

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON [™] SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-20°C ~ 105°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s5evm10ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Subsystem	Brief Description
ENET	Ethernet Controller	Connectivity Peripherals	The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. Note: The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Solo/6DualLite errata document (IMX6SDLCE).
EPDC	Electrophoretic Display Controller	Peripherals	The EPDC is a feature-rich, low power, and high-performance direct-drive, active matrix EPD controller. It is specifically designed to drive E-INK TM EPD panels, supporting a wide variety of TFT backplanes. It is available in both i.MX 6DualLite and i.MX 6Solo.
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.

Table 2. i.MX 6Solo/6DualLite	Modules List (continued)
-------------------------------	--------------------------

Block Mnemonic	Block Name	Subsystem	Brief Description
512x8 Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6Solo/6DualLite processors consist of 512x8-bit fuse fox accessible through OCOTP_CTRL interface.
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O.
GPMI	General Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.
GPU3Dv5	Graphics Processing Unit, ver.5	Multimedia Peripherals	The GPU3Dv5 provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1.1
GPU2Dv2	Graphics Processing Unit-2D, ver 2	Multimedia Peripherals	The GPU2Dv2 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.
HDMI Tx	HDMI Tx i/f	Multimedia Peripherals	The HDMI module provides HDMI standard i/f port to an HDMI 1.4 compliant display.
HSI	MIPI HSI i/f	Connectivity Peripherals	The MIPI HSI provides a standard MIPI interface to the applications processor.
l ² C-1 l ² C-2 l ² C-3 l ² C-4	I ² C Interface	Connectivity Peripherals	I ² C provide serial interface for external devices. Data rates of up to 400 kbps are supported.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
SDMA	Smart Direct Memory Access	System Control Peripherals	 The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: Powered by a 16-bit Instruction-Set micro-RISC engine Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels 48 events with total flexibility to trigger any combination of channels Memory accesses including linear, FIFO, and 2D addressing Shared peripherals between ARM and SDMA Very fast Context-Switching with 2-level priority based preemptive multi-tasking DMA units with auto-flush and prefetch capability Flexible address management for DMA transfers (increment, decrement, and no address) DMA ports can handle unit-directional and bi-directional flows (copy mode) Up to 8-word buffer for configurable burst transfers Support of byte-swapping and CRC calculations Library of Scripts and API is available
SJC	System JTAG Controller	System Control Peripherals	The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6Solo/6DualLite processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6Solo/6DualLite SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.
SPDIF	Sony Philips Digital Interconnect Format	Multimedia Peripherals	A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality.
SNVS	Secure Non-Volatile Storage	Security	Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

⁴ External oscillator or a fundamental frequency crystal with internal oscillator amplifier.

The typical values shown in Table 11 are required for use with Freescale BSPs to ensure precise time

keeping and USB operation. For RTC_XTAL operation, two clock sources are available.

On-chip 40 kHz ring oscillator-this clock source has the following characteristics:

Approximately 25 µA more Idd than crystal oscillator

Approximately ±50% tolerance

No external component required

Starts up quicker than 32 kHz crystal oscillator

External crystal oscillator with on-chip support circuit:

At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.

Higher accuracy than ring oscillator

If no external crystal is present, then the ring oscillator is utilized

The decision of choosing a clock source should be taken based on real-time clock use and precision timeout.

4.1.5 Maximal Supply Currents

The Power Virus numbers shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption.

The MMPF0100xxxx, Freescale's power management IC targeted for the i.MX 6x family, supports the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal design is required for the increased system power dissipation.

See the i.MX 6Solo/6DualLite Power Consumption Measurement Application Note (AN4576) for more details on typical power consumption under various use case definitions.

Power Line	Conditions	Max Current	Unit		
VDDARM_IN	996 MHz ARM clock based on Power Virus operation	2200	mA		
VDDSOC_IN	996 MHz ARM clock	1260	mA		
VDDHIGH_IN		125 ¹	mA		
VDD_SNVS_IN		275 ²	μΑ		
USB_OTG_VBUS/USB_H1_VBUS (LDO 3P0)		25 ³	mA		
Primary Interface (IO) Supplies					

 Table 12. Maximal Supply Currents

enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately $40 \ \Omega$.

