
Freescale Semiconductor - MCHC908JW32FC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor HC08

Core Size 8-Bit

Speed 8MHz

Connectivity SPI, USB

Peripherals LED, LVD, POR, PWM

Number of I/O 29

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 4V ~ 5.5V

Data Converters -

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN (7x7)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mchc908jw32fc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mchc908jw32fc-4380773
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Part Number Package Description Original (gold wire)
package document number

Current (copper wire)
package document number

MC68HC908JW32 48 QFN 98ARH99048A 98ASA00466D

MC9S08AC16

MC9S908AC60

MC9S08AC128

MC9S08AW60

MC9S08GB60A

MC9S08GT16A

MC9S08JM16

MC9S08JM60

MC9S08LL16

MC9S08QE128

MC9S08QE32

MC9S08RG60

MCF51CN128

MC9RS08LA8 48 QFN 98ARL10606D 98ASA00466D

MC9S08GT16A 32 QFN 98ARH99035A 98ASA00473D

MC9S908QE32 32 QFN 98ARE10566D 98ASA00473D

MC9S908QE8 32 QFN 98ASA00071D 98ASA00736D

MC9S08JS16 24 QFN 98ARL10608D 98ASA00734D

MC9S08QB8

MC9S08QG8 24 QFN 98ARL10605D 98ASA00474D

MC9S08SH8 24 QFN 98ARE10714D 98ASA00474D

MC9RS08KB12 24 QFN 98ASA00087D 98ASA00602D

MC9S08QG8 16 QFN 98ARE10614D 98ASA00671D

MC9RS08KB12 8 DFN 98ARL10557D 98ASA00672D

MC9S08QG8

MC9RS08KA2 6 DFN 98ARL10602D 98ASA00735D
Addendum for New QFN Package Migration, Rev. 0

Freescale Semiconductor2

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 3

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc., 2005, 2006, 2009. All rights reserved.

MC68HC908JW32
Data Sheet

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.freescale.com

General Description

MC68HC908JW32 Data Sheet, Rev. 6

18 Freescale Semiconductor

• External asynchronous interrupt pin with internal pull-up (IRQ)
• 48-pin quad flat non-leaded package (QFN)

1.3 MCU Block Diagram

Figure 1-1. MC68HC908JW32 Block Diagram

SYSTEM INTEGRATION
MODULE

ARITHMETIC/LOGIC
UNIT (ALU)

CPU
REGISTERS

M68HC08 CPU

CONTROL AND STATUS REGISTERS — 96 BYTES

USER FLASH — 32,768 BYTES

USER RAM — 1,024 BYTES

MONITOR ROM — 1,472 BYTES

USER FLASH VECTOR SPACE — 48 BYTES

EXTERNAL INTERRUPT
MODULE

D
D

R
D

PO
R

TD

INTERNAL BUS

(1)(2) RST

(1)(3) IRQ

COMPUTER OPERATING
PROPERLY MODULE

PTD7 (2)

PTD6
PTD5
PTD4
PTD3 (2)

PTD2 (2)

POWER-ON RESET
MODULE

POWER

PTD1
PTD0

BREAK
MODULE

TIMEBASE
MODULE

SERIAL PERIPHERAL
INTERFACE MODULE

KEYBOARD INTERRUPT
MODULE

INTERNAL REGULATOR

VSS33

REG33V

D
D

R
B

PO
R

TB

PTB5 (2)(4)

PTB1 (2)(4)

PTB0 (2)(4)

PTC3
PTC2/T1CH1
PTC1/TCLK1
PTC0/T1CH0

D
D

R
A

PO
R

TA

PTA7/KBA7 (3)

PTA6/KBA6 (3)

PTA5/KBA5 (3)

PTA4/KBA4 (3)

PTA3/KBA3 (3)

PTA2/KBA2 (3)

PTA1/KBA1 (3)

PTA0/KBA0 (3)

LOW-VOLTAGE INHIBIT
MODULE

(4) Pin is open-drain when configured as output, with high current capability.

