

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Betuns	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6u5dvm10ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

software downloads. The security features will be discussed in detail in the *i.MX 6Solo/6DualLite Security Reference Manual* (to be released soon).

• Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different domains. This significantly simplifies system power management structure.

1.1 Ordering Information

Table 1 shows the orderable part numbers covered by this datasheet. Table 1 does not include all possible orderable part numbers. The latest part numbers are available on the web page freescale.com/imx6series. If the desired part number is not listed in Table 1, or there may be any questions about available parts, see the web page freescale.com/imx6series or contact a Freescale representative.

Part Number	Solo/DualLite CPU	Options	Speed Grade	Temperature Grade	Package
MCIMX6U8DVM10AB	i.MX 6DualLite	With VPU, GPU, EPD, no MLB	1 GHz	Consumer	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6U5DVM10AB	i.MX 6DualLite	With VPU, GPU, no EPD, no MLB	1 GHz	Consumer	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6U5EVM10AB	i.MX 6DualLite	With VPU, GPU, no EPD, no MLB	1 GHz	Extended Consumer	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6S8DVM10AB	i.MX 6Solo	With VPU, GPU, EPD, no MLB	1 GHz	Consumer	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6S5DVM10AB	i.MX 6Solo	With VPU, GPU, no EPD, no MLB	1 GHz	Consumer	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6S5EVM10AB	i.MX 6Solo	With VPU, GPU, no EPD, no MLB	1 GHz	Extended Consumer	21 mm x 21 mm, 0.8 mm pitch, MAPBGA

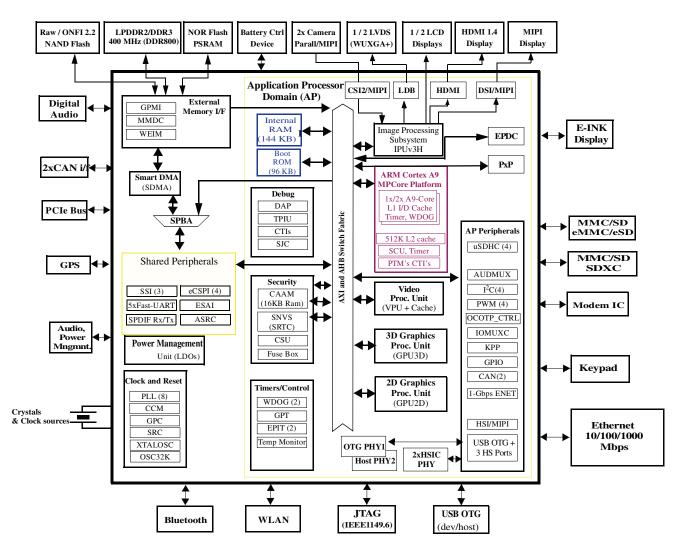
Table 1. Orderable Part Numbers

Figure 1 describe the part number nomenclature so that the users can identify the characteristics of the specific part number they have (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which datasheet applies to a specific part is the temperature grade (junction) field.

- The i.MX 6Solo/6DualLite Automotive and Infotainment Applications Processors datasheet (IMX6SDLAEC) covers parts listed with an "A (Automotive temp)"
- The i.MX 6Solo/6DualLite Applications Processors for Consumer Products datasheet (IMX6SDLCEC) covers parts listed with a "D (Consumer temp)" or "E (Extended Consumer temp)"
- The i.MX 6Solo/6DualLite Applications Processors for Industrial Products datasheet (IMX6SDLIEC) covers parts listed with "C (Industrial temp)"

Ensure to have the proper datasheet for specific part by verifying the temperature grade (junction) field and matching it to the proper datasheet. If there will be any questions, visit see the web page freescale.com/imx6series or contact a Freescale representative for details.

NOTE


The actual feature set depends on the part numbers as described in Table 1, "Orderable Part Numbers," on page 3. Functions, such as video hardware acceleration, and 2D and 3D hardware graphics acceleration may not be enabled for specific part numbers.

