

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Betuns	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON [™] SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s5dvm10acr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

- Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
- Two Controller Area Network (FlexCAN), 1 Mbps each
- Two Watchdog timers (WDOG)
- Audio MUX (AUDMUX)

The i.MX 6Solo/6DualLite processors integrate advanced power management unit and controllers:

- Provide PMU, including LDO supplies, for on-chip resources
- Use Temperature Sensor for monitoring the die temperature
- Support DVFS techniques for low power modes
- Use SW State Retention and Power Gating for ARM and MPE
- Support various levels of system power modes
- Use flexible clock gating control scheme

The i.MX 6Solo/6DualLite processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks.

The i.MX 6Solo/6DualLite processors incorporate the following hardware accelerators:

- VPU—Video Processing Unit
- IPUv3H—Image Processing Unit version 3H
- GPU3Dv5—3D Graphics Processing Unit (OpenGL ES 2.0) version 5
- GPU2Dv2—2D Graphics Processing Unit (BitBlt)
- PXP—PiXel Processing Pipeline. Off loading key pixel processing operations are required to support the EPD display applications.
- ASRC—Asynchronous Sample Rate Converter

Security functions are enabled and accelerated by the following hardware:

- ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
- SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features.
- CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash engines, 16 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).
- SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
- CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy.
- A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.

Block Mnemonic	Block Name	Subsystem	Brief Description
SSI-1 SSI-2 SSI-3	I2S/SSI/AC97 Interface	Connectivity Peripherals	The SSI is a full-duplex synchronous interface, which is used on the AP to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller in order to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously.
TEMPMON	Temperature Monitor	System Control Peripherals	The Temperature sensor IP is used for detecting die temperature. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed, therefore the read out value may not be the reflection of the temperature value of the entire die.
TZASC	Trust-Zone Address Space Controller	Security	The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.
UART-1 UART-2 UART-3 UART-4 UART-5	UART Interface	Connectivity Peripherals	 Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) Programmable baud rates up to 4 MHz. This is a higher max baud rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard and the i.MX31 UART modules. 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud IrDA 1.0 support (up to SIR speed of 115200 bps) Option to operate as 8-pins full UART, DCE, or DTE
USBOH3	USB 2.0 High Speed OTG and 3x HS Hosts	Connectivity Peripherals	 USBOH3 contains: One high-speed OTG module with integrated HS USB PHY One high-speed Host module with integrated HS USB PHY Two identical high-speed Host modules connected to HSIC USB ports.
VDOA	VDOA	Multimedia Peripherals	Video Data Order Adapter (VDOA): used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU.

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
VPU	Video Processing Unit	Multimedia Peripherals	A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i. <i>MX 6Solo/6DualLite Reference Manual</i> (<i>IMX6SDLRM</i>) for complete list of VPU's decoding/encoding capabilities.
WDOG-1	Watch Dog	Timer Peripherals	The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
WDOG-2 (TZ)	Watch Dog (TrustZone)	Timer Peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW.
WEIM	NOR-Flash /PSRAM interface	Connectivity Peripherals	 The WEIM NOR-FLASH / PSRAM provides: Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency Multiple chip selects
XTALOSC	Crystal Oscillator I/F	Clocks, Resets, and Power Control	The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator to provide USB required frequency.

Power Line	Conditions	Max Current	Unit
NVCC_DRAM	—	4	
NVCC_ENET	N=10	Use maximal IO equation ⁵	
NVCC_LCD	N=29	Use maximal IO equation ⁵	
NVCC_GPIO	N=24	Use maximal IO equation ⁵	
NVCC_CSI	N=20	Use maximal IO equation ⁵	
NVCC_EIM	N=53	Use maximal IO equation ⁵	
NVCC_JTAG	N=6	Use maximal IO equation ⁵	
NVCC_RGMII	N=12	Use maximal IO equation ⁵	
NVCC_SD1	N=6	Use maximal IO equation ⁵	
NVCC_SD2	N=6	Use maximal IO equation ⁵	
NVCC_SD3	N=11	Use maximal IO equation ⁵	
NVCC_NANDF	N=26	Use maximal IO equation ⁵	
	MISC		
DDR_VREF	—	1	mA

Table 12. Maximal Supply Currents (continued)

¹ The actual maximum current drawn from VDDHIGH_IN will be as shown plus any additional current drawn from the VDDHIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies).

