

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Betuns	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s8dvm10ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Subsystem	Brief Description
512x8 Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6Solo/6DualLite processors consist of 512x8-bit fuse fox accessible through OCOTP_CTRL interface.
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O.
GPMI	General Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.
GPU3Dv5	Graphics Processing Unit, ver.5	Multimedia Peripherals	The GPU3Dv5 provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1.1
GPU2Dv2	Graphics Processing Unit-2D, ver 2	Multimedia Peripherals	The GPU2Dv2 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.
HDMI Tx	HDMI Tx i/f	Multimedia Peripherals	The HDMI module provides HDMI standard i/f port to an HDMI 1.4 compliant display.
HSI	MIPI HSI i/f	Connectivity Peripherals	The MIPI HSI provides a standard MIPI interface to the applications processor.
l ² C-1 l ² C-2 l ² C-3 l ² C-4	I ² C Interface	Connectivity Peripherals	I ² C provide serial interface for external devices. Data rates of up to 400 kbps are supported.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
VPU	Video Processing Unit	Multimedia Peripherals	A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i. <i>MX 6Solo/6DualLite Reference Manual</i> (<i>IMX6SDLRM</i>) for complete list of VPU's decoding/encoding capabilities.
WDOG-1	Watch Dog	Timer Peripherals	The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
WDOG-2 (TZ)	Watch Dog (TrustZone)	Timer Peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW.
WEIM	NOR-Flash /PSRAM interface	Connectivity Peripherals	 The WEIM NOR-FLASH / PSRAM provides: Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency Multiple chip selects
XTALOSC	Crystal Oscillator I/F	Clocks, Resets, and Power Control	The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator to provide USB required frequency.

Parameter Description	Symbol	Min	Мах	Unit
ESD damage immunity:	V _{esd}			
Human Body Model (HBM)Charge Device Model (CDM)		_	2000 500	V
Storage temperature range	T _{STORAGE}	-40	150	°C

Table 7. Absolute Maximum Ratings (continued)

¹ OVDD is the I/O supply voltage.

4.1.2 Thermal Resistance

4.1.2.1 BGA Case 2240 Package Thermal Resistance

Table 8 displays the thermal resistance data.

Table 8. Thermal Resistance Data

Rating	Test Conditions	Symbol	Value	Unit
Junction to Ambient ¹	Single-layer board (1s); natural convection ² Four-layer board (2s2p); natural convection ²	${\sf R}_{ heta JA} \ {\sf R}_{ heta JA}$	38 23	°C/W °C/W
Junction to Ambient ¹	Single-layer board (1s); airflow 200 ft/min ^{2,3} Four-layer board (2s2p); airflow 200 ft/min ^{2,3}	${\sf R}_{ heta JA} \ {\sf R}_{ heta JA}$	30 20	°C/W °C/W
Junction to Board ^{1,4}		$R_{ extsf{ heta}JB}$	14	°C/W
Junction to Case ^{1,5}		$R_{ extsf{ heta}JC}$	6	°C/W
Junction to Package Top ^{1,6}	Natural Convection	Ψ_{JT}	2	°C/W

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

- VDDARM_IN supply must be turned ON together with VDDSOC_IN supply or not delayed more than 1 ms
- VDDARM_CAP must not exceed VDDSOC_CAP by more than 50 mV.

NOTE

The POR_B input (if used) must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the *i.MX 6Solo/6DualLite Reference Manual* for further details and to ensure that all necessary requirements are being met.

NOTE

Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies).

NOTE

USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply sequence and may be powered at any time.

4.2.2 Power-Down Sequence

No special restrictions for i.MX 6Solo/6DualLite IC.

4.2.3 **Power Supplies Usage**

All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of Section 6, "Package Information and Contact Assignments."

4.3 Integrated LDO Voltage Regulator Parameters

Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* for details on the power tree scheme.

NOTE

The *_CAP signals should not be powered externally. These signals are intended for internal LDO or LDO bypass operation only.