2 Architectural Overview

The following subsections provide an architectural overview of the i.MX 6Solo/6DualLite processor system.

2.1 Block Diagram

Figure 2 shows the functional modules in the i.MX 6Solo/6DualLite processor system.

¹ 144 KB RAM including 16 KB RAM inside the CAAM.

Block Mnemonic	Block Name	Subsystem	Brief Description
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.
OCRAM	On-Chip Memory controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Solo/6DualLite processors, the OCRAM is used for controlling the 128 KB multimedia RAM through a 64-bit AXI bus.
OSC32KHz	OSC32KHz	Clocking	Generates 32.768 KHz clock from external crystal.
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU	Power-Management functions	Data Path	Integrated power management unit. Used to provide power to various SoC domains.
PWM-1 PWM-2 PWM-3 PWM-4	Pulse Width Modulation	Connectivity Peripherals	The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a $4x16$ data FIFO to generate sound.
РХР	PiXel Processing Pipeline	Display Peripherals	A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, gamma-mapping, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications, allowing it to interface with the integrated EPD.
RAM 128 KB	Internal RAM	Internal Memory	Internal RAM, which is accessed through OCRAM memory controller.
RAM 16 KB	Secure/non-secure RAM	Secured Internal Memory	Secure/non-secure Internal RAM, interfaced through the CAAM.
ROM 96KB	Boot ROM	Internal Memory	Supports secure and regular Boot Modes. Includes read protection on 4K region for content protection.
ROMCP	ROM Controller with Patch	Data Path	ROM Controller with ROM Patch support

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Modules List

Signal Name	Remarks
DRAM_VREF	When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 k Ω 0.5% resistor to GND and a 1 k Ω 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 μ F capacitor.
	To reduce supply current, a pair of 1.5 k Ω 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when four DDR3 ICs plus the i.MX 6Solo/6DualLite are drawing current on the resistor divider.
	It is recommended to use regulated power supply for "big" memory configurations (more that eight devices)
ZQPAD	DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND.
NVCC_LVDS2P5	The DDR pre-drivers share the NVCC_LVDS2P5 ball with the LVDS interface. This ball can be shorted to VDDHIGH_CAP on the circuit board.
VDD_FA FA_ANA	These signals are reserved for Freescale manufacturing use only. User must tie both connections to GND.
GPANAIO	This signal is reserved for Freescale manufacturing use only. User must leave this connection floating.
JTAG_nnnn	The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up.
	JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and should be avoided.
	JTAG_MOD is referenced as SJC_MOD in the i.MX 6Solo/6DualLite reference manual. Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k Ω) is allowed. JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain.
NC	These signals are No Connect (NC) and should be floated by the user.
POR_B	This cold reset negative logic input resets all modules and logic in the IC. May be used in addition to internally generated power on reset signal (logical AND, both internal and external signals are considered active low).
ONOFF	In normal mode may be connected to ON/OFF button (De-bouncing provided at this input). Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes "forced" OFF.
TEST_MODE	TEST_MODE is for Freescale factory use. This signal is internally connected to an on-chip pull-down device. The user must either float this signal or tie it to GND.
PCIE_REXT	The impedance calibration process requires connection of reference resistor 200 Ω 1% precision resistor on PCIE_REXT pad to ground.

4.1.3 **Operating Ranges**

Table 9 provides the operating ranges of the i.MX 6Solo/6DualLite processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)*.