² The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA, if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available.

³ This is the maximum current per active USB physical interface.

⁴ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios.

⁵ General equation for estimated, maximal power consumption of an IO power supply:

 $Imax = N \times C \times V \times (0.5 \times F)$

Where:

N—Number of IO pins supplied by the power line

C—Equivalent external capacitive load

V—IO voltage

(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

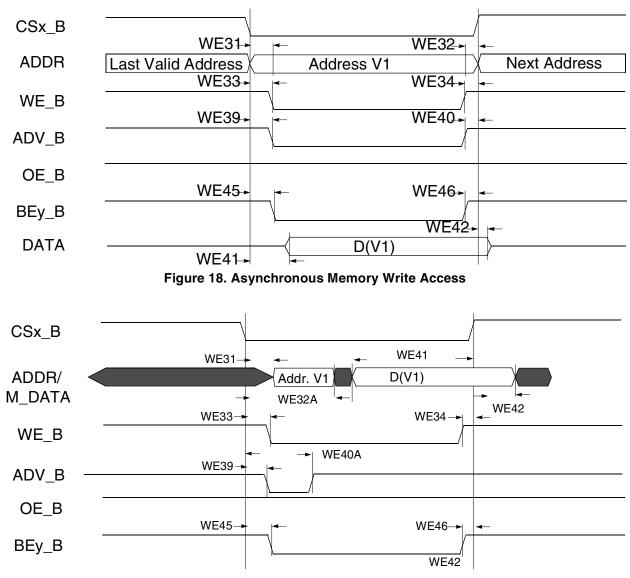
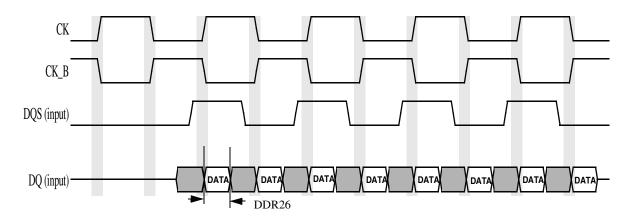



Figure 19. Asynchronous A/D Muxed Write Access

Figure 24 shows the read DDR3/DDR3L timing parameters. The timing parameters for this diagram appear in Table 43.

Figure 24. DDR3/DDR3L Read Cycle

Table 43. DDR3/DDR3L Read Cycle

ID	Parameter	Symbol	CK = 400 MHz		Unit
	Falanetei		Min	Max	onne
DDR26	Minimum required DQ valid window width		450	—	ps

¹ To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window.

² All measurements are in reference to Vref level.

 $^3\,$ Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

ID	Parameter	Symbol	Tim T = GPMI C	Unit	
			Min.	Max.	
NF18	CE# access time	tCE	CE_DELAY x tCK	—	ns
NF19	CE# hold time	tCH	0.5 x tCK	—	ns
NF20	Command/address DQ setup time	tCAS	0.5 x tCK	_	ns
NF21	Command/address DQ hold time	tCAH	0.5 x tCK	_	ns
NF22	clock period	tCK	5		ns
NF23	preamble delay	tPRE	PRE_DELAY x tCK	—	ns
NF24	postamble delay	tPOST	POST_DELAY x tCK	—	ns
NF25	CLE and ALE setup time	tCALS	0.5 x tCK	—	ns
NF26	CLE and ALE hold time	tCALH	0.5 x tCK	—	ns
NF27	Data input to first DQS latching transition	tDQSS	tCK	—	ns

Table 48. Source Synchronous Mode Timing Parameters¹

¹ GPMI's Sync Mode output timing could be controlled by module's internal registers, say

HW_GPMI_TIMING2_CE_DELAY, HW_GPMI_TIMING_PREAMBLE_DELAY, and

HW_GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers' settings. In the above table, we use CE_DELAY/PRE_DELAY/POST_DELAY to represent each of these settings.