For additional information, see the i.MX 6Solo/6DualLite reference manual.

4.3.2.3 LDO_USB

The LDO_USB module implements a programmable linear-regulator function from the USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output voltage. The regulator has been designed to be stable with a minimum external low ESR decoupling capacitor of 1 μ F (2.2 μ F should be considered the recommended minimum value for component selection), though the actual capacitance required should be determined by the application. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either VBUS supply, when both are present. If only one of the VBUS voltages is present, then, the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets.

For additional information, see the i.MX 6Solo/6DualLite reference manual.

4.4 PLL's Electrical Characteristics

4.4.1 Audio/Video PLL's Electrical Parameters

Parameter	Value
Clock output range	650 MHz ~1.3 GHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

Table 17. Audio/Video PLL's Electrical Parameters

4.4.2 528 MHz PLL

Table 18. 528 MHz PLL's Electrical Parameters

Parameter	Value
Clock output range	528 MHz PLL output
Reference clock	24 MHz
Lock time	<11250 reference cycles

4.6 I/O DC Parameters

This section includes the DC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes
- LVDS I/O

NOTE

The term 'OVDD' in this section refers to the associated supply rail of an input or output.

Figure 3. Circuit for Parameters Voh and Vol for I/O Cells

4.6.1 General Purpose I/O (GPIO) DC Parameters

Table 23 shows DC parameters for GPIO pads. The parameters in Table 23 are guaranteed per the operating ranges in Table 9, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Max	Units	
	GPIO DC Electrical Characteristics					
High-level output voltage ¹	V _{OH}	loh= -0.1mA (ipp_dse=001,010) loh= -1mA (ipp_dse=011,100,101,110,1 11)	OVDD-0. 15		V	
Low-level output voltage ¹	VOL	lol= 0.1mA (ipp_dse=001,010) lol= 1mA (ipp_dse=011,100,101,110,1 11)	0.15	V		
High-Level input voltagev ^{1,2}	VIH		0.7*OVD D	OVDD	V	

Table 23. GPIO DC Parameters

- ¹ t_{SKD} = I t_{PHLD} t_{PLHD} I, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.
- ² Measurement levels are 20-80% from output voltage.

4.8 Output Buffer Impedance Parameters

This section defines the I/O impedance parameters of the i.MX 6Solo/6DualLite processors for the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes
- LVDS I/O

NOTE

GPIO and DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 7).

Figure 16. Asynchronous Memory Read Access (RWSC = 5)

4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)

4.9.4.1 DDR3/DDR3L Parameters

Figure 22 shows the basic timing parameters. The timing parameters for this diagram appear in Table 41.

Figure 22. DDR3 Command and Address Timing Parameters

חו	Parameter	Symbol	CK = 400 MHz		Unit
U	Farameter		Min	Мах	om
DDR1	CK clock high-level width	tCH	0.47	0.53	tск
DDR2	CK clock low-level width	tCL	0.47	0.53	tск
DDR4	CS, RAS, CAS, CKE, WE, ODT setup time	tis	800	—	ps
DDR5	CS, RAS, CAS, CKE, WE, ODT hold time	tıн	580	—	ps
DDR6	Address output setup time	tis	800	—	ps
DDR7	Address output hold time	tін	580	_	ps

Table 41. DDR3/DDR3L Timing Parameter Table

4.10.3.2 Read and Write Timing

Figure 36. Samsung Toggle Mode Data Write Timing

ID	Parameter	Symbols	Min	Мах	Unit
SD7	uSDHC Input Hold Time	t _{IH}	1.5	—	ns
	uSDHC Input/Card Outputs CMD, DAT in SDR104 (Reference to CLK) ¹				
SD8	Card Output Data Window	t _{ODW}	0.5*t _{CLK}	—	ns

Table 55. SDR50/SDR104 Interface	Timing Specification	(continued)
----------------------------------	----------------------	-------------

¹Data window in SDR100 mode is variable.