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment
Run mode: LDO enabled	VDDARM_IN	1.350 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.225 V minimum for operation up to 996 MHz.
		1.275 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.150 V minimum for operation up to 792 MHz.
		1.175 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.05 V minimum for operation up to 396 MHz.
	VDDSOC_IN ³	1.275 ^{2,4}	—	1.5	V	VPU = 328 MHz, VDDSOC and VDDPU LDO<br outputs (VDDSOC_CAP and VDDPU_CAP) = 1.225 V maximum and 1.15 V minimum.
Run mode: LDO bypassed	VDDARM_IN	1.250	—	1.3	V	LDO bypassed for operation up to 996 MHz
		1.150	—	1.3	V	LDO bypassed for operation up to 792 MHz
		1.05	—	1.3	V	LDO bypassed for operation up to 396 MHz
	VDDSOC_IN	1.15 ⁴	—	1.225	V	LDO bypassed for operation VPU = 328 MHz</td
Standby/DSM mode	VDDARM_IN	0.9	—	1.3	V	Refer to Table 13, "Stop Mode Current and Power Consumption," on page 29.
	VDDSOC_IN	0.9	—	1.225	V	
VDDHIGH internal regulator	VDDHIGH_IN	2.8	—	3.3	V	Must match the range of voltges that the rechargeable backup battery supports.
Backup battery supply range	VDD_SNVS_IN ⁵	2.9	_	3.3	V	Should be supplied from the same supply as VDDHIGH_IN if the system does not require keeping real time and other data on OFF state.
USB supply voltages	USB_OTG_VBUS	4.4	—	5.25	V	
	USB_H1_VBUS	4.4	—	5.25	V	
DDR I/O supply voltage	NVCC_DRAM	1.14	1.2	1.3	V	LPDDR2, DDR3-U
		1.425	1.5	1.575	V	DDR3
		1.283	1.35	1.45	V	DDR3_L
Supply for RGMII I/O power group ⁶	NVCC_RGMII	1.15	_	2.625	V	1.15 V – 1.30 V in HSIC 1.2 V mode 1.43 V – 1.58 V in RMGII 1.5 V mode 1.70 V – 1.90 V in RMGII 1.8 V mode 2.25 V – 2.625 V in RMGII 2.5 V mode

Table	9.	Operati	ing	Ranges
-------	----	---------	-----	--------

Voltage Source	Load	Comment
VDDSOC_CAP	HDMI_VP	Board-level connection to VDDSOC_CAP ^{2 3}
	PCIE_VP	
	PCIE_VPTX	

Table 10. On-Chip LDOs¹ and their On-Chip Loads (continued)

¹ On-chip LDOs are designed to supply i.MX6 loads and must not be used to supply external loads.

² VDDARM_CAP should not exceed VDDSOC_CAP by more than 50 mV.

³ There is no requirement for VDDSOC_CAP to track within 50 mV as long as it is greater than VDDARM_CAP.

4.1.4 External Clock Sources

Each i.MX 6Solo/6DualLite processor has two external input system clocks: a low frequency (CKIL) and a high frequency (XTAL).

The CKIL is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can substitute the CKIL, in case accuracy is not important.

The system clock input XTAL is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier.

Table 11 shows the interface frequency requirements.

Parameter Description	Symbol	Min	Тур	Max	Unit
CKIL Oscillator ^{1,2}	f _{ckil}	_	32.768 ³ /32.0	_	kHz
XTAL Oscillator ^{2,4}	f _{xtal}		24		MHz

¹ External oscillator or a crystal with internal oscillator amplifier.

² The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).

³ Recommended nominal frequency 32.768 kHz.

their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for the on-chip logics.

These regulators have three basic modes:

- Bypass. The regulation FET is switched fully on passing the external voltage, to the load unaltered. The analog part of the regulator is powered down in this state, removing any loss other than the IR drop through the power grid and FET.
- Power Gate. The regulation FET is switched fully off limiting the current draw from the supply. The analog part of the regulator is powered down here limiting the power consumption.
- Analog regulation mode. The regulation FET is controlled such that the output voltage of the regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV steps.

For additional information, see the i.MX 6Solo/6DualLite reference manual.

4.3.2 Analog Regulators

4.3.2.1 LDO_1P1

The LDO_1P1 regulator implements a programmable linear-regulator function from VDDHIGH_IN (see Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V with the nominal default setting as 1.1 V. Since the accuracy or the % regulation is not tested, and only tested with the LDO set to either 1.0V or 1.2V, this is the only range that is guaranteed. The regulator has been designed to be stable with a minimum external low ESR decoupling capacitor of 1 μ F (2.2 μ F should be considered the recommended minimum value for component selection), though the actual capacitance required should be determined by the application. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature.

