

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON [™] SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6u8dvm10ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

- Color eReaders
- IPTV
- Human Machine Interfaces (HMI)
- Portable medical
- IP phones
- Home energy management systems

The i.MX 6Solo/6DualLite processors have some very exciting features, for example:

- Applications processors—The processors enhance the capabilities of high-tier portable applications by fulfilling the ever increasing MIPS needs of operating systems and games. Freescale's Dynamic Voltage and Frequency Scaling (DVFS) provides significant power reduction, allowing the device to run at lower voltage and frequency with sufficient MIPS for tasks, such as audio decode.
- Multilevel memory system—The multilevel memory system of each processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processors support many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNANDTM, and managed NAND, including eMMC up to rev 4.4.
- Smart speed technology—The processors have power management throughout the IC that enables the rich suite of multimedia features and peripherals to consume minimum power in both active and various low power modes. Smart speed technology enables the designer to deliver a feature-rich product, requiring levels of power far lower than industry expectations.
- Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices by scaling the voltage and frequency to optimize performance.
- Multimedia powerhouse—The multimedia performance of each processor is enhanced by a multilevel cache system, Neon MPE (Media Processor Engine) co-processor, a multi-standard hardware video codec, an image processing unit (IPU), and a programmable smart DMA (SDMA) controller.
- Powerful graphics acceleration—Each processor provides two independent, integrated graphics processing units: an OpenGL[®] ES 2.0 3D graphics accelerator with a shader and a 2D graphics accelerator.
- Interface flexibility—Each processor supports connections to a variety of interfaces: LCD controller for up to two displays (including parallel display, HDMI1.4, MIPI display, and LVDS display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces (such as UART, I²C, and I²S serial audio, and PCIe-II).
- Eink Panel Display Controller—The processors integrate EPD controller that supports E-INK color and monochrome with up to 1650x2332 resolution and 5-bit grayscale (32-levels per color channel).
- Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure

4.1.3 **Operating Ranges**

Table 9 provides the operating ranges of the i.MX 6Solo/6DualLite processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)*.

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment
Run mode: LDO enabled	VDDARM_IN	1.350 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.225 V minimum for operation up to 996 MHz.
		1.275 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.150 V minimum for operation up to 792 MHz.
		1.175 ²	—	1.5	V	LDO Output Set Point (VDDARM_CAP) = 1.05 V minimum for operation up to 396 MHz.
	VDDSOC_IN ³	1.275 ^{2,4}	—	1.5	V	VPU = 328 MHz, VDDSOC and VDDPU LDO<br outputs (VDDSOC_CAP and VDDPU_CAP) = 1.225 V maximum and 1.15 V minimum.
Run mode: LDO bypassed	VDDARM_IN	1.250	—	1.3	V	LDO bypassed for operation up to 996 MHz
		1.150	—	1.3	V	LDO bypassed for operation up to 792 MHz
		1.05	—	1.3	V	LDO bypassed for operation up to 396 MHz
	VDDSOC_IN	1.15 ⁴	—	1.225	V	LDO bypassed for operation VPU = 328 MHz</td
Standby/DSM mode	VDDARM_IN	0.9	—	1.3	V	Refer to Table 13, "Stop Mode Current and Power Consumption," on page 29.
	VDDSOC_IN	0.9	—	1.225	V	
VDDHIGH internal regulator	VDDHIGH_IN	2.8	—	3.3	V	Must match the range of voltges that the rechargeable backup battery supports.
Backup battery supply range	VDD_SNVS_IN ⁵	2.9	_	3.3	V	Should be supplied from the same supply as VDDHIGH_IN if the system does not require keeping real time and other data on OFF state.
USB supply voltages	USB_OTG_VBUS	4.4	—	5.25	V	
	USB_H1_VBUS	4.4	—	5.25	V	
DDR I/O supply voltage	NVCC_DRAM	1.14	1.2	1.3	V	LPDDR2, DDR3-U
		1.425	1.5	1.575	V	DDR3
		1.283	1.35	1.45	V	DDR3_L
Supply for RGMII I/O power group ⁶	NVCC_RGMII	1.15	_	2.625	V	1.15 V – 1.30 V in HSIC 1.2 V mode 1.43 V – 1.58 V in RMGII 1.5 V mode 1.70 V – 1.90 V in RMGII 1.8 V mode 2.25 V – 2.625 V in RMGII 2.5 V mode