4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)

There are three digital LDO regulators ("Digital", because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of

4.4.3 Ethernet PLL

Parameter	Value
Clock output range	500 MHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

Table 19. Ethernet PLL's Electrical Parameters

4.4.4 480 MHz PLL

Table 20. 480 MHz PLL's Electrical Parameters

Parameter	Value
Clock output range	480 MHz PLL output
Reference clock	24 MHz
Lock time	<383 reference cycles

4.4.5 ARM PLL

Table 21. ARM PLL's Electrical Parameters

Parameter	Value
Clock output range	650 MHz ~ 1.3 GHz
Reference clock	24 MHz
Lock time	<2250 reference cycles

4.5 **On-Chip Oscillators**

4.5.1 OSC24M

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.5.2 OSC32K

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDDHIGH_IN such as the oscillator consumes

Table 25. DDR3/DDR3L I/O DC Electrical Char	racteristics (continued)
---	--------------------------

Parameters	Symbol	Test Conditions	Min	Мах	Unit
240 Ω unit calibration resolution	Rres			10	Ω
Keeper Circuit Resistance	Rkeep		105	165	kΩ
Input current (no pull-up/down)	lin	VI = 0,VI = OVDD	-2.9	2.9	μA

¹ OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)

² Vref – DDR3/DDR3L external reference voltage

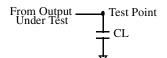
³ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

4.6.3 LVDS I/O DC Parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

Table 26 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Output Differential Voltage	VOD	Rload-100 Ω Diff	250	350	450	mV
Output High Voltage	VOH	IOH = 0 mA	1.25	1.375	1.6	V
Output Low Voltage	VOL	IOL = 0 mA	0.9	1.025	1.25	V
Offset Voltage	VOS		1.125	1.2	1.375	V


Table 26. LVDS I/O DC Characteristics

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

4.8.1 GPIO Output Buffer Impedance

Table 32 shows the GPIO output buffer impedance (OVDD 1.8 V).

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
		001	260	
		010	130	
Output Driver	Rdrv	011	90	
Impedance		100	60	Ω
		101	50	
		110	40	
		111	33	

Table 32. GPIO Output Buffer Average Impedance (OVDD 1.8 V)

Table 33 shows the GPIO output buffer impedance (OVDD 3.3 V).

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
		001	150	
		010	75	
Output Driver	Rdrv	011	50	
Impedance		100	37	Ω
		101	30	
		110	25	
		111	20	

4.8.2 DDR I/O Output Buffer Impedance

The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

Table 34 shows DDR I/O output buffer impedance of i.MX 6Solo/6DualLite processors.

Table 34. DE	DR I/O Output B	uffer Impedance

			Тур	ical	
Parameter	Symbol	Test Conditions DSE(Drive Strength)	NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11	NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10	Unit
Output Driver Impedance	Rdrv	000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Ω

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

Figure 26 shows the write timing parameters. The timing parameters for this diagram appear in Table 45.

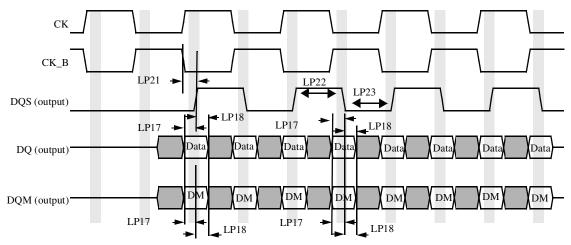


Figure 26. LPDDR2 Write Cycle

Table 45.	LPDDR2	Write C	ycle
-----------	--------	---------	------

ID	Parameter	Symbol	CK = 40	Unit	
	Farameter		Min	Max	Om
LP17	DQ and DQM setup time to DQS (differential strobe)	tDS	375	_	ps
LP18	DQ and DQM hold time to DQS (differential strobe)	tdн	375	—	ps
LP21	DQS latching rising transitions to associated clock edges	tDQSS	-0.25	+0.25	tCK
LP22	DQS high level width	t DQSH	0.4	-	tCK
LP23	DQS low level width	tDQSL	0.4	-	tCK

¹ To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window.

² All measurements are in reference to Vref level.