For additional information, see the i.MX 6Solo/6DualLite reference manual.

4.3.2.2 LDO_2P5

The LDO_2P5 module implements a programmable linear-regulator function from VDDHIGH_IN (see Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. Since the accuracy or the % regulation is not tested, and only tested with the LDO set to either 2.25V or 2.75V, this is the only range that is guaranteed. The regulator has been designed to be stable with a minimum external low ESR decoupling capacitor of 1 μ F (2.2 μ F should be considered the recommended minimum value for component selection), though the actual capacitance required should be determined by the application. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be

4.4.3 Ethernet PLL

Parameter	Value
Clock output range	500 MHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

Table 19. Ethernet PLL's Electrical Parameters

4.4.4 480 MHz PLL

Table 20. 480 MHz PLL's Electrical Parameters

Parameter	Value
Clock output range	480 MHz PLL output
Reference clock	24 MHz
Lock time	<383 reference cycles

4.4.5 ARM PLL

Table 21. ARM PLL's Electrical Parameters

Parameter	Value
Clock output range	650 MHz ~ 1.3 GHz
Reference clock	24 MHz
Lock time	<2250 reference cycles

4.5 **On-Chip Oscillators**

4.5.1 OSC24M

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.5.2 OSC32K

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDDHIGH_IN such as the oscillator consumes

4.9.4.2 LPDDR2 Parameters

Figure 25 shows the basic timing parameters. The timing parameters for this diagram appear in Table 44.

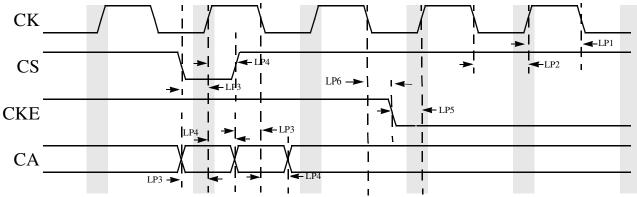


Figure 25. LPDDR2 Command and Address Timing Parameters

Table 44. LPDDR	2 Timing Parameter
-----------------	--------------------

	ID Parameter		CK = 40	Unit	
	Farameter	rameter Symbol –		Мах	Unit
LP1	SDRAM clock high-level width	tсн	0.45	0.55	tск
LP2	SDRAM clock low-level width	tCL	0.45	0.55	tск
LP3	CA, CS setup time	tis	380	—	ps
LP4	CA, CS hold time	tін	380	—	ps
LP5	CKE setup time	tiscke	770	—	tck
LP6	CKE hold time	tihcke	770	_	tck

¹ All measurements are in reference to Vref level.

 $^2~$ Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

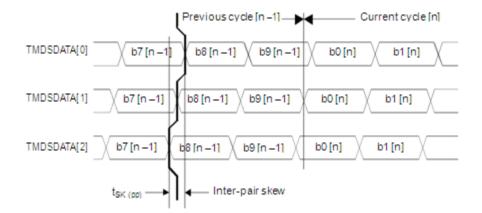
ID	Parameter	Symbol	Tim T = GPMI C	0	Unit
			Min.	Max.	
NF23	preamble delay	tPRE	(PRE_DELAY+1) x tCK	_	ns
NF24	postamble delay	tPOST	POST_DELAY x tCK	_	ns
NF25	CLE and ALE setup time	tCALS	0.5 x tCK	_	ns
NF26	CLE and ALE hold time	tCALH	0.5 x tCK	—	ns

Table 49. Samsung Toggle Mode Timing Parameters (continued)

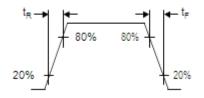
For DDR Toggle mode, Figure 35 shows the timing diagram of DQS/DQ read valid window. The typical value of tDQSQ is 1.4 ns(max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample DQ[7:0] at both rising and falling edge of an delayed DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register

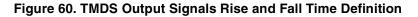
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11 External Peripheral Interface Parameters


The following subsections provide information on external peripheral interfaces.