For DDR Source sync mode, Figure 35 shows the timing diagram of DQS/DQ read valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI will sample DQ[7:0] at both rising and falling edge of an delayed DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET(see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.10.3 Samsung Toggle Mode AC Timing

4.10.3.1 Command and Address Timing

NOTE

Samsung Toggle Mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.10.1, "Asynchronous Mode AC Timing (ONFI 1.0 Compatible)," for details.

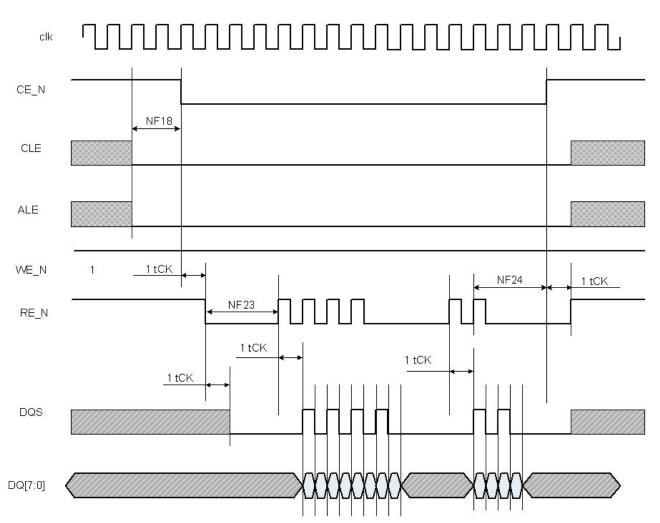


Figure 37. Samsung Toggle Mode Data Read Timing

ID	Parameter	Symbol	Tim T = GPMI C		Unit	
			Min.	Max.		
NF18	CE# access time	tCE	CE_DELAY x tCK	—	ns	
NF19	CE# hold time	tCH	0.5 x tCK	—	ns	
NF20	Command/address DQ setup time	tCAS	0.5 x tCK	_	ns	
NF21	Command/address DQ hold time	tCAH	0.5 x tCK	_	ns	
NF22	clock period	tCK	7.5		ns	

Table 49. Samsung Toggle Mode Timing Parameters

4.11.2.2 ECSPI Slave Mode Timing

Figure 39 depicts the timing of ECSPI in slave mode. Table 51 lists the ECSPI slave mode timing characteristics.

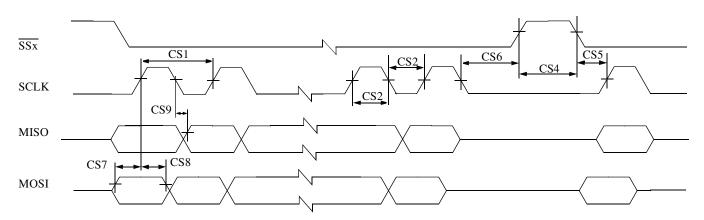


Figure 39. ECSPI Slave Mode Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
CS1	SCLK Cycle Time-Read SCLK Cycle Time-Write	t _{clk}	43 15	_	ns
CS2	SCLK High or Low Time–Read SCLK High or Low Time–Write	t _{SW}	21.5 7	_	ns
CS4	SSx pulse width	t _{CSLH}	Half SCLK period	_	ns
CS5	SSx Lead Time (CS setup time)	t _{SCS}	5	_	ns
CS6	SSx Lag Time (CS hold time)	t _{HCS}	5	_	ns
CS7	MOSI Setup Time	t _{Smosi}	4	_	ns
CS8	MOSI Hold Time	t _{Hmosi}	4	_	ns
CS9	MISO Propagation Delay ($C_{LOAD} = 20 \text{ pF}$)	t _{PDmiso}	4	19	ns