 $^3\,$ Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

4.10.3.2 Read and Write Timing

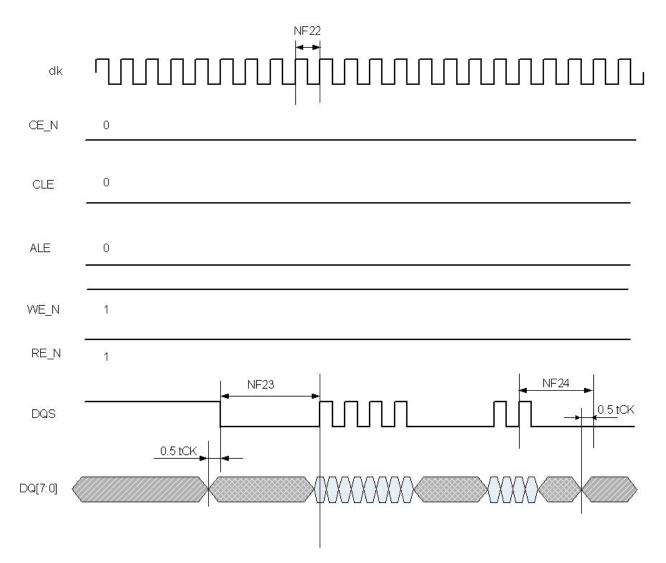


Figure 36. Samsung Toggle Mode Data Write Timing

4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 52 shows the interface timing values. The number field in the table refers to timing signals found in Figure 40 and Figure 41.

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
62	Clock cycle ⁴	tssicc	$\begin{array}{c} 4 \times T_{c} \\ 4 \times T_{c} \end{array}$	30.0 30.0	_	i ck i ck	ns
63	Clock high period: • For internal clock • For external clock		$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15	_	_	ns
64	Clock low period: • For internal clock • For external clock	_	$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15	_		ns
65	SCKR rising edge to FSR out (bl) high		_		17.0 7.0	x ck i ck a	ns
66	SCKR rising edge to FSR out (bl) low				17.0 7.0	x ck i ck a	ns
67	SCKR rising edge to FSR out (wr) high ⁵	_			19.0 9.0	x ck i ck a	ns
68	SCKR rising edge to FSR out (wr) low ⁵		—		19.0 9.0	x ck i ck a	ns
69	SCKR rising edge to FSR out (wl) high				16.0 6.0	x ck i ck a	ns
70	SCKR rising edge to FSR out (wl) low				17.0 7.0	x ck i ck a	ns
71	Data in setup time before SCKR (SCK in synchronous mode) falling edge		—	12.0 19.0	—	x ck i ck	ns
72	Data in hold time after SCKR falling edge			3.5 9.0		x ck i ck	ns
73	FSR input (bl, wr) high before SCKR falling edge ⁵	-	-	2.0 12.0	_	x ck i ck a	ns
74	FSR input (wl) high before SCKR falling edge			2.0 12.0	_	x ck i ck a	ns
75	FSR input hold time after SCKR falling edge			2.5 8.5	_	x ck i ck a	ns
78	SCKT rising edge to FST out (bl) high		—		18.0 8.0	x ck i ck	ns
79	SCKT rising edge to FST out (bl) low				20.0 10.0	x ck i ck	ns
80	SCKT rising edge to FST out (wr) high ⁵	_			20.0 10.0	x ck i ck	ns

Table 52. Enhanced Serial Audio Interface (ESAI) Timing

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

Figure 56. TMDS Clock Signal Definitions

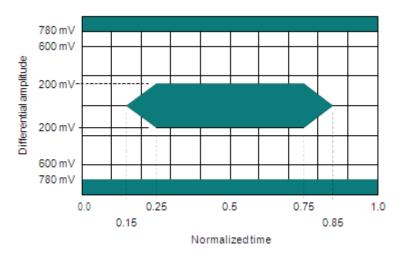


Figure 57. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1

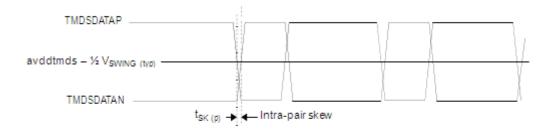


Figure 58. Intra-Pair Skew Definition

4.11.10.2.3 Non-Gated Clock Mode

The timing is the same as the gated-clock mode (described in Section 4.11.10.2.2, "Gated Clock Mode,") except for the SENSB_HSYNC signal, which is not used (see Figure 63). All incoming pixel clocks are valid and cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.

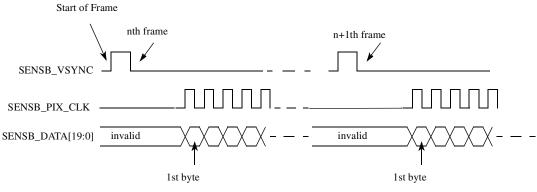


Figure 63. Non-Gated Clock Mode Timing Diagram

The timing described in Figure 63 is that of a typical sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC; active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.