4.11.1 AUDMUX Timing Parameters


The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document.


4.11.2 ECSPI Timing Parameters

This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
	TMDS Drivers Specifications							
_	Maximum serial data rate	—	—	—	3.4	Gbps		
F TMDSCLK	TMDSCLK frequency	On TMDSCLKP/N outputs	25	—	340	MHz		
P TMDSCLK	TMDSCLK period	eriod $RL = 50 \Omega$ See Figure 56.		_	40	ns		
^t CDC	TMDSCLK duty cycle	$t = t / P TMDSCLK$ $RL = 50 \Omega$ See Figure 56.	40	50	60	%		
^t CPH	TMDSCLK high time	RL = 50 Ω See Figure 56.	4	5	6	UI ¹		
t CPL	TMDSCLK low timeRL = 50 Ω See Figure 56.		4	5	6	UI ¹		
—	TMDSCLK jitter ²	RL = 50 Ω	—	—	0.25	UI ¹		
t SK(p)	Intra-pair (pulse) skew	$RL = 50 \Omega$ See Figure 58.	—		0.15	UI ¹		

Table 63. Switching Characteristics

i.MX 6Solo/6DualLite				LCD				
	RGB,	R	RGB/TV Signal Allocation (Example)					Comment ¹
Port Name (x=0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ²	16-bit YCrCb	20-bit YCrCb	
DISPx_DAT0	DAT[0]	B[0]	B[0]	B[0]	Y/C[0]	C[0]	C[0]	The restrictions are as follows: • There are maximal three
DISPx_DAT1	DAT[1]	B[1]	B[1]	B[1]	Y/C[1]	C[1]	C[1]	continuous groups of bits that could be independently
DISPx_DAT2	DAT[2]	B[2]	B[2]	B[2]	Y/C[2]	C[2]	C[2]	mapped to the external bus. Groups should not be
DISPx_DAT3	DAT[3]	B[3]	B[3]	B[3]	Y/C[3]	C[3]	C[3]	overlapped.The bit order is expressed in
DISPx_DAT4	DAT[4]	B[4]	B[4]	B[4]	Y/C[4]	C[4]	C[4]	each of the bit groups, for example, B[0] = least significant
DISPx_DAT5	DAT[5]	G[0]	B[5]	B[5]	Y/C[5]	C[5]	C[5]	blue pixel bit
DISPx_DAT6	DAT[6]	G[1]	G[0]	B[6]	Y/C[6]	C[6]	C[6]	
DISPx_DAT7	DAT[7]	G[2]	G[1]	B[7]	Y/C[7]	C[7]	C[7]	
DISPx_DAT8	DAT[8]	G[3]	G[2]	G[0]		Y[0]	C[8]	
DISPx_DAT9	DAT[9]	G[4]	G[3]	G[1]		Y[1]	C[9]	
DISPx_DAT10	DAT[10]	G[5]	G[4]	G[2]	_	Y[2]	Y[0]	-
DISPx_DAT11	DAT[11]	R[0]	G[5]	G[3]	_	Y[3]	Y[1]	
DISPx_DAT12	DAT[12]	R[1]	R[0]	G[4]	_	Y[4]	Y[2]	
DISPx_DAT13	DAT[13]	R[2]	R[1]	G[5]	_	Y[5]	Y[3]	
DISPx_DAT14	DAT[14]	R[3]	R[2]	G[6]	_	Y[6]	Y[4]	-
DISPx_DAT15	DAT[15]	R[4]	R[3]	G[7]		Y[7]	Y[5]	
DISPx_DAT16	DAT[16]	_	R[4]	R[0]	_	—	Y[6]	
DISPx_DAT17	DAT[17]	_	R[5]	R[1]			Y[7]	
DISPx_DAT18	DAT[18]	_	_	R[2]			Y[8]	
DISPx_DAT19	DAT[19]	_	_	R[3]	_	—	Y[9]	
DISPx_DAT20	DAT[20]	_		R[4]	_	—		
DISPx_DAT21	DAT[21]	_	_	R[5]				

Table 67. Video Signal Cross-Reference

ID	Parameter ^{1,2}	All Freq	Unit	
		Min	Мах	Onit
SJ9	TMS, TDI data hold time	25	_	ns
SJ10	TCK low to TDO data valid	—	44	ns
SJ11	TCK low to TDO high impedance	—	44	ns
SJ12	TRST assert time	100	—	ns
SJ13	TRST set-up time to TCK low	40	_	ns

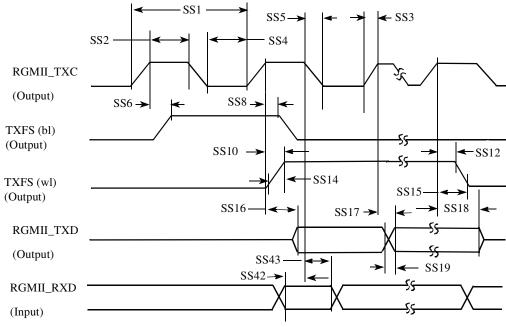
Table 75. JTAG Timing (continued)

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.11.17 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.


Table 76 and Figure 89 and Figure 90 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SRCK) for SPDIF in Rx mode and the timing of the modulating Tx clock (STCLK) for SPDIF in Tx mode.

Characteristics	Symbol	Timing Para	Timing Parameter Range		
Characteristics		Min	Max	- Unit	
SPDIFIN Skew: asynchronous inputs, no specs apply	—		0.7	ns	
SPDIFOUT output (Load = 50pf) Skew Transition rising Transition falling 			1.5 24.2 31.3	ns	
SPDIFOUT1 output (Load = 30pf) Skew Transition rising Transition falling 	 		1.5 13.6 18.0	ns	
Modulating Rx clock (SRCK) period	srckp	40.0	—	ns	
SRCK high period	srckph	16.0	—	ns	
SRCK low period	srckpl	16.0	—	ns	
Modulating Tx clock (STCLK) period	stclkp	40.0	—	ns	
STCLK high period	stclkph	16.0	_	ns	
STCLK low period	stclkpl	16.0	—	ns	

Table 76. SPDIF Timing Parameters

4.11.18.1 SSI Transmitter Timing with Internal Clock

Figure 91 depicts the SSI transmitter internal clock timing and Table 78 lists the timing parameters for the SSI transmitter internal clock.

Note: SRXD input in synchronous mode only

Figure 91. SSI Transmitter Internal Clock Timing Diagram

ID	Parameter	Min	Мах	Unit			
	Internal Clock Operation						
SS1	(Tx/Rx) CK clock period	81.4	—	ns			
SS2	(Tx/Rx) CK clock high period	36.0	_	ns			
SS4	(Tx/Rx) CK clock low period	36.0	_	ns			
SS6	(Tx) CK high to FS (bl) high	—	15.0	ns			
SS8	(Tx) CK high to FS (bl) low	—	15.0	ns			
SS10	(Tx) CK high to FS (wl) high	—	15.0	ns			
SS12	(Tx) CK high to FS (wl) low	—	15.0	ns			
SS14	(Tx/Rx) Internal FS rise time	—	6.0	ns			
SS15	(Tx/Rx) Internal FS fall time	—	6.0	ns			
SS16	(Tx) CK high to STXD valid from high impedance	—	15.0	ns			
SS17	(Tx) CK high to STXD high/low	—	15.0	ns			
SS18	(Tx) CK high to STXD high impedance	—	15.0	ns			

Table 78. SSI Transmitter Timing with Internal Clock

ID	Parameter	Min	Мах	Unit
SS47	Oversampling clock period	15.04	_	ns
SS48	Oversampling clock high period	6.0	_	ns
SS49	Oversampling clock rise time	_	3.0	ns
SS50	Oversampling clock low period	6.0	_	ns
SS51	Oversampling clock fall time	_	3.0	ns