4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling

Signaling level of SD/eMMC4.3 and eMMC4.4 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 23, "GPIO DC Parameters," on page 37.

4.11.5 Ethernet Controller (ENET) AC Electrical Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

4.11.5.1 ENET MII Mode Timing

This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK)

The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

Symbol	Description	Min.	Max.	Unit
T _{skewR} ³	Data to clock input skew at receiver	1	2.6	ps
Duty_G ⁴	Duty cycle for Gigabit	45	55	%
Duty_T ⁴	Duty cycle for 10/100T	40	60	%
Tr/Tf	Rise/fall time (20-80%)	_	0.75	ns

 Table 61. RGMII Signal Switching Specifications¹ (continued)

¹ The timings assume the following configuration: DDR_SEL = (11)b

DSE (drive-strength) = (111)b

 $^2~$ For 10 Mbps and 100 Mbps, T_{cyc} will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.

³ For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified.

⁴ Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

Figure 50. RGMII Transmit Signal Timing Diagram Original

ID	Parameter	Symbol	Value	Description	Unit
IP5o	Offset of IPP_DISP_CLK	Todicp	DISP_CLK_OFFSET × Tdiclk	DISP_CLK_OFFSET—offset of IPP_DISP_CLK edges from local start point, in DI_CLK×2 (0.5 DI_CLK Resolution). Defined by DISP_CLK counter	ns
IP13o	Offset of VSYNC	Tovs	VSYNC_OFFSET X Tdiclk	VSYNC_OFFSET—offset of Vsync edges from a local start point, when a Vsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution). The VSYNC_OFFSET should be built by suitable DI's counter.	ns
IP8o	Offset of HSYNC	Tohs	HSYNC_OFFSET × Tdiclk	HSYNC_OFFSET—offset of Hsync edges from a local start point, when a Hsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution). The HSYNC_OFFSET should be built by suitable DI's counter.	ns
IP9o	Offset of DRDY	Todrdy	DRDY_OFFSET × Tdiclk	DRDY_OFFSET—offset of DRDY edges from a suitable local start point, when a corresponding data has been set on the bus, in DI_CLK×2 (0.5 DI_CLK Resolution). The DRDY_OFFSET should be built by suitable DI's counter.	ns

Table 68. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)

Display interface clock period immediate value.

$$Tdicp = \begin{cases} T_{diclk} \times \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD}, & for integer \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD} \\ T_{diclk} (floor[\frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD}] + 0.5 \pm 0.5), & for fractional \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD} \end{cases}$$

DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK. DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency Display interface clock period average value.

$$\overline{T}dicp = T_{diclk} \times \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD}$$

² DI's counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the counter. Same of parameters in the table are not defined by DI's registers directly (by name), but can be generated by corresponding DI's counter. The SCREEN_WIDTH is an input value for DI's HSYNC generation counter. The distance between HSYNCs is a SCREEN_WIDTH.

The maximal accuracy of UP/DOWN edge of controls is:

Accuracy = $(0.5 \times T_{diclk}) \pm 0.62$ ns

i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 1

1

Figure 87. Test Access Port Timing Diagram

Figure 88. TRST Timing Diagram

Table 75. JTAG Timing

п	Parameter ^{1,2}	All Freq	uencies	Unit
	Farameter	Min	Мах	
SJ0	TCK frequency of operation 1/(3•T _{DC}) ¹	0.001	22	MHz
SJ1	TCK cycle time in crystal mode	45	—	ns
SJ2	TCK clock pulse width measured at V _M ²	22.5	—	ns
SJ3	TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	5	—	ns
SJ5	Boundary scan input data hold time	24	—	ns
SJ6	TCK low to output data valid	—	40	ns
SJ7	TCK low to output high impedance	—	40	ns
SJ8	TMS, TDI data set-up time	5	_	ns

© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PRO	FILE,	DOCUME	NT NO: 98ASA00404D	REV: O
FINE PITCH, 624	1/0,	CASE NU	JMBER: 2240-01	27 SEP 2011
21 X 21 PKG, 0.8 MM F	РІТСН (МАР)	STANDAF	RD: NON-JEDEC	

					Out of Reset Con	dition ²	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value
EIM_D19	G21	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[19]	Input	100 kΩ pull-up
EIM_D20	G20	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[20]	Input	100 kΩ pull-up
EIM_D21	H20	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[21]	Input	100 kΩ pull-up
EIM_D22	E23	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[22]	Input	100 k Ω pull-down
EIM_D23	D25	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[23]	Input	100 kΩ pull-up
EIM_D24	F22	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[24]	Input	100 kΩ pull-up
EIM_D25	G22	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[25]	Input	100 kΩ pull-up
EIM_D26	E24	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[26]	Input	100 kΩ pull-up
EIM_D27	E25	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[27]	Input	100 kΩ pull-up
EIM_D28	G23	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[28]	Input	100 kΩ pull-up
EIM_D29	J19	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[29]	Input	100 kΩ pull-up
EIM_D30	J20	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[30]	Input	100 kΩ pull-up
EIM_D31	H21	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[31]	Input	100 k Ω pull-down
EIM_DA0	L20	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[0]	Input	100 kΩ pull-up
EIM_DA1	J25	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[1]	Input	100 kΩ pull-up
EIM_DA10	M22	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[10]	Input	100 kΩ pull-up
EIM_DA11	M20	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[11]	Input	100 kΩ pull-up
EIM_DA12	M24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[12]	Input	100 kΩ pull-up
EIM_DA13	M23	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[13]	Input	100 kΩ pull-up
EIM_DA14	N23	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[14]	Input	100 kΩ pull-up
EIM_DA15	N24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[15]	Input	100 kΩ pull-up
EIM_DA2	L21	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[2]	Input	100 kΩ pull-up
EIM_DA3	K24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[3]	Input	100 kΩ pull-up
EIM_DA4	L22	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[4]	Input	100 kΩ pull-up
EIM_DA5	L23	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[5]	Input	100 kΩ pull-up
EIM_DA6	K25	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[6]	Input	100 kΩ pull-up
EIM_DA7	L25	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[7]	Input	100 kΩ pull-up
EIM_DA8	L24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[8]	Input	100 k Ω pull-up
EIM_DA9	M21	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[9]	Input	100 k Ω pull-up
EIM_EB0	K21	NVCC_EIM	GPIO	ALT0	weim.WEIM_EB[0]	Output	High

Table 92. 21 x 21 mm Functional Contact Assignments¹ (continued)