NOTE

Table 67 provides information for both the Disp0 and Disp1 ports. However, Disp1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all the above configurations. See the IOMUXC table for details.

4.11.10.5 IPU Display Interface Timing

The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls accordantly.

4.11.10.5.1 Synchronous Controls

The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent wave form.

There are special physical outputs to provide synchronous controls:

- The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display.
- The ipp_pin_1- ipp_pin_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display.

The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYCN) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control's changing points with half DI_CLK resolution. A full description of the counters system can be found in the IPU chapter of the *i.MX* 6Solo/6DualLite Reference Manual (IMX6SDLRM).

4.11.10.5.2 Asynchronous Controls

The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data.

There are special physical outputs to provide asynchronous controls, as follows:

- The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
- The ipp_pin_11- ipp_pin_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data oriented signal to display.

NOTE

The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data in the bus, a new internal start (local start point) is generated. The signals generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution.

Table 68 shows timing characteristics of signals presented in Figure 66 and Figure 67.

ID	Parameter	Symbol	Value	Description	Unit
IP5	Display interface clock period	Tdicp	(1)	Display interface clock. IPP_DISP_CLK	ns
IP6	Display pixel clock period	Tdpcp	DISP_CLK_PER_PIXEL X Tdicp	Time of translation of one pixel to display, DISP_CLK_PER_PIXEL—number of pixel components in one pixel (1.n). The DISP_CLK_PER_PIXEL is virtual parameter to define Display pixel clock period. The DISP_CLK_PER_PIXEL is received by DC/DI one access division to n components.	ns
IP7	Screen width time	Tsw	(SCREEN_WIDTH) × Tdicp	SCREEN_WIDTH—screen width in, interface clocks. horizontal blanking included. The SCREEN_WIDTH should be built by suitable DI's counter ² .	ns
IP8	HSYNC width time	Thsw	(HSYNC_WIDTH)	HSYNC_WIDTH—Hsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter.	ns
IP9	Horizontal blank interval 1	Thbi1	BGXP × Tdicp	BGXP—width of a horizontal blanking before a first active data in a line (in interface clocks). The BGXP should be built by suitable DI's counter.	ns
IP10	Horizontal blank interval 2	Thbi2	(SCREEN_WIDTH - BGXP - FW) × Tdicp	Width a horizontal blanking after a last active data in a line (in interface clocks) FW—with of active line in interface clocks. The FW should be built by suitable DI's counter.	ns
IP12	Screen height	Tsh	(SCREEN_HEIGHT) X Tsw	SCREEN_HEIGHT— screen height in lines with blanking. The SCREEN_HEIGHT is a distance between 2 VSYNCs. The SCREEN_HEIGHT should be built by suitable DI's counter.	ns
IP13	VSYNC width	Tvsw	VSYNC_WIDTH	VSYNC_WIDTH—Vsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter	ns
IP14	Vertical blank interval 1	Tvbi1	BGYP × Tsw	BGYP—width of first Vertical blanking interval in line. The BGYP should be built by suitable DI's counter.	ns
IP15	Vertical blank interval 2	Tvbi2	(SCREEN_HEIGHT - BGYP - FH) × Tsw	Width of second Vertical blanking interval in line. The FH should be built by suitable DI's counter.	ns

Table 68. Synchronous Display Interface Timing Characteristics (Pixel Level)

4.11.12.4 Possible $\triangle VCMTX$ and $\triangle VOD$ Distortions of the Single-ended HS Signals

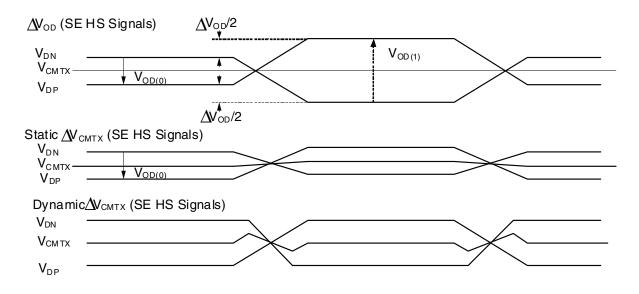


Figure 71. Possible \triangle VCMTX and \triangle VOD Distortions of the Single-ended HS Signals