Table 51. ECSPI Slave Mode Timing Parameters

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
81	SCKT rising edge to FST out (wr) low ⁵			_	22.0 12.0	x ck i ck	ns
82	SCKT rising edge to FST out (wl) high	—	—	_	19.0 9.0	x ck i ck	ns
83	SCKT rising edge to FST out (wl) low	—	—	_	20.0 10.0	x ck i ck	ns
84	SCKT rising edge to data out enable from high impedance	—		_	22.0 17.0	x ck i ck	ns
86	SCKT rising edge to data out valid	—		_	18.0 13.0	x ck i ck	ns
87	SCKT rising edge to data out high impedance ⁶⁷	—		_	21.0 16.0	x ck i ck	ns
89	FST input (bl, wr) setup time before SCKT falling edge ⁵	—	—	2.0 18.0	—	x ck i ck	ns
90	FST input (wl) setup time before SCKT falling edge	—		2.0 18.0	_	x ck i ck	ns
91	FST input hold time after SCKT falling edge			4.0 5.0		x ck i ck	ns
95	HCKR/HCKT clock cycle	—	2 x T _C	15		—	ns
96	HCKT input rising edge to SCKT output	—	—	—	18.0	—	ns
97	HCKR input rising edge to SCKR output	—	—	_	18.0	—	ns

Table 52. Enhanced Serial Audio Interface (ESAI) Timing (continued)

¹ i ck = internal clock

x ck = external clock

i ck a = internal clock, asynchronous mode

(asynchronous implies that SCKT and SCKR are two different clocks)

i ck s = internal clock, synchronous mode

(synchronous implies that SCKT and SCKR are the same clock)

- ² bl = bit length
 - wl = word length

wr = word length relative

- ³ SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock
- ⁴ For the internal clock, the external clock cycle is defined by lcyc and the ESAI control register.
- ⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame.
- ⁶ Periodically sampled and not 100% tested.

Figure 46 shows MII transmit signal timings. Table 57 describes the timing parameters (M5–M8) shown in the figure.

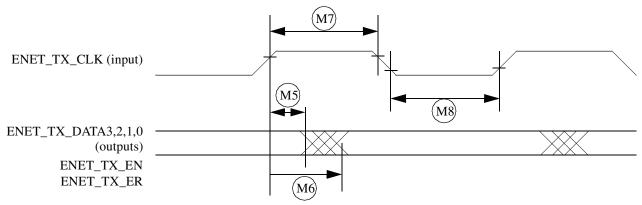


Figure 46. MII Transmit Signal Timing Diagram

Table 57. MII Transmit Signal Timing

ID	Characteristic ¹	Min.	Max.	Unit
M5	ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid	5	_	ns
M6	ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid	_	20	ns
M7	ENET_TX_CLK pulse width high	35%	65%	ENET_TX_CLK period
M8	ENET_TX_CLK pulse width low	35%	65%	ENET_TX_CLK period

¹ ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

4.11.5.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)

Figure 47 shows MII asynchronous input timings. Table 58 describes the timing parameter (M9) shown in the figure.

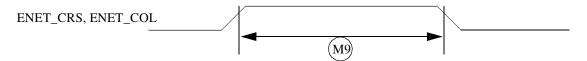


Figure 47. MII Async Inputs Timing Diagram

Table 58. MII Asynchronous	Inputs Signal Timing
----------------------------	----------------------

ID	Characteristic	Min.	Max.	Unit
M9 ¹	ENET_CRS to ENET_COL minimum pulse width	1.5	_	ENET_TX_CLK period

¹ ENET_COL has the same timing in 10-Mbit 7-wire interface mode.

4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

Figure 48 shows MII asynchronous input timings. Table 59 describes the timing parameters (M10–M15) shown in the figure.