Table	9.	Operati	ing	Ranges
-------	----	---------	-----	--------

Power Line	Conditions	Max Current	Unit
NVCC_DRAM	—	4	
NVCC_ENET	N=10	Use maximal IO equation ⁵	
NVCC_LCD	N=29	Use maximal IO equation ⁵	
NVCC_GPIO	N=24	Use maximal IO equation ⁵	
NVCC_CSI	N=20	Use maximal IO equation ⁵	
NVCC_EIM	N=53	Use maximal IO equation ⁵	
NVCC_JTAG	N=6	Use maximal IO equation ⁵	
NVCC_RGMII	N=12	Use maximal IO equation ⁵	
NVCC_SD1	N=6	Use maximal IO equation ⁵	
NVCC_SD2	N=6	Use maximal IO equation ⁵	
NVCC_SD3	N=11	Use maximal IO equation ⁵	
NVCC_NANDF	N=26	Use maximal IO equation ⁵	
	MISC		
DDR_VREF	—	1	mA

Table 12. Maximal Supply Currents (continued)

¹ The actual maximum current drawn from VDDHIGH_IN will be as shown plus any additional current drawn from the VDDHIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies).

² The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA, if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available.

³ This is the maximum current per active USB physical interface.

⁴ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios.

⁵ General equation for estimated, maximal power consumption of an IO power supply:

 $Imax = N \times C \times V \times (0.5 \times F)$

Where:

N—Number of IO pins supplied by the power line

C—Equivalent external capacitive load

V—IO voltage

(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

power from VDDHIGH_IN when that supply is available and transitions to the back up battery when VDDHIGH IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K will automatically switch to a crude internal ring oscillator. The frequency range of this block is approximately 10-45 kHz. It highly depends on the process, voltage, and temperature.

The OSC32k runs from VDD_SNVS_CAP supply, which comes from the

VDDHIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDDHIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621:

- Average Discharge Voltage is 2.5 V
- Maximum Charge Current is 0.6 mA •

For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k

Min Тур Max Comments

Table 22. OSC32K Main Characteristics

Fosc	32.768 KHz		This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well.
Current consumption	4 μΑ		The 4 μ A is the consumption of the oscillator alone (OSC32k). Total supply consumption will depend on what the digital portion of the RTC consumes. The ring oscillator consumes 1 μ A when ring oscillator is inactive, 20 μ A when the ring oscillator is running. Another 1.5 μ A is drawn from vdd_rtc in the power_detect block. So, the total current is 6.5 μ A on vdd_rtc when the ring oscillator is not running.
Bias resistor	14 MΩ		This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.
	Ċ	Crystal Propertie	ls
Cload	10 pF		Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.
ESR	50 kΩ	100 kΩ	Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.