					Out of Reset Cor	dition ²	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value
NANDF_D2	F16	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[2]	Input	100 kΩ pull-up
NANDF_D3	D17	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[3]	Input	100 kΩ pull-up
NANDF_D4	A19	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[4]	Input	100 kΩ pull-up
NANDF_D5	B18	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[5]	Input	100 kΩ pull-up
NANDF_D6	E17	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[6]	Input	100 kΩ pull-up
NANDF_D7	C18	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[7]	Input	100 kΩ pull-up
NANDF_RB0	B16	NVCC_NANDF	GPIO	ALT5	gpio6.GPIO[10]	Input	100 kΩ pull-up
NANDF_WP_B	E15	NVCC_NANDF	GPIO	ALT5	gpio6.GPIO[9]	Input	100 kΩ pull-up
ONOFF	D12	VDD_SNVS_IN	GPIO	ALT0	src.RESET_B	Input	100 kΩ pull-up
PCIE_RXM	B1	PCIE_VPH					
PCIE_RXP	B2	PCIE_VPH					
PCIE_TXM	A3	PCIE_VPH					
PCIE_TXP	B3	PCIE_VPH					
PMIC_ON_REQ	D11	VDD_SNVS_IN	GPIO	ALT0	snvs_lp_wrapper.SNVS_ WAKEUP_ALARM	Output	Low
PMIC_STBY_REQ	F11	VDD_SNVS_IN	GPIO	ALT0	ccm.PMIC_VSTBY_RE Q	Output	Low
POR_B	C11	VDD_SNVS_IN	GPIO	ALT0	src.POR_B	Input	100 kΩ pull-up
RGMII_RD0	C24	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[25]	Input	100 kΩ pull-up
RGMII_RD1	B23	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[27]	Input	100 kΩ pull-up
RGMII_RD2	B24	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[28]	Input	100 kΩ pull-up
RGMII_RD3	D23	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[29]	Input	100 kΩ pull-up
RGMII_RX_CTL	D22	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[24]	Input	100 k Ω pull-down
RGMII_RXC	B25	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[30]	Input	100 k Ω pull-down
RGMII_TD0	C22	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[20]	Input	100 kΩ pull-up
RGMII_TD1	F20	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[21]	Input	100 kΩ pull-up
RGMII_TD2	E21	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[22]	Input	100 kΩ pull-up
RGMII_TD3	A24	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[23]	Input	100 kΩ pull-up
RGMII_TX_CTL	C23	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[26]	Input	100 k Ω pull-down
RGMII_TXC	D21	NVCC_RGMII	DDR	ALT5	gpio6.GPIO[19]	Input	100 k Ω pull-down

Table 92. 21 x 21 mm Functional Contact Assignments¹ (continued)

					Out of Reset Cor	ndition ²	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value
RTC_XTALI	D9	VDD_SNVS_CAP					
RTC_XTALO	C9	VDD_SNVS_CAP					
SD1_CLK	D20	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[20]	Input	100 k Ω pull-up
SD1_CMD	B21	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[18]	Input	100 k Ω pull-up
SD1_DAT0	A21	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[16]	Input	100 k Ω pull-up
SD1_DAT1	C20	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[17]	Input	100 k Ω pull-up
SD1_DAT2	E19	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[19]	Input	100 k Ω pull-up
SD1_DAT3	F18	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[21]	Input	100 k Ω pull-up
SD2_CLK	C21	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[10]	Input	100 k Ω pull-up
SD2_CMD	F19	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[11]	Input	100 k Ω pull-up
SD2_DAT0	A22	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[15]	Input	100 k Ω pull-up
SD2_DAT1	E20	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[14]	Input	100 k Ω pull-up
SD2_DAT2	A23	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[13]	Input	100 k Ω pull-up
SD2_DAT3	B22	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[12]	Input	100 k Ω pull-up
SD3_CLK	D14	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[3]	Input	100 k Ω pull-up
SD3_CMD	B13	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[2]	Input	100 k Ω pull-up
SD3_DAT0	E14	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[4]	Input	100 k Ω pull-up
SD3_DAT1	F14	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[5]	Input	100 k Ω pull-up
SD3_DAT2	A15	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[6]	Input	100 k Ω pull-up
SD3_DAT3	B15	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[7]	Input	100 k Ω pull-up
SD3_DAT4	D13	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[1]	Input	100 k Ω pull-up
SD3_DAT5	C13	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[0]	Input	100 k Ω pull-up
SD3_DAT6	E13	NVCC_SD3	GPIO	ALT5	gpio6.GPIO[18]	Input	100 k Ω pull-up
SD3_DAT7	F13	NVCC_SD3	GPIO	ALT5	gpio6.GPIO[17]	Input	100 k Ω pull-up
SD3_RST	D15	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[8]	Input	100 k Ω pull-up
SD4_CLK	E16	NVCC_NANDF	GPIO	ALT5	gpio7.GPIO[10]	Input	100 k Ω pull-up
SD4_CMD	B17	NVCC_NANDF	GPIO	ALT5	gpio7.GPIO[9]	Input	100 k Ω pull-up
SD4_DAT0	D18	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[8]	Input	100 k Ω pull-up
SD4_DAT1	B19	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[9]	Input	100 k Ω pull-up
SD4_DAT2	F17	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[10]	Input	100 k Ω pull-up