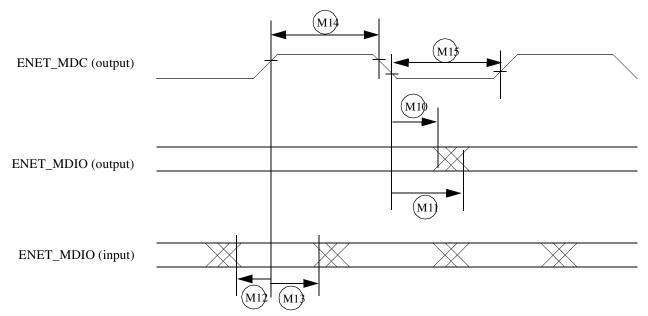


Figure 48. MII Serial Management Channel Timing Diagram

ID	Characteristic	Min.	Max.	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay)	0	—	ns
M11	ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay)	_	5	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	18	—	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	—	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

4.11.5.2 RMII Mode Timing

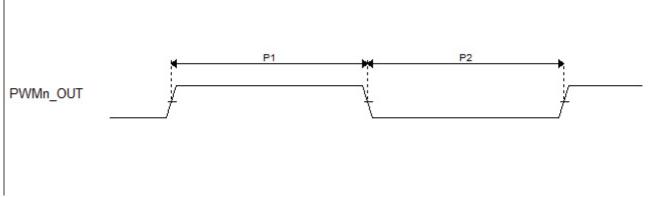
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET_RX_EN is used as the CRS_DV in RMII. Other signals under RMII mode include ENET_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET_RX_ER.

i.MX 6Solo/6DualLite				LCD				
	RGB,	R	GB/TV S	Signal A	llocation	(Examp	ole)	Comment ¹
Port Name (x=0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ²	16-bit YCrCb	20-bit YCrCb	
DISPx_DAT0	DAT[0]	B[0]	B[0]	B[0]	Y/C[0]	C[0]	C[0]	The restrictions are as follows: • There are maximal three
DISPx_DAT1	DAT[1]	B[1]	B[1]	B[1]	Y/C[1]	C[1]	C[1]	continuous groups of bits that could be independently
DISPx_DAT2	DAT[2]	B[2]	B[2]	B[2]	Y/C[2]	C[2]	C[2]	mapped to the external bus. Groups should not be
DISPx_DAT3	DAT[3]	B[3]	B[3]	B[3]	Y/C[3]	C[3]	C[3]	overlapped.The bit order is expressed in
DISPx_DAT4	DAT[4]	B[4]	B[4]	B[4]	Y/C[4]	C[4]	C[4]	each of the bit groups, for example, B[0] = least significant
DISPx_DAT5	DAT[5]	G[0]	B[5]	B[5]	Y/C[5]	C[5]	C[5]	blue pixel bit
DISPx_DAT6	DAT[6]	G[1]	G[0]	B[6]	Y/C[6]	C[6]	C[6]	
DISPx_DAT7	DAT[7]	G[2]	G[1]	B[7]	Y/C[7]	C[7]	C[7]	
DISPx_DAT8	DAT[8]	G[3]	G[2]	G[0]		Y[0]	C[8]	
DISPx_DAT9	DAT[9]	G[4]	G[3]	G[1]		Y[1]	C[9]	
DISPx_DAT10	DAT[10]	G[5]	G[4]	G[2]	_	Y[2]	Y[0]	-
DISPx_DAT11	DAT[11]	R[0]	G[5]	G[3]	_	Y[3]	Y[1]	-
DISPx_DAT12	DAT[12]	R[1]	R[0]	G[4]	_	Y[4]	Y[2]	
DISPx_DAT13	DAT[13]	R[2]	R[1]	G[5]	_	Y[5]	Y[3]	-
DISPx_DAT14	DAT[14]	R[3]	R[2]	G[6]	_	Y[6]	Y[4]	-
DISPx_DAT15	DAT[15]	R[4]	R[3]	G[7]		Y[7]	Y[5]	
DISPx_DAT16	DAT[16]	—	R[4]	R[0]			Y[6]	
DISPx_DAT17	DAT[17]		R[5]	R[1]			Y[7]	
DISPx_DAT18	DAT[18]	_		R[2]			Y[8]	
DISPx_DAT19	DAT[19]	_		R[3]	_	-	Y[9]	
DISPx_DAT20	DAT[20]			R[4]	_	—		
DISPx_DAT21	DAT[21]	_	_	R[5]				

Table 67. Video Signal Cross-Reference

4.11.14 PCIe PHY Parameters

The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.