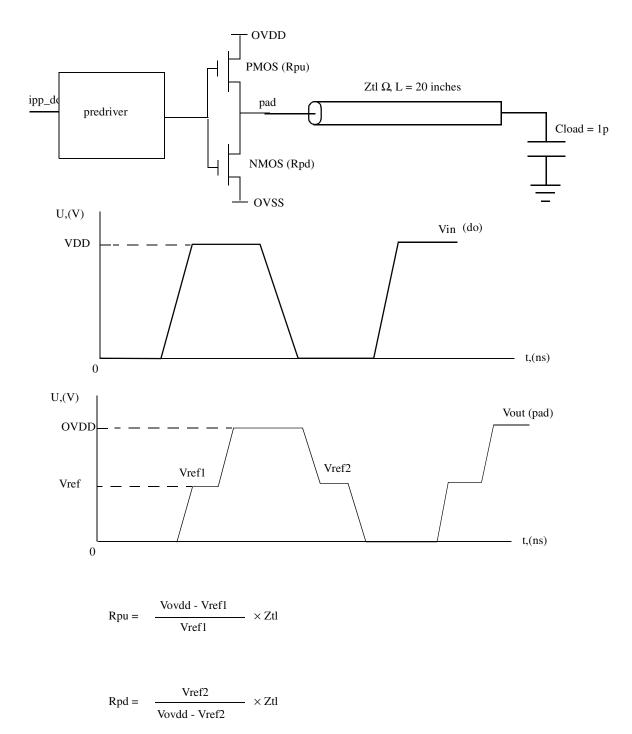


Figure 7. Impedance Matching Load for Measurement

4.8.1 GPIO Output Buffer Impedance

Table 32 shows the GPIO output buffer impedance (OVDD 1.8 V).

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
		001	260	
		010	130	
Output Driver	Rdrv	011	90	
Impedance		100	60	Ω
		101	50	
		110	40	
		111	33	

Table 32. GPIO Output Buffer Average Impedance (OVDD 1.8 V)

Table 33 shows the GPIO output buffer impedance (OVDD 3.3 V).

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
		001	150	
		010	75	
Output Driver	Rdrv	011	50	
Impedance		100	37	Ω
		101	30	
		110	25	
		111	20	

4.8.2 DDR I/O Output Buffer Impedance

The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

Table 34 shows DDR I/O output buffer impedance of i.MX 6Solo/6DualLite processors.

Table 34. DE	DR I/O Output B	uffer Impedance

Parameter	Symbol	Test Conditions DSE(Drive Strength)	Тур		
			NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11	NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10	Unit
Output Driver Impedance	Rdrv	000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Ω

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

- 2. Calibration is done against 240 Ω external reference resistor.
- 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8.3 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6Solo/6DualLite processor.

4.9.1 Reset Timings Parameters

Figure 8 shows the reset timing and Table 35 lists the timing parameters.

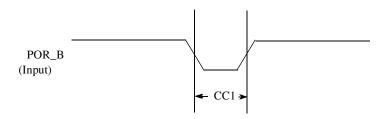


Figure 8. Reset Timing Diagram

Table 35. Reset Timing Parameters

ID	Parameter	Min	Max	Unit
CC1	Duration of POR_B to be qualified as valid (input slope = 5 ns)	1	_	RTC_XTALI cycle

4.9.2 WDOG Reset Timing Parameters

Figure 9 shows the WDOG reset timing and Table 36 lists the timing parameters.

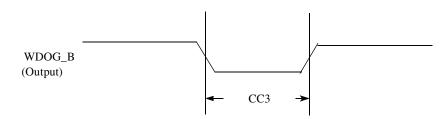


Figure 9. WDOG_B Timing Diagram

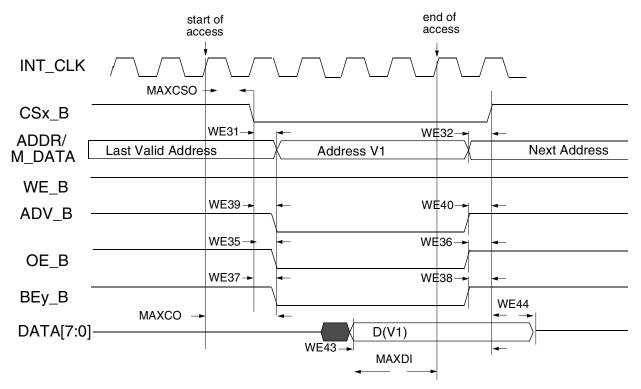
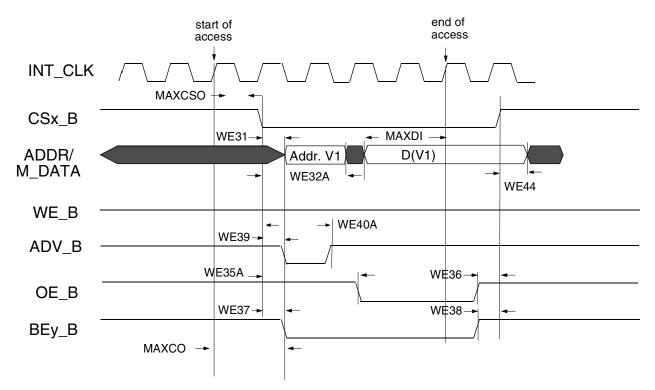