2-CHANNEL TIMER INTERFACE
MODULE

PS2 CLOCK GENERATOR
MODULE

VSS

VDD

VSSPLL

VDDPLL

REG25V

(1) Pin contains integrated pullup device.
(2) Pin contains configurable pullup device.
(3) Pin contains integrated pullup device when configured as KBI.

CLOCK GENERATOR MODULE

OSC1

OSC2

CGMXFC PHASE-LOCKED LOOP

X-TAL OSCILLATOR

INTERNAL RC OSCILLATOR

OSCILLATORS AND

PTE7/SS
PTE6/MISO
PTE5/MOSI
PTE4/SPCLK
PTE3/D– (2)(4)

PTE2/PS2CLK/D+ (2)(4)

USB MODULE

USB ENDPOINT FS
 U

SB
TR

AN
SC

EI
VE

R

D
D

R
C

PO
R

TC

D
D

R
E

PO
R

TE

PTB6 (2)(4)(5)
PTB7 (2)(4)(5)

PTB4 (2)(4)(5)

PTB3 (2)(4)(5)

PTB2 (2)(4)(5)

(5) Pin available on 52-pin LQFP only.

Memory

MC68HC908JW32 Data Sheet, Rev. 6

28 Freescale Semiconductor

$000D
Timer 1 Counter Register

Low (T1CNTL)

Read: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Write:

Reset: 0 0 0 0 0 0 0 0

$000E
Timer 1 Counter Modulo

Register High (T1MODH)

Read:
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8

Write:

Reset: 1 1 1 1 1 1 1 1

$000F
Timer 1 Counter Modulo
Register Low (T1MODL)

Read:
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Write:

Reset: 1 1 1 1 1 1 1 1

$0010
Timer 1 Channel 0 Status and

Control Register (T1SC0)

Read: CH0F
CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX

Write: 0

Reset: 0 0 0 0 0 0 0 0

$0011
Timer 1 Channel 0 Register

High (T1CH0H)

Read:
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8

Write:

Reset: Indeterminate after reset

$0012
Timer 1 Channel 0 Register

Low (T1CH0L)

Read:
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Write:

Reset: Indeterminate after reset

$0013
Timer 1 Channel 1 Status and

Control Register (T1SC1)

Read: CH1F
CH1IE

0
MS1A ELS1B ELS1A TOV1 CH1MAX

Write: 0

Reset: 0 0 0 0 0 0 0 0

$0014
Timer 1 Channel 1

Register High
(T1CH1H)

Read:
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8

Write:

Reset: Indeterminate after reset

$0015
Timer 1 Channel 1

Register Low
(T1CH1L)

Read:
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Write:

Reset: Indeterminate after reset

$0016
Keyboard Status and Control

Register
(KBSCR)

Read: 0 0 0 0 KEYF 0
IMASKK MODEK

Write: ACKK

Reset: 0 0 0 0 0 0 0 0

$0017
Keyboard Interrupt Enable

Register (KBIER)

Read:
KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0

Write:

Reset: 0 0 0 0 0 0 0 0

$0018
Timebase Control Register

(TBCR)

Read: TBIF
TBR2 TBR1 TBR0

0
TBIE TBON R

Write: TACK

Reset: 0 0 0 0 0 0 0 0

$0019
PS2 Clock Generator

Control and Satus
Register (PS2CSR)

Read: PSTATUS
PS2IF PRE CSEL1 CSEL0 PS2IEN CLKEN PS2EN

Write:

Reset: 0 0 0 0 0 0 0 0

Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented R = Reserved U = Unaffected by reset

Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7)

Monitor ROM

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 31

$0051
USB Control Register

(USBCR)

Read:
USBEN USBCLKEN TFC4IE TFC3IE TFC2IE TFC1IE TFC0IE

0

Write: RESUME

Reset: 0 0 0 0 0 0 0 0

$0052
USB Status Register

(USBSR)