4.11.14.1 PCIE_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 200 Ω . 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration.

4.11.15 Pulse Width Modulator (PWM) Timing Parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

Figure 84 depicts the timing of the PWM, and Table 74 lists the PWM timing parameters.

Figure	84.	PWM	Timing
--------	-----	-----	--------

Table 74. PWM Output Timing Parameters

ID	Parameter	Min	Мах	Unit
	PWM Module Clock Frequency	0	ipg_clk	MHz
P1	PWM output pulse width high	15		ns
P2	PWM output pulse width low	15		ns

4.11.16 SCAN JTAG Controller (SJC) Timing Parameters

Figure 85 depicts the SJC test clock input timing. Figure 86 depicts the SJC boundary scan timing. Figure 87 depicts the SJC test access port. Signal parameters are listed in Table 75.

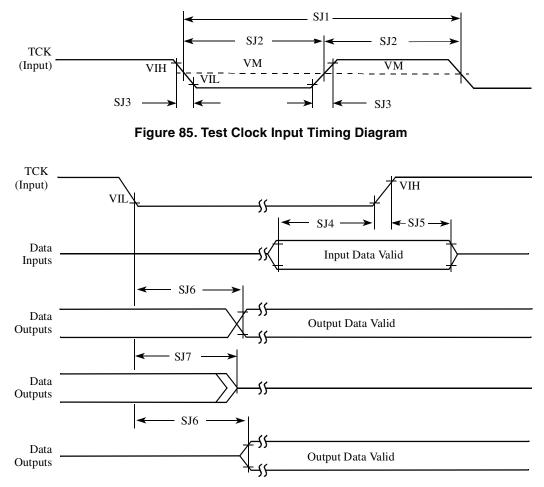


Figure 86. Boundary Scan (JTAG) Timing Diagram

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

4.11.19 UART I/O Configuration and Timing Parameters

4.11.19.1 UART RS-232 I/O Configuration in Different Modes

The i.MX 6Solo/6DualLite UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0 — DCE mode). Table 82 shows the UART I/O configuration based on the enabled mode.

Port		DTE Mode		DCE Mode
Pon	Direction	Description	Direction	Description
RTS	Output	RTS from DTE to DCE	Input	RTS from DTE to DCE
CTS	Input	CTS from DCE to DTE	Output	CTS from DCE to DTE
DTR	Output	DTR from DTE to DCE	Input	DTR from DTE to DCE
DSR	Input	DSR from DCE to DTE	Output	DSR from DCE to DTE
DCD	Input	DCD from DCE to DTE	Output	DCD from DCE to DTE
RI	Input	RING from DCE to DTE	Output	RING from DCE to DTE
TXD_MUX	Input	Serial data from DCE to DTE	Output	Serial data from DCE to DTE
RXD_MUX	Output	Serial data from DTE to DCE	Input	Serial data from DTE to DCE

Table 82. UART I/O Configuration vs. Mode

4.11.19.2 UART RS-232 Serial Mode Timing

The following sections describe the electrical information of the UART module in the RS-232 mode.

4.11.20.2 Receive Timing

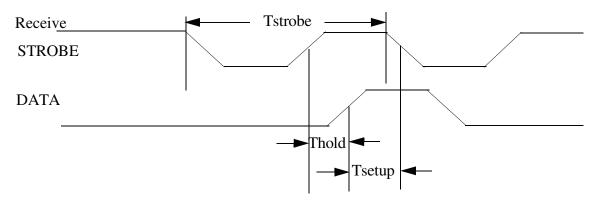


Figure 100. USB HSIC Receive Waveform

Table 88. U	JSB HSIC Receiv	ve Parameters ¹
-------------	-----------------	----------------------------

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	
Thold	data hold time	300		ps	Measured at 50% point
Tsetup	data setup time	365		ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

4.11.21 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0

Package Information and Contact Assignments

6 Package Information and Contact Assignments

This section includes the contact assignment information and mechanical package drawing.