Table 79. SSI Receiver Timing with Internal Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

ID	Parameter	Min	Max	Unit
SS39	(Tx) CK high to STXD high impedance	—	15.0	ns
	Synchronous External Clock Operation			
SS44	SRXD setup before (Tx) CK falling	10.0	—	ns
SS45	SRXD hold after (Tx) CK falling	2.0	_	ns
SS46	SRXD rise/fall time	_	6.0	ns

Table 80. SSI Transmitter Timing with External Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

4.11.19 UART I/O Configuration and Timing Parameters

4.11.19.1 UART RS-232 I/O Configuration in Different Modes

The i.MX 6Solo/6DualLite UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0 — DCE mode). Table 82 shows the UART I/O configuration based on the enabled mode.

Port	DTE Mode		DCE Mode		
Pon	Direction	Description	Direction	Description	
RTS	Output	RTS from DTE to DCE	Input	RTS from DTE to DCE	
CTS	Input	CTS from DCE to DTE	Output	CTS from DCE to DTE	
DTR	Output	DTR from DTE to DCE	Input	DTR from DTE to DCE	
DSR	Input	DSR from DCE to DTE	Output	DSR from DCE to DTE	
DCD	Input	DCD from DCE to DTE	Output	DCD from DCE to DTE	
RI	Input	RING from DCE to DTE	Output	RING from DCE to DTE	
TXD_MUX	Input	Serial data from DCE to DTE	Output	Serial data from DCE to DTE	
RXD_MUX	Output	Serial data from DTE to DCE	Input	Serial data from DTE to DCE	

Table 82. UART I/O Configuration vs. Mode

4.11.19.2 UART RS-232 Serial Mode Timing

The following sections describe the electrical information of the UART module in the RS-232 mode.

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

 $\$ MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

 $\label{eq:parallelism}$ measurement shall exclude any effect of mark on top surface of package.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PRO	FILE,	DOCUME	NT NO: 98ASA00404D	REV: O
FINE PITCH, 624	, .	CASE NU	JMBER: 2240-01	27 SEP 2011
21 X 21 PKG, 0.8 MM F	РІТСН (МАР)	STANDAF	RD: NON-JEDEC	

Figure 101. 21 x 21 mm BGA, Case 2240 Package Top, Bottom, and Side Views

Package Information and Contact Assignments

Supply Rail Name	Ball(s) Position(s)	Remark
PCIE_REXT	A2	
PCIE_VP	Н7	
PCIE_VPH	G7	PCI PHY supply
PCIE_VPTX	G8	PCI PHY supply
VDD_SNVS_CAP	G9	Secondary supply for the SNVS (internal regulator output—requires capacitor if internal regulator is used)
VDD_SNVS_IN	G11	Primary supply for the SNVS regulator
VDDARM_CAP	H11, H13, J11, J13, K11, K13, L11, L13, M11, M13, N11, N13, P11, P13, R11, R13	Secondary supply for core (internal regulator output—requires capacitor if internal regulator is used)
VDDARM_IN	H14, J14, K9, K14, L9, L14, M9, M14, N9, N14, P9, P14, R9, R14, T9, U9	Primary supply for the ARM core's regulator
VDDHIGH_CAP	H10, J10	Secondary supply for the 2.5 V domain (internal regulator output—requires capacitor if internal regulator is used)
VDDHIGH_IN	H9, J9	Primary supply for the 2.5 V regulator
VDDPU_CAP	H17, J17, K17, L17, M17, N17, P17	Secondary supply for VPU and GPUs (internal regulator output—requires capacitor if internal regulator is used)
VDDSOC_CAP	R10, T10, T13, T14, U10, U13, U14	Secondary supply for SoC and PU regulators (internal regulator output—requires capacitor if internal regulator is used)
VDDSOC_IN	H16, J16, K16, L16, M16, N16, P16, R16, T16, U16	Primary supply for SoC and PU regulators
VDDUSB_CAP	F9	Secondary supply for the 3 V Domain (internal regulator output—requires capacitor if internal regulator is used)
USB_H1_VBUS	D10	Primary supply for the 3 V regulator
USB_OTG_VBUS	E9	Primary supply for the 3 V regulator
HDMI_DDCCEC	K2	Analog Ground(Ground reference for the Hot Plug Detect signal)
FA_ANA	A5	
GPANAIO	C8	
VDD_FA	В5	
ZQPAD	AE17	
NC	C14	
NC	G12	