Figure 16. Asynchronous Memory Read Access (RWSC = 5)

Electrical Characteristics

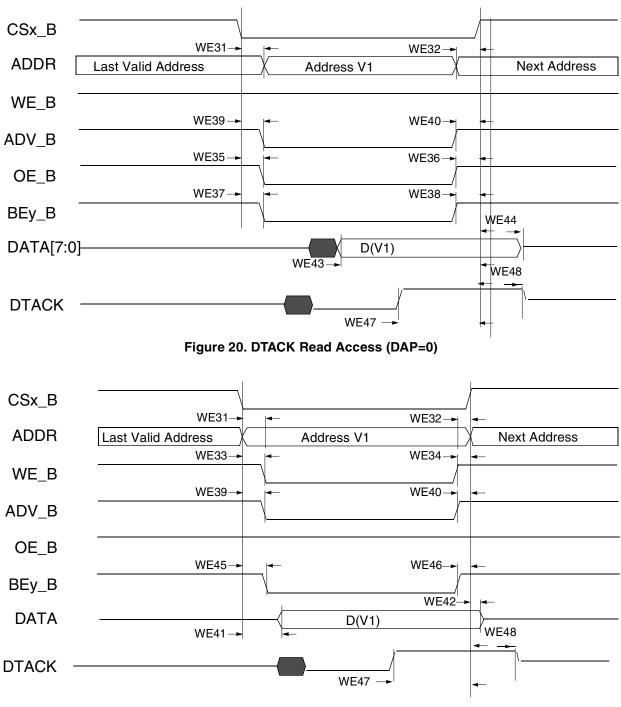


Figure 21. DTACK Write Access (DAP=0)