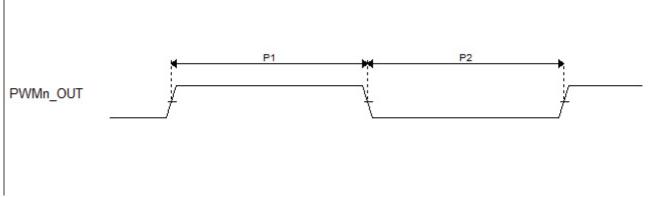
4.11.12.5 MIPI D-PHY Switching Characteristics

Symbol	Parameters	Test Conditions	MIN	ТҮР	MAX	Unit
	HS Line D	rivers AC Specifications		1	I	
	Maximum serial data rate (forward direction)	On DATAP/N outputs. 80 Ω <= RL <= 125 Ω	80	_	1000	Mbps
F _{DDRCLK}	DDR CLK frequency	On DATAP/N outputs.	40	—	500	MHz
P _{DDRCLK}	DDR CLK period	80 Ω<= RL< = 125 Ω	2	—	25	ns
t _{CDC}	DDR CLK duty cycle	$t_{CDC} = t_{CPH} / P_{DDRCLK}$	—	50	—	%
t _{CPH}	DDR CLK high time		—	1	—	UI
t _{CPL}	DDR CLK low time		—	1	—	UI
_	DDR CLK / DATA Jitter		—	75	—	ps pk–pk
t _{SKEW[PN]}	Intra-Pair (Pulse) skew			0.075		UI
t _{SKEW[TX]}	Data to Clock Skew		0.350		0.650	UI
t _{SETUP[RX]}	Data to Clock Receiver Setup time		0.15			UI
t _{HOLD[RX]}	Clock to Data Receiver Hold time		0.15			UI
t _r	Differential output signal rise time	20% to 80%, RL = 50 Ω	150		0.3UI	ps
t _f	Differential output signal fall time	20% to 80%, RL = 50 Ω	150		0.3UI	ps
$\Delta V_{CMTX(HF)}$	Common level variation above 450 MHz	80 Ω<= RL< = 125 Ω			15	mV _{rms}

Table 72. Electrical and Timing Information

4.11.14 PCIe PHY Parameters

The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.


4.11.14.1 PCIE_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 200 Ω . 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration.

4.11.15 Pulse Width Modulator (PWM) Timing Parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

Figure 84 depicts the timing of the PWM, and Table 74 lists the PWM timing parameters.

Figure	84.	PWM	Timing
--------	-----	-----	--------

Table 74. PWM Output Timing Parameters

ID	Parameter	Min	Мах	Unit
	PWM Module Clock Frequency	0	ipg_clk	MHz
P1	PWM output pulse width high	15		ns
P2	PWM output pulse width low	15		ns

4.11.20.2 Receive Timing

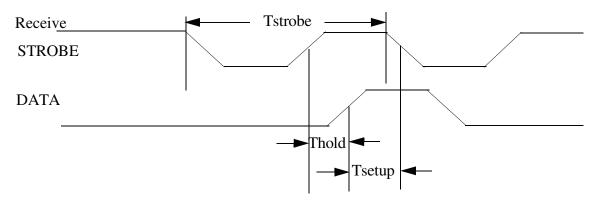


Figure 100. USB HSIC Receive Waveform

Table 88. U	JSB HSIC Receiv	ve Parameters ¹
-------------	-----------------	----------------------------

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	
Thold	data hold time	300		ps	Measured at 50% point
Tsetup	data setup time	365		ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