Table 92. 21 x 21 mm	Functional Contact As	sianments ¹ (continued)
		Jighinionico (ooniiniaoa)

7	8	>	5	F	æ	٩	z
VDS1_TX0_N	LVDS0_TX3_P	LVDS0_TX2_P	LVDS0_TX0_P	GPIO_2	GPIO_17	CSI0_PIXCLK	CSI0_DAT4
VDS1_TX0_P	LVDS0_TX3_N	LVDS0_TX2_N	LVDS0_TX0_N	GPIO_9	GPIO_16	CSI0_DAT5	CSI0_VSYNC
VDS1_CLK_N	GND	LVDS0_CLK_P	LVDS0_TX1_P	GPIO_6	GPIO_7	CSI0_DATA_EN	CSI0_DAT7
VDS1_CLK_P	KEY_ROW2	LVDS0_CLK_N	LVDS0_TX1_N	GPIO_1	GPIO_5	CSI0_MCLK	CSI0_DAT6
GND	KEY_COL0	KEY_ROW4	KEY_COL3	GPIO_0	GPIO_8	GPIO_19	CSI0_DAT9
DRAM_RESET	KEY_COL2	KEY_ROW0	KEY_ROW1	KEY_COL4	GPIO_4	GPIO_18	CSI0_DAT8
DRAM_D20	GND	NVCC_LVDS2P5	KEY_COL1	KEY_ROW3	GPIO_3	NVCC_GPIO	NVCC_CSI
DRAM_D21	GND	GND	GND	GND	GND	GND	GND
DRAM_D19	GND	NVCC_DRAM	VDDARM_IN	VDDARM_IN	VDDARM_IN		VDDARM_IN
DRAM_D25	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDSOC_CAP	GND	GND
DRAM_SDCKE0	GND	NVCC_DRAM	GND	GND	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A15	GND	NVCC_DRAM	GND	GND	GND	GND	NC
DRAM_A7	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A3	DRAM_A4	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_SDBA1	GND	NVCC_DRAM	GND	GND	GND	GND	GND
DRAM_CS0	GND	NVCC_DRAM	VDDSOC_IN		VDDSOC_IN	VDDSOC_IN	
DRAM_D36	GND	NVCC_DRAM	GND	GND	GND	VDDPU_CAP	VDDPU_CAP
DRAM_D37	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	GND
DRAM_D40	GND	GND	GND	GND	NVCC_ENET	NVCC_LCD	DI0_DISP_CLK
DRAM_D44	ENET_TXD1	ENET_MDC	ENET_TXD0	DISP0_DAT21	DISP0_DAT13	DISP0_DAT4	DI0_PIN3
DRAM_DQM7	ENET_RXD0	ENET_TX_EN	ENET_CRS_DV	DISP0_DAT16	DISP0_DAT10	DISP0_DAT3	DI0_PIN15
DRAM_D59	ENET_RXD1	ENET_REF_CLK	DISP0_DAT20	DISP0_DAT15	DISP0_DAT8	DISP0_DAT1	EIM_BCLK
DRAM_D62	ENET_RX_ER	ENET_MDIO	DISP0_DAT19	DISP0_DAT11	DISP0_DAT6	DISP0_DAT2	EIM_DA14
GND	DISP0_DAT23	DISP0_DAT22	DISP0_DAT17	DISP0_DAT12	DISP0_DAT7	DISP0_DAT0	EIM_DA15
DRAM_D58	DRAM_D63	DISP0_DAT18	DISP0_DAT14	DISP0_DAT9	DISP0_DAT5	DI0_PIN4	DI0_PIN2
٢	M	V	D	т	R	ď	Z

Table 94. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM Cortex[™]-A9 is a trademark of ARM Limited.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

Document Number: IMX6SDLCEC Rev. 1 11/2012