Ref No.	Parameter	Determination by Synchronous measured parameters ¹	Min	Max (If 132 MHz is supported by SoC)	Unit
WE31	CSx_B valid to Address Valid	WE4 - WE6 - CSA ²	_	3 - CSA	ns
WE32	Address Invalid to CSx_B invalid	WE7 - WE5 - CSN ³	_	3 - CSN	ns
WE32A(muxed A/D	CSx_B valid to Address Invalid	t ⁴ + WE4 - WE7 + (ADVN ⁵ + ADVA ⁶ + 1 - CSA)	-3 + (ADVN + ADVA + 1 - CSA)	_	ns
WE33	CSx_B Valid to WE_B Valid	WE8 - WE6 + (WEA - WCSA)	_	3 + (WEA - WCSA)	ns
WE34	WE_B Invalid to CSx_B Invalid	WE7 - WE9 + (WEN - WCSN)	_	3 - (WEN_WCSN)	ns
WE35	CSx_B Valid to OE_B Valid	WE10 - WE6 + (OEA - RCSA)		3 + (OEA - RCSA)	ns
WE35A (muxed A/D)	CSx_B Valid to OE_B Valid	WE10 - WE6 + (OEA + RADVN + RADVA + ADH + 1 - RCSA)	-3 + (OEA + RADVN+RADVA+ ADH+1-RCSA)	3 + (OEA + RADVN+RADVA+AD H+1-RCSA)	ns
WE36	OE_B Invalid to CSx_B Invalid	WE7 - WE11 + (OEN - RCSN)		3 - (OEN - RCSN)	ns
WE37	CSx_B Valid to BEy_B Valid (Read access)	WE12 - WE6 + (RBEA - RCSA)	—	3 + (RBEA - RCSA)	ns
WE38	BEy_B Invalid to CSx_B Invalid (Read access)	WE7 - WE13 + (RBEN - RCSN)	—	3 - (RBEN- RCSN)	ns
WE39	CSx_B Valid to ADV_B Valid	WE14 - WE6 + (ADVA - CSA)		3 + (ADVA - CSA)	ns
WE40	ADV_B Invalid to CSx_B Invalid (ADVL is asserted)	WE7 - WE15 - CSN	_	3 - CSN	ns
WE40A (muxed A/D)	CSx_B Valid to ADV_B Invalid	WE14 - WE6 + (ADVN + ADVA + 1 - CSA)	-3 + (ADVN + ADVA + 1 - CSA)	3 + (ADVN + ADVA + 1 - CSA)	ns
WE41	CSx_B Valid to Output Data Valid	WE16 - WE6 - WCSA	_	3 - WCSA	ns
WE41A (muxed A/D)	CSx_B Valid to Output Data Valid	WE16 - WE6 + (WADVN + WADVA + ADH + 1 - WCSA)	_	3 + (WADVN + WADVA + ADH + 1 - WCSA)	ns
WE42	Output Data Invalid to CSx_B Invalid	WE17 - WE7 - CSN	—	3 - CSN	ns
MAXCO	Output max. delay from internal driving ADDR/control FFs to chip outputs.	10		-	ns
MAXCS O	Output max. delay from CSx internal driving FFs to CSx out.	10	_	_	
MAXDI	DATA MAXIMUM delay from chip input data to its internal FF	5	_	—	

Table 40. EIM Asynchronous Timing Parameters Table Relative Chip Select

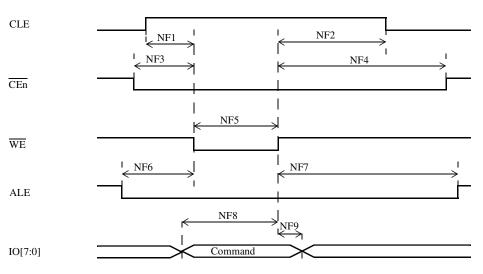


Figure 28. Command Latch Cycle Timing Diagram

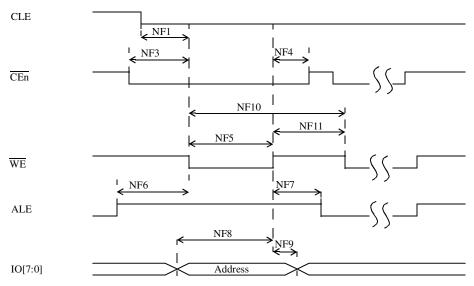


Figure 29. Address Latch Cycle Timing Diagram

ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		Example T GPMI Clock T = 1	pprox 100 MHz	Unit
			Min.	Max.	Min.	Max.	
NF5	WE pulse width	tWP	DS	хΤ	1	0	ns
NF6	ALE setup time	tALS	(AS+1) x T	_	10	—	ns
NF7	ALE hold time	tALH	(DH+1) x T	—	20	—	ns
NF8	Data setup time	tDS	DS x T	_	10	—	ns
NF9	Data hold time	tDH	DH x T	_	10	—	ns
NF10	Write cycle time	tWC	(DS+D	(DS+DH) x T		20	
NF11	WE hold time	tWH	DH	хΤ	10		ns
NF12	Ready to RE low	tRR	(AS+1) x T	_	10	—	ns
NF13	RE pulse width	tRP	DS x T	_	10	—	ns
NF14	READ cycle time	tRC	(DS+DH) x T	—	20	—	ns
NF15	RE high hold time	tREH	DH x T		10	—	ns
NF16	Data setup on read	tDSR	N/	N/A		—	ns
NF17	Data hold on read	tDHR	N/	A	10	—	ns

Table 47. Asynchronous Mode Timing Parameters¹ (continued)

¹ GPMI's Async Mode output timing could be controlled by module's internal registers, say

HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers' settings. In the above table, we use AS/DS/DH to represent each of these settings.