4.11.21 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0

Package Information and Contact Assignments

					Out of Reset Con	dition ²	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value
DRAM_DQM0	AC3	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[0]	Output	Low
DRAM_DQM1	AC6	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[1]	Output	Low
DRAM_DQM2	AB8	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[2]	Output	Low
DRAM_DQM3	AE10	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[3]	Output	Low
DRAM_DQM4	AB18	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[4]	Output	Low
DRAM_DQM5	AC20	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[5]	Output	Low
DRAM_DQM6	AD24	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[6]	Output	Low
DRAM_DQM7	Y21	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_DQM[7]	Output	Low
DRAM_RAS	AB15	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_RAS	Output	Low
DRAM_RESET	Y6	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_RESET	Output	Low
DRAM_SDBA0	AC15	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDBA[0]	Output	Low
DRAM_SDBA1	Y15	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDBA[1]	Output	Low
DRAM_SDBA2	AB12	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDBA[2]	Output	Low
DRAM_SDCKE0	Y11	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDCKE[0]	Output	Low
DRAM_SDCKE1	AA11	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_SDCKE[1]	Output	Low
DRAM_SDCLK_0	AD15	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDCLK0	Output	Low
DRAM_SDCLK_0_B	AE15	NVCC_DRAM			DRAM_SDCLK_0_B	-	-
DRAM_SDCLK_1	AD14	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDCLK1	Output	Low
DRAM_SDCLK_1_B	AE14	NVCC_DRAM			DRAM_SDCLK_1_B	-	-
DRAM_SDODT0	AC16	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_ODT[0]	Output	Low
DRAM_SDODT1	AB17	NVCC_DRAM	DDR	ALT0	mmdc.DRAM_ODT[1]	Output	Low
DRAM_SDQS0	AE3	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[0]	Input	Hi-Z
DRAM_SDQS0_B	AD3	NVCC_DRAM			DRAM_SDQS0_B	-	-
DRAM_SDQS1	AD6	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[1]	Input	Hi-Z
DRAM_SDQS1_B	AE6	NVCC_DRAM			DRAM_SDQS1_B	-	-
DRAM_SDQS2	AD8	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[2]	Input	Hi-Z
DRAM_SDQS2_B	AE8	NVCC_DRAM			DRAM_SDQS2_B	-	-
DRAM_SDQS3	AC10	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[3]	Input	Hi-Z
DRAM_SDQS3_B	AB10	NVCC_DRAM			DRAM_SDQS3_B	-	-
DRAM_SDQS4	AD18	NVCC_DRAM	DDRCLK	ALT0	mmdc.DRAM_SDQS[4]	Input	Hi-Z

Table 92. 21 x 21 mm Functional Contact Assignments¹ (continued)

Package Information and Contact Assignments

	٩.	z	Σ	L	×	7	т
CSI0_PIXCLK C	0	CSI0_DAT4	CSI0_DAT10	CSI0_DAT13	HDMI_HPD	HDMI_REF	DSI_D1P
CSI0_DAT5 CSI	CSI	CSI0_VSYNC	CSI0_DAT12	GND	HDMI_DDCCEC	GND	DSI_D1M
CSI0_DATA_EN CS		CSI0_DAT7	CSI0_DAT11	CSI0_DAT17	HDMI_D2M	HDMI_D1M	DSI_CLK0M
CSI0_MCLK CSI	CSI	CSI0_DAT6	CSI0_DAT14	CSI0_DAT16	HDMI_D2P	HDMI_D1P	DSI_CLK0P
GPIO_19 CSI0	CSIC	CSI0_DAT9	CSI0_DAT15	GND	HDMI_D0M	HDMI_CLKM	JTAG_TCK
GPIO_18 CSI0	CSIC	CSI0_DAT8	CSI0_DAT18	CSI0_DAT19	HDMI_D0P	HDMI_CLKP	JTAG_MOD
NVCC_GPIO NVC	NVO	NVCC_CSI	HDMI_VPH	HDMI_VP	NVCC_MIPI	NVCC_JTAG	PCIE_VP
GND G	G	GND	GND	GND	GND	GND	GND
VDDARM_IN VDDA	VDDA	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDHIGH_IN	VDDHIGH_IN
GND G	G	GND	GND	GND	GND	VDDHIGH_CAP	VDDHIGH_CAP
VDDARM_CAP VDDAF	VDDAF	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
GND	Z	NC	GND	GND	GND	GND	GND
VDDARM_CAP VDDAR	VDDAR	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
	VDDA	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN
GND	G	GND	GND	GND	GND	GND	GND
	VDDS(DC_IN	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN		VDDSOC_IN
VDDPU_CAP VDDP	VDDPI	VDDPU_CAP	VDDPU_CAP	VDDPU_CAP	VDDPU_CAP	VDDPU_CAP	VDDPU_CAP
GND	G	GND	GND	GND	GND	GND	GND
NVCC_LCD DI0_DI	DIO_DI	DI0_DISP_CLK	NVCC_EIM	NVCC_EIM	NVCC_EIM	EIM_D29	EIM_A25
DISP0_DAT4 DI0	DIO	DI0_PIN3	EIM_DA11	EIM_DA0	EIM_RW	EIM_D30	EIM_D21
DISP0_DAT3 DI0_	DIO	DI0_PIN15	EIM_DA9	EIM_DA2	EIM_EB0	EIM_A23	EIM_D31
DISP0_DAT1 EIM	EIM	EIM_BCLK	EIM_DA10	EIM_DA4	EIM_LBA	EIM_A18	EIM_A20
DISP0_DAT2 EIM	EIM	EIM_DA14	EIM_DA13	EIM_DA5	EIM_EB1	EIM_CS1	EIM_A21
DISP0_DAT0 EIM	EIM	EIM_DA15	EIM_DA12	EIM_DA8	EIM_DA3	EIM_OE	EIM_CS0
DI0_PIN4 DI0	DIG	DI0_PIN2	EIM_WAIT	EIM_DA7	EIM_DA6	EIM_DA1	EIM_A16
٩		z	Σ	Ч	×	7	т