Read: CONFIG
SETUP SOF CONFIG_CHG USBRST RESUMEF SUSPND

Write:

Reset: 0 0 0 0 0 0 0 0

$0053
USB Status Interrupt Mask

Register (USIMR)

Read: 0
SETUPIE SOFIE

CONFIG_
CHGIE

USBRE-
SETIE

RESUME-
FIE

SUSPNDIE
Write: EP0_STALL

Reset: 0 0 0 0 0 0 0 0

$0054
USB EPO Control/Status

Register (UEP0CSR)

Read: DSIZE3_OUT DSIZE2_OUT DSIZE1_OUT DSIZE0_OUT
DVALID_IN TFRC_IN DVALID_OUT TFRC_OUT

Write: DSIZE3_IN DSIZE2_IN DSIZE1_IN DSIZE0_IN

Reset: 0 0 0 0 0 0 0 0

$0055
USB EP1 Control/Status

Register (UEP1CSR)

Read:
MODE1 MODE0

0
DIR SIZE1 SIZE0 DVALID TFRC

Write: STALL

Reset: 0 0 0 0 0 0 0 0

$0056
USB EP2 Control/Status

Register (UEP2CSR)

Read:
MODE1 MODE0

0
DIR SIZE1 SIZE0 DVALID TFRC

Write: STALL

Reset: 0 0 0 0 0 0 0 0

$0057
USB EP3 Control/Status

Register (UEP3CSR)

Read:
MODE1 MODE0

0
DIR SIZE1 SIZE0 DVALID TFRC

Write: STALL

Reset: 0 0 0 0 0 0 0 0

$0058
USB EP4 Control/Status

Register
(UEP4CSR)

Read:
MODE1 MODE0

0
DIR SIZE1 SIZE0 DVALID TFRC

Write: STALL

Reset: 0 0 0 0 0 0 0 0

$0059
USB EP1 Data Size Register

(UEP1DSR)

Read:
DSIZE6 DSIZE5 DSIZE4 DSIZE3 DSIZE2 DSIZE1 DSIZE0

Write:

Reset: 0 0 0 0 0 0 0 0

$005A
USB EP2 Data Size Register

(UEP2DSR)

Read:
DSIZE6 DSIZE5 DSIZE4 DSIZE3 DSIZE2 DSIZE1 DSIZE0

Write:

Reset: 0 0 0 0 0 0 0 0

$005B
USB EP3 Data Size Register

(UEP3DSR)

Read:
DSIZE6 DSIZE5 DSIZE4 DSIZE3 DSIZE2 DSIZE1 DSIZE0

Write:

Reset: 0 0 0 0 0 0 0 0

$005C
USB EP4 Data Size Register

(UEP4DSR)

Read:
DSIZE6 DSIZE5 DSIZE4 DSIZE3 DSIZE2 DSIZE1 DSIZE0

Write:

Reset: 0 0 0 0 0 0 0 0

$005D
USB EP 1/2 Base Pointer

Register
(UEP12BPR)

Read:
BASE22 BASE21 BASE20 BASE12 BASE11 BASE10

Write:

Reset: 0 0 0 0 0 0 0 0

Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented R = Reserved U = Unaffected by reset

Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7)

Memory

MC68HC908JW32 Data Sheet, Rev. 6

38 Freescale Semiconductor

This program sequence is repeated throughout the memory until all data is programmed.

NOTE
The time between each FLASH address change (step 6 to step 6), or the
time between the last FLASH addressed programmed to clearing the PGM
bit (step 6 to step 9), must not exceed the maximum programming time,
tprog max.

NOTE
Programming and erasing of FLASH locations cannot be performed by
code being executed from the FLASH memory. While these operations
must be performed in the order shown, other unrelated operations may
occur between the steps.