2) AS minimum value could be 0, while DS/DH minimum value is 1.

3) T represents for the GPMI clock period.

In EDO mode (Figure 31), NF16/NF17 are different from the definition in non-EDO mode (Figure 30). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample IO[7:0] at rising edge of delayed RE provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 52 shows the interface timing values. The number field in the table refers to timing signals found in Figure 40 and Figure 41.

Na	Characteristics ^{1,2}	Cumhal	Europeania n2	Min	Max	O and itian 3	11
No.		Symbol	Expression ²	Min	Max	Condition ³	Unit
62	Clock cycle ⁴	tssicc	$\begin{array}{c} 4 \times T_{C} \\ 4 \times T_{C} \end{array}$	30.0 30.0	_	i ck i ck	ns
63	Clock high period: • For internal clock • For external clock	_	$\begin{array}{c} 2 \times T_{c} - 9.0 \\ 2 \times T_{c} \end{array}$	6 15	_		ns
64	Clock low period: • For internal clock • For external clock	_	$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15	_		ns
65	SCKR rising edge to FSR out (bl) high		_		17.0 7.0	x ck i ck a	ns
66	SCKR rising edge to FSR out (bl) low				17.0 7.0	x ck i ck a	ns
67	SCKR rising edge to FSR out (wr) high ⁵		_		19.0 9.0	x ck i ck a	ns
68	SCKR rising edge to FSR out (wr) low ⁵	—			19.0 9.0	x ck i ck a	ns
69	SCKR rising edge to FSR out (wl) high	—			16.0 6.0	x ck i ck a	ns
70	SCKR rising edge to FSR out (wl) low	—			17.0 7.0	x ck i ck a	ns
71	Data in setup time before SCKR (SCK in synchronous mode) falling edge	—		12.0 19.0		x ck i ck	ns
72	Data in hold time after SCKR falling edge	—		3.5 9.0	_	x ck i ck	ns
73	FSR input (bl, wr) high before SCKR falling edge ⁵	—		2.0 12.0	_	x ck i ck a	ns
74	FSR input (wl) high before SCKR falling edge	—	—	2.0 12.0	_	x ck i ck a	ns
75	FSR input hold time after SCKR falling edge	—		2.5 8.5	—	x ck i ck a	ns
78	SCKT rising edge to FST out (bl) high	—	—		18.0 8.0	x ck i ck	ns
79	SCKT rising edge to FST out (bl) low		—		20.0 10.0	x ck i ck	ns
80	SCKT rising edge to FST out (wr) high ⁵	_			20.0 10.0	x ck i ck	ns

Table 52. Enhanced Serial Audio Interface (ESAI) Timing

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	I	Operating conditions for HD	MI		11	
avddtmds	Termination supply voltage	-	3.15	3.3	3.45	V
R _T	Termination resistance	-	45	50	55	Ω
		TMDS drivers DC specificati	ons			
V_{OFF}				ldtmds ± 10	mV	mV
V _{SWING}	Single-ended output swing voltage	For measurement conditions and definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	-	600	mV
V _H	Single-ended output high voltage	If attached sink supports TMDSCLK < or = 165 MHz	avd	ldtmds ± 10	mV	mV
		If attached sink supports TMDSCLK > 165 MHz	avddtmds - 200 mV	-	avddtmds + 10 mV	mV
V _L Single-ended output low voltage For definition, see the second figure above		If attached sink supports TMDSCLK < or = 165 MHz	avddtmds - 600 mV	-	avddtmds - 400mV	mV
		If attached sink supports TMDSCLK > 165 MHz	avddtmds - 700 mV	-	avddtmds - 400 mV	mV
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.	-	50	-	200	Ω
		Hot plug detect specificatio	ns			
HPD ^{VH}	Hot plug detect high range	-	2.0	-	5.3	V
VHPD	Hot plug detect low range	-	0	-	0.8	V
HPD	Hot plug detect input impedance	-	10	-	-	kΩ
HPD	Hot plug detect time delay	-	-	-	100	μs

4.11.8 Switching Characteristics

Table 63 describes switching characteristics for the HDMI 3D Tx PHY. Figure 56 to Figure 60 illustrate various parameters specified in table.

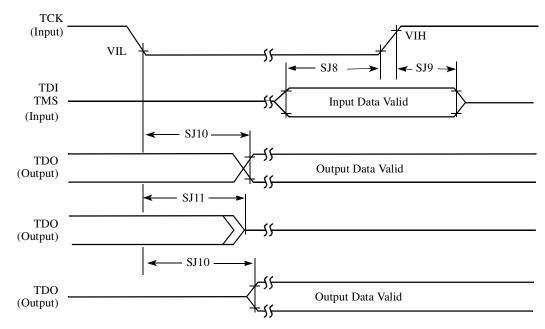
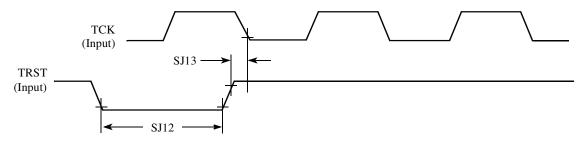



Figure 87. Test Access Port Timing Diagram

Figure 88. TRST Timing Diagram

Table 75. JTAG Timing

ID	Parameter ^{1,2}	All Frequencies		Unit
	Farameter	Min	Onit	
SJ0	TCK frequency of operation 1/(3•T _{DC}) ¹	0.001	22	MHz
SJ1	TCK cycle time in crystal mode	45	—	ns
SJ2	TCK clock pulse width measured at V_M^2	22.5	—	ns
SJ3	TCK rise and fall times	_	3	ns
SJ4	Boundary scan input data set-up time	5	—	ns
SJ5	Boundary scan input data hold time	24	—	ns
SJ6	TCK low to output data valid	—	40	ns
SJ7	TCK low to output high impedance	—	40	ns
SJ8	TMS, TDI data set-up time	5	—	ns

ID	D Parameter		Мах	Unit
SS47	047 Oversampling clock period		_	ns
SS48	Oversampling clock high period	6.0	_	ns
SS49	SS49 Oversampling clock rise time		3.0	ns
SS50	Oversampling clock low period	6.0	_	ns
SS51	SS51 Oversampling clock fall time		3.0	ns

Table 79. SSI Receiver Timing with Internal Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

4.11.19.2.1 UART Transmitter

Figure 95 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 83 lists the UART RS-232 serial mode transmit timing characteristics.

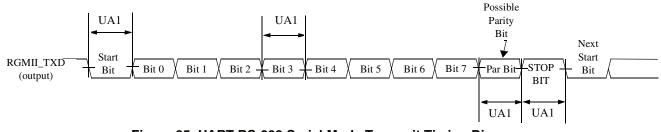


Figure 95. UART RS-232 Serial Mode Transmit Timing Diagram

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	1/F _{baud_rate} 1 - T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	_

Table 83	RS-232 Serial Mode	Transmit Timing	Parameters
	IND-ZUZ UCHAI WOUC	manishing mining	Falameters

¹ F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.11.19.2.2 UART Receiver

1

Figure 96 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 84 lists serial mode receive timing characteristics.

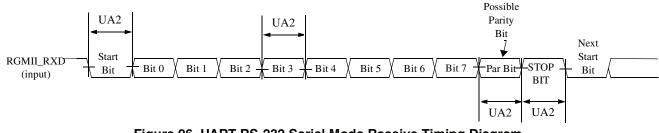


Figure 96. UART RS-232 Serial Mode Receive Timing Diagram

Table 84.	RS-232 Seria	al Mode Recei	ive Timing Parameters
-----------	--------------	---------------	-----------------------

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² - 1/(16 x F _{baud_rate})	1/F _{baud_rate} + 1/(16 x F _{baud_rate})	—

¹ The UART receiver can tolerate 1/(16 x F_{baud_rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x F_{baud_rate}).

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

4.11.20.2 Receive Timing

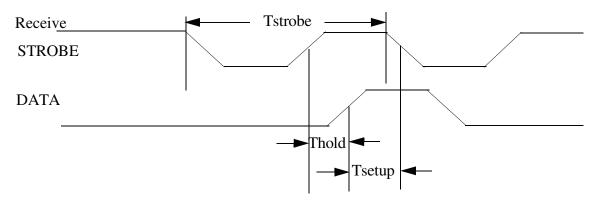


Figure 100. USB HSIC Receive Waveform

Table 88. U	JSB HSIC Receiv	ve Parameters ¹
-------------	-----------------	----------------------------

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	
Thold	data hold time	300		ps	Measured at 50% point
Tsetup	data setup time	365		ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

4.11.21 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0

Boot Mode Configuration

Pin	Direction at Reset	eFuse Name	Details		
EIM_DA0	Input	BOOT_CFG1[0]	Boot Options, Pin value overrides fuse		
EIM_DA1	Input	BOOT_CFG1[1]	settings for BT_FUSE_SEL = '0'. Signal Configuration as Fuse Override Input at		
EIM_DA2	Input	BOOT_CFG1[2]	Power Up. These are special I/O lines that control the boot up configuration during		
EIM_DA3	Input	BOOT_CFG1[3]	product development. In production, the		
EIM_DA4	Input	BOOT_CFG1[4]	boot configuration can be controlled by fuses.		
EIM_DA5	Input	BOOT_CFG1[5]			
EIM_DA6	Input	BOOT_CFG1[6]			
EIM_DA7	Input	BOOT_CFG1[7]			
EIM_DA8	Input	BOOT_CFG2[0]			
EIM_DA9	Input	BOOT_CFG2[1]			
EIM_DA10	Input	BOOT_CFG2[2]			
EIM_DA11	Input	BOOT_CFG2[3]			
EIM_DA12	Input	BOOT_CFG2[4]			
EIM_DA13	Input	BOOT_CFG2[5]			
EIM_DA14	Input	BOOT_CFG2[6]			
EIM_DA15	Input	BOOT_CFG2[7]			
EIM_A16	Input	BOOT_CFG3[0]			
EIM_A17	Input	BOOT_CFG3[1]			
EIM_A18	Input	BOOT_CFG3[2]			
EIM_A19	Input	BOOT_CFG3[3]			
EIM_A20	Input	BOOT_CFG3[4]			
EIM_A21	Input	BOOT_CFG3[5]			
EIM_A22	Input	BOOT_CFG3[6]			
EIM_A23	Input	BOOT_CFG3[7]			
EIM_A24	Input	BOOT_CFG4[0]			
EIM_WAIT	Input	BOOT_CFG4[1]			
EIM_LBA	Input	BOOT_CFG4[2]			
EIM_EB0	Input	BOOT_CFG4[3]			
EIM_EB1	Input	BOOT_CFG4[4]			
EIM_RW	Input	BOOT_CFG4[5]			
EIM_EB2	Input	BOOT_CFG4[6]			
EIM_EB3	Input	BOOT_CFG4[7]			

Table 89. Fuses and Associated Pins Used for Boot (continued)

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

 $\$ MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

 $\label{eq:parallelism}$ measurement shall exclude any effect of mark on top surface of package.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: PBGA, LOW PROFILE,		DOCUMENT NO: 98ASA00404D		REV: O
FINE PITCH, 624 I/O,		CASE NUMBER: 2240-01		27 SEP 2011
21 X 21 PKG, 0.8 MM PITCH (MAP)		STANDARD: NON-JEDEC		

Figure 101. 21 x 21 mm BGA, Case 2240 Package Top, Bottom, and Side Views