Table 93. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)

Package Information and Contact Assignments

۲	8	>	5	F	æ	٩	z
LVDS1_TX0_N	LVDS0_TX3_P	LVDS0_TX2_P	LVDS0_TX0_P	GPI0_2	GPI0_17	CSI0_PIXCLK	CSI0_DAT4
LVDS1_TX0_P	LVDS0_TX3_N	LVDS0_TX2_N	LVDS0_TX0_N	GPIO_9	GPIO_16	CSI0_DAT5	CSI0_VSYNC
LVDS1_CLK_N	GND	LVDS0_CLK_P	LVDS0_TX1_P	GPIO_6	GPIO_7	CSI0_DATA_EN	CSI0_DAT7
LVDS1_CLK_P	KEY_ROW2	LVDS0_CLK_N	LVDS0_TX1_N	GPI0_1	GPIO_5	CSI0_MCLK	CSI0_DAT6
GND	KEY_COL0	KEY_ROW4	KEY_COL3	GPIO_0	GPIO_8	GPIO_19	CSI0_DAT9
DRAM_RESET	KEY_COL2	KEY_ROW0	KEY_ROW1	KEY_COL4	GPIO_4	GPIO_18	CSI0_DAT8
DRAM_D20	GND	NVCC_LVDS2P5	KEY_COL1	KEY_ROW3	GPIO_3	NVCC_GPIO	NVCC_CSI
DRAM_D21	GND	GND	GND	GND	GND	GND	GND
DRAM_D19	GND	NVCC_DRAM	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_D25	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDSOC_CAP	GND	GND
DRAM_SDCKE0	GND	NVCC_DRAM	GND	GND	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A15	GND	NVCC_DRAM	GND	GND	GND	GND	NC
DRAM_A7	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A3	DRAM_A4	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_SDBA1	GND	NVCC_DRAM	GND	GND	GND	GND	GND
DRAM_CS0	GND	NVCC_DRAM	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN
DRAM_D36	GND	NVCC_DRAM	GND	GND	GND	VDDPU_CAP	VDDPU_CAP
DRAM_D37	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	GND
DRAM_D40	GND	GND	GND	GND	NVCC_ENET	NVCC_LCD	DI0_DISP_CLK
DRAM_D44	ENET_TXD1	ENET_MDC	ENET_TXD0	DISP0_DAT21	DISP0_DAT13	DISP0_DAT4	DI0_PIN3
DRAM_DQM7	ENET_RXD0	ENET_TX_EN	ENET_CRS_DV	DISP0_DAT16	DISP0_DAT10	DISP0_DAT3	DI0_PIN15
DRAM_D59	ENET_RXD1	ENET_REF_CLK	DISP0_DAT20	DISP0_DAT15	DISP0_DAT8	DISP0_DAT1	EIM_BCLK
DRAM_D62	ENET_RX_ER	ENET_MDIO	DISP0_DAT19	DISP0_DAT11	DISP0_DAT6	DISP0_DAT2	EIM_DA14
GND	DISP0_DAT23	DISP0_DAT22	DISP0_DAT17	DISP0_DAT12	DISP0_DAT7	DISP0_DAT0	EIM_DA15
DRAM_D58	DRAM_D63	DISP0_DAT18	DISP0_DAT14	DISP0_DAT9	DISP0_DAT5	DI0_PIN4	DI0_PIN2
٨	Μ	>	D	F	æ	٩	z

Table 94. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)