6.1 21x21 mm Package Information

6.1.1 Case 2240, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix

Figure 101 shows the top, bottom, and side views of the 21×21 mm BGA package.

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

 $\$ MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

 $\label{eq:parallelism}$ measurement shall exclude any effect of mark on top surface of package.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PRO	FILE,	DOCUME	NT NO: 98ASA00404D	REV: O
FINE PITCH, 624	, .	CASE NU	JMBER: 2240-01	27 SEP 2011
21 X 21 PKG, 0.8 MM F	РІТСН (МАР)	STANDAF	RD: NON-JEDEC	

Figure 101. 21 x 21 mm BGA, Case 2240 Package Top, Bottom, and Side Views

	AE	AD	AC	AB	AA
-	GND	DRAM_D5	DRAM_D4	LVDS1_TX2_N	LVDS1_TX1_P
2	DRAM_D1	DRAM_D0	DRAM_VREF	LVDS1_TX2_P	LVDS1_TX1_N
e	DRAM_SDQS0	DRAM_SDQS0_B	DRAM_DQM0	GND	LVDS1_TX3_N
4	DRAM_D7	GND	DRAM_D2	DRAM_D6	LVDS1_TX3_P
2	DRAM_D9	DRAM_D8	DRAM_D13	DRAM_D12	DRAM_D3
9	DRAM_SDQS1_B	DRAM_SDQS1	DRAM_DQM1	DRAM_D14	DRAM_D10
2	DRAM_D11	GND	DRAM_D15	DRAM_D16	GND
œ	DRAM_SDQS2_B	DRAM_SDQS2	DRAM_D22	DRAM_DQM2	DRAM_D17
თ	DRAM_D24	DRAM_D29	DRAM_D28	DRAM_D18	DRAM_D23
10	DRAM_DQM3	GND	DRAM_SDQS3	DRAM_SDQS3_B	GND
÷	DRAM_D26	DRAM_D30	DRAM_D31	DRAM_D27	DRAM_SDCKE1
12	DRAM_A9	DRAM_A12	DRAM_A11	DRAM_SDBA2	DRAM_A14
13	DRAM_A5	GND	DRAM_A6	DRAM_A8	GND
14	DRAM_SDCLK_1_B	DRAM_SDCLK_1	DRAM_A0	DRAM_A1	DRAM_A2
15	DRAM_SDCLK_0_B	DRAM_SDCLK_0	DRAM_SDBA0	DRAM_RAS	DRAM_A10
16	DRAM_CAS	GND	DRAM_SDODT0	DRAM_SDWE	GND
17	ZQPAD	DRAM_CS1	DRAM_A13	DRAM_SDODT1	DRAM_D32
18	DRAM_SDQS4_B	DRAM_SDQS4	DRAM_D34	DRAM_DQM4	DRAM_D33
19	DRAM_D35	GND	DRAM_D39	DRAM_D38	GND
20	DRAM_SDQS5_B	DRAM_SDQS5	DRAM_DQM5	DRAM_D41	DRAM_D45
21	DRAM_D46	DRAM_D43	DRAM_D47	DRAM_D42	DRAM_D57
22	DRAM_D49	GND	DRAM_D48	DRAM_D52	GND
23	DRAM_SDQS6_B	DRAM_SDQS6	DRAM_D53	DRAM_D60	DRAM_D61
24	DRAM_D50	DRAM_DQM6	DRAM_D51	GND	DRAM_SDQS7_B
25	GND	DRAM_D54	DRAM_D55	DRAM_D56	DRAM_SDQS7
	AE	AD	AC	AB	АА

Table 94. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)