Table 91. 21 x 21 mm Supplies Contact Assignments (continued)

Package Information and Contact Assignments

۲	8	>	5	F	æ	٩	z
LVDS1_TX0_N	LVDS0_TX3_P	LVDS0_TX2_P	LVDS0_TX0_P	GPI0_2	GPI0_17	CSI0_PIXCLK	CSI0_DAT4
LVDS1_TX0_P	LVDS0_TX3_N	LVDS0_TX2_N	LVDS0_TX0_N	GPIO_9	GPIO_16	CSI0_DAT5	CSI0_VSYNC
LVDS1_CLK_N	GND	LVDS0_CLK_P	LVDS0_TX1_P	GPIO_6	GPIO_7	CSI0_DATA_EN	CSI0_DAT7
LVDS1_CLK_P	KEY_ROW2	LVDS0_CLK_N	LVDS0_TX1_N	GPI0_1	GPIO_5	CSI0_MCLK	CSI0_DAT6
GND	KEY_COL0	KEY_ROW4	KEY_COL3	GPIO_0	GPIO_8	GPIO_19	CSI0_DAT9
DRAM_RESET	KEY_COL2	KEY_ROW0	KEY_ROW1	KEY_COL4	GPIO_4	GPIO_18	CSI0_DAT8
DRAM_D20	GND	NVCC_LVDS2P5	KEY_COL1	KEY_ROW3	GPIO_3	NVCC_GPIO	NVCC_CSI
DRAM_D21	GND	GND	GND	GND	GND	GND	GND
DRAM_D19	GND	NVCC_DRAM	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_D25	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDSOC_CAP	GND	GND
DRAM_SDCKE0	GND	NVCC_DRAM	GND	GND	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A15	GND	NVCC_DRAM	GND	GND	GND	GND	NC
DRAM_A7	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A3	DRAM_A4	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_SDBA1	GND	NVCC_DRAM	GND	GND	GND	GND	GND
DRAM_CS0	GND	NVCC_DRAM	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN	VDDSOC_IN
DRAM_D36	GND	NVCC_DRAM	GND	GND	GND	VDDPU_CAP	VDDPU_CAP
DRAM_D37	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	GND
DRAM_D40	GND	GND	GND	GND	NVCC_ENET	NVCC_LCD	DI0_DISP_CLK
DRAM_D44	ENET_TXD1	ENET_MDC	ENET_TXD0	DISP0_DAT21	DISP0_DAT13	DISP0_DAT4	DI0_PIN3
DRAM_DQM7	ENET_RXD0	ENET_TX_EN	ENET_CRS_DV	DISP0_DAT16	DISP0_DAT10	DISP0_DAT3	DI0_PIN15
DRAM_D59	ENET_RXD1	ENET_REF_CLK	DISP0_DAT20	DISP0_DAT15	DISP0_DAT8	DISP0_DAT1	EIM_BCLK
DRAM_D62	ENET_RX_ER	ENET_MDIO	DISP0_DAT19	DISP0_DAT11	DISP0_DAT6	DISP0_DAT2	EIM_DA14
GND	DISP0_DAT23	DISP0_DAT22	DISP0_DAT17	DISP0_DAT12	DISP0_DAT7	DISP0_DAT0	EIM_DA15
DRAM_D58	DRAM_D63	DISP0_DAT18	DISP0_DAT14	DISP0_DAT9	DISP0_DAT5	DI0_PIN4	DI0_PIN2
٨	M	>	D	F	æ	٩	z

Table 94. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)