2.5.6 FLASH Protection

Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target
application, provision is made to protect pages of memory from unintentional erase or program operations
due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR).
The FLBPR determines the range of the FLASH memory which is to be protected. The range of the
protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory
($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program
operations.

NOTE
The 48 bytes of user interrupt vectors ($FFD0–$FFFF) are always
protected, regardless of the value in the FLASH block protect register. A
mass erase is required to erase these locations.

Opcode Map

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 55

4.8 Opcode Map

See Table 4-2.

SWI Software Interrupt

PC ← (PC) + 1; Push (PCL)
SP ← (SP) – 1; Push (PCH)

SP ← (SP) – 1; Push (X)
SP ← (SP) – 1; Push (A)

SP ← (SP) – 1; Push (CCR)
SP ← (SP) – 1; I ← 1

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – – INH 83 9

TAP Transfer A to CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 2

TAX Transfer A to X X ← (A) – – – – – – INH 97 1

TPA Transfer CCR to A A ← (CCR) – – – – – – INH 85 1

TST opr
TSTA
TSTX
TST opr,X
TST ,X
TST opr,SP

Test for Negative or Zero (A) – $00 or (X) – $00 or (M) – $00 0 – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3D
4D
5D
6D
7D

9E6D

dd

ff

ff

3
1
1
3
2
4

TSX Transfer SP to H:X H:X ← (SP) + 1 – – – – – – INH 95 2

TXA Transfer X to A A ← (X) – – – – – – INH 9F 1

TXS Transfer H:X to SP (SP) ← (H:X) – 1 – – – – – – INH 94 2

WAIT Enable Interrupts; Wait for Interrupt I bit ← 0; Inhibit CPU clocking
until interrupted – – 0 – – – INH 8F 1

A Accumulator n Any bit
C Carry/borrow bit opr Operand (one or two bytes)
CCR Condition code register PC Program counter
dd Direct address of operand PCH Program counter high byte
dd rr Direct address of operand and relative offset of branch instruction PCL Program counter low byte
DD Direct to direct addressing mode REL Relative addressing mode
DIR Direct addressing mode rel Relative program counter offset byte
DIX+ Direct to indexed with post increment addressing mode rr Relative program counter offset byte
ee ff High and low bytes of offset in indexed, 16-bit offset addressing SP1 Stack pointer, 8-bit offset addressing mode
EXT Extended addressing mode SP2 Stack pointer 16-bit offset addressing mode
ff Offset byte in indexed, 8-bit offset addressing SP Stack pointer
H Half-carry bit U Undefined
H Index register high byte V Overflow bit
hh ll High and low bytes of operand address in extended addressing X Index register low byte
I Interrupt mask Z Zero bit
ii Immediate operand byte & Logical AND
IMD Immediate source to direct destination addressing mode | Logical OR
IMM Immediate addressing mode ⊕ Logical EXCLUSIVE OR
INH Inherent addressing mode () Contents of
IX Indexed, no offset addressing mode –() Negation (two’s complement)
IX+ Indexed, no offset, post increment addressing mode # Immediate value
IX+D Indexed with post increment to direct addressing mode « Sign extend
IX1 Indexed, 8-bit offset addressing mode ← Loaded with
IX1+ Indexed, 8-bit offset, post increment addressing mode ? If
IX2 Indexed, 16-bit offset addressing mode : Concatenated with
M Memory location ↕ Set or cleared
N Negative bit — Not affected

Table 4-1. Instruction Set Summary (Sheet 6 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

System Integration Module (SIM)

MC68HC908JW32 Data Sheet, Rev. 6

78 Freescale Semiconductor

6.2.2 Clock Start-up from POR or LVI Reset

When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the
CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR
timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks
start upon completion of the timeout.

6.2.3 Clocks in Stop Mode and Wait Mode

Upon exit from stop mode by an interrupt, break, or reset, the SIM allows CGMXCLK to clock the SIM
counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This
timeout is selectable as 4096 or 32 CGMXCLK cycles. (See 6.6.2 Stop Mode.)

