	ns		

Table 78. SSI Transmitter Timing with Internal Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

4.11.20.2 Receive Timing

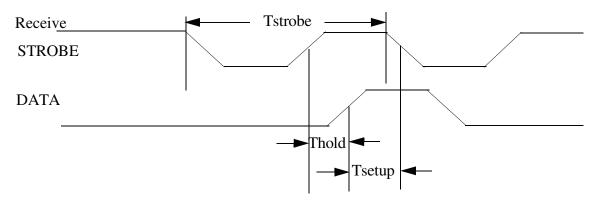


Figure 100. USB HSIC Receive Waveform

Table 88. U	JSB HSIC Receiv	ve Parameters ¹
-------------	-----------------	----------------------------

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	
Thold	data hold time	300		ps	Measured at 50% point
Tsetup	data setup time	365		ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

4.11.21 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0

Package Information and Contact Assignments

					Out of Reset Con	dition ²	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value
DRAM_DQM0	AC3	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[0]	Output	Low
DRAM_DQM1	AC6	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[1]	Output	Low
DRAM_DQM2	AB8	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[2]	Output	Low
DRAM_DQM3	AE10	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[3]	Output	Low
DRAM_DQM4	AB18	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[4]	Output	Low
DRAM_DQM5	AC20	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[5]	Output	Low
DRAM_DQM6	AD24	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[6]	Output	Low
DRAM_DQM7	Y21	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[7]	Output	Low
DRAM_RAS	AB15	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_RAS	Output	Low
DRAM_RESET	Y6	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_RESET	Output	Low
DRAM_SDBA0	AC15	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDBA[0]	Output	Low
DRAM_SDBA1	Y15	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDBA[1]	Output	Low
DRAM_SDBA2	AB12	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDBA[2]	Output	Low
DRAM_SDCKE0	Y11	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDCKE[0]	Output	Low
DRAM_SDCKE1	AA11	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDCKE[1]	Output	Low
DRAM_SDCLK_0	AD15	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDCLK0	Output	Low
DRAM_SDCLK_0_B	AE15	NVCC_DRAM			DRAM_SDCLK_0_B	-	-
DRAM_SDCLK_1	AD14	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDCLK1	Output	Low
DRAM_SDCLK_1_B	AE14	NVCC_DRAM			DRAM_SDCLK_1_B	-	-
DRAM_SDODT0	AC16	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_ODT[0]	Output	Low
DRAM_SDODT1	AB17	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_ODT[1]	Output	Low
DRAM_SDQS0	AE3	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[0]	Input	Hi-Z
DRAM_SDQS0_B	AD3	NVCC_DRAM			DRAM_SDQS0_B	-	-
DRAM_SDQS1	AD6	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[1]	Input	Hi-Z
DRAM_SDQS1_B	AE6	NVCC_DRAM			DRAM_SDQS1_B	-	-
DRAM_SDQS2	AD8	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[2]	Input	Hi-Z
DRAM_SDQS2_B	AE8	NVCC_DRAM			DRAM_SDQS2_B	-	-
DRAM_SDQS3	AC10	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[3]	Input	Hi-Z
DRAM_SDQS3_B	AB10	NVCC_DRAM			DRAM_SDQS3_B	-	-
DRAM_SDQS4	AD18	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[4]	Input	Hi-Z

Table 92. 21 x 21 mm Functional Contact Assignments¹ (continued)

Package Information and Contact Assignments

۲	8	>	5	F	æ	٩	z
LVDS1_TX0_N	LVDS0_TX3_P	LVDS0_TX2_P	LVDS0_TX0_P	GPI0_2	GPI0_17	CSI0_PIXCLK	CSI0_DAT4
LVDS1_TX0_P	LVDS0_TX3_N	LVDS0_TX2_N	LVDS0_TX0_N	GPIO_9	GPIO_16	CSI0_DAT5	CSI0_VSYNC
LVDS1_CLK_N	GND	LVDS0_CLK_P	LVDS0_TX1_P	GPIO_6	GPIO_7	CSI0_DATA_EN	CSI0_DAT7
LVDS1_CLK_P	KEY_ROW2	LVDS0_CLK_N	LVDS0_TX1_N	GPI0_1	GPIO_5	CSI0_MCLK	CSI0_DAT6
GND	KEY_COL0	KEY_ROW4	KEY_COL3	GPIO_0	GPIO_8	GPIO_19	CSI0_DAT9
DRAM_RESET	KEY_COL2	KEY_ROW0	KEY_ROW1	KEY_COL4	GPIO_4	GPIO_18	CSI0_DAT8
DRAM_D20	GND	NVCC_LVDS2P5	KEY_COL1	KEY_ROW3	GPIO_3	NVCC_GPIO	NVCC_CSI
DRAM_D21	GND	GND	GND	GND	GND	GND	GND
DRAM_D19	GND	NVCC_DRAM	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_D25	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDSOC_CAP	GND	GND
DRAM_SDCKE0	GND	NVCC_DRAM	GND	GND	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A15	GND	NVCC_DRAM	GND	GND	GND	GND	NC
DRAM_A7	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A3	DRAM_A4	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_SDBA1	GND	NVCC_DRAM	GND	GND	GND	GND	GND
DRAM_CS0	GND	NVCC_DRAM	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN
DRAM_D36	GND	NVCC_DRAM	GND	GND	GND	VDDPU_CAP	VDDPU_CAP
DRAM_D37	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	GND
DRAM_D40	GND	GND	GND	GND	NVCC_ENET	NVCC_LCD	DI0_DISP_CLK
DRAM_D44	ENET_TXD1	ENET_MDC	ENET_TXD0	DISP0_DAT21	DISP0_DAT13	DISP0_DAT4	DI0_PIN3
DRAM_DQM7	ENET_RXD0	ENET_TX_EN	ENET_CRS_DV	DISP0_DAT16	DISP0_DAT10	DISP0_DAT3	DI0_PIN15
DRAM_D59	ENET_RXD1	ENET_REF_CLK	DISP0_DAT20	DISP0_DAT15	DISP0_DAT8	DISP0_DAT1	EIM_BCLK
DRAM_D62	ENET_RX_ER	ENET_MDIO	DISP0_DAT19	DISP0_DAT11	DISP0_DAT6	DISP0_DAT2	EIM_DA14
GND	DISP0_DAT23	DISP0_DAT22	DISP0_DAT17	DISP0_DAT12	DISP0_DAT7	DISP0_DAT0	EIM_DA15
DRAM_D58	DRAM_D63	DISP0_DAT18	DISP0_DAT14	DISP0_DAT9	DISP0_DAT5	DI0_PIN4	DI0_PIN2
٨	M	>	D	F	æ	٩	z

Table 94. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)