In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.
Some modules can be programmed to be active in wait mode.

6.3 Reset and System Initialization

The MCU has these reset sources:
• Power-on reset module (POR)
• External reset pin (RST)
• Computer operating properly module (COP)
• Low-voltage inhibit module (LVI)
• Illegal opcode
• Illegal address
• Universal serial bus module (USB)

All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all
modules to be returned to their reset states.

An internal reset clears the SIM counter (see 6.4 SIM Counter), but an external reset does not. Each of
the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 6.7 SIM Registers.)

6.3.1 External Pin Reset

The RST pin circuit includes an internal pull-up device. Pulling the asynchronous RST pin low halts all
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at
least the minimum tRL time and no other reset sources are present. See Table 6-2 for details. Figure 6-4
shows the relative timing.

Table 6-2. Reset Recovery

Reset Recovery Type Actual Number of Cycles

POR/LVI 4163 (4096 + 64 + 3)

All others 67 (64 + 3)

Low-Power Modes

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 89

6.6.2 Stop Mode

In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery
time has elapsed. Reset or break also causes an exit from stop mode.

The SIM disables the clock generator module output (CGMOUT) in stop mode, stopping the CPU and
peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles
down to 32. This is ideal for applications using canned oscillators that do not require long start-up times
from stop mode.

NOTE
External crystal applications should use the full stop recovery time by
clearing the SSREC bit.

The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop
recovery. It is then used to time the recovery period. Figure 6-18 shows stop mode entry timing.

NOTE
To minimize stop current, all pins configured as inputs should be driven to
a logic 1 or logic 0.

Figure 6-18. Stop Mode Entry Timing

Figure 6-19. Stop Mode Recovery from Interrupt

STOP ADDR + 1 SAME SAMEIAB

IDB PREVIOUS DATA NEXT OPCODE SAME

STOP ADDR

SAME

R/W

CPUSTOP

NOTE: Previous data can be operand data or the STOP opcode, depending on the last
 instruction.

CGMXCLK

INT/BREAK

IAB STOP + 2 STOP + 2 SP SP – 1 SP – 2 SP – 3STOP +1

STOP RECOVERY PERIOD

Monitor Mode (MON)

MC68HC908JW32 Data Sheet, Rev. 6

102 Freescale Semiconductor

During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the
security feature and can read all ROM locations and execute code from ROM. Security remains bypassed
until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and
security code entry is not required. (See Figure 7-7.)

Figure 7-7. Monitor Mode Entry Timing

Upon power-on reset, if the received bytes of the security code do not match the data at locations
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but
reading a ROM location returns an invalid value and trying to execute code from ROM causes an illegal
address reset. After receiving the eight security bytes from the host, the MCU transmits a break character,
signifying that it is ready to receive a command.

NOTE
The MCU does not transmit a break character until after the host sends the
eight security bits.

To determine whether the security code entered is correct, check to see if bit 6 of RAM address $60 is
set. If it is, then the correct security code has been entered and ROM can be accessed.

B
Y

T
E

 1

B
Y

T
E

 1
 E

C
H

O

B
Y

T
E

 2

B
Y

T
E

 2
 E

C
H

O

B
Y

T
E

 8

B
Y

T
E

 8
 E

C
H

O

C
O

M
M

A
N

D

C
O

M
M

A
N

D
 E

C
H

O

PTA0

RST

VDD

4096 + 32 CGMXCLK CYCLES

256 BUS CYCLES (MINIMUM)

1 4 1 1 2 1

B
R

E
A

K

NOTES:

2 = Data return delay, approximately 2 bit times.
4 = Wait 1 bit time before sending next byte.

4

FROM HOST

FROM MCU

1 = Echo delay, approximately 2 bit times.

Monitor Mode (MON)

MC68HC908JW32 Data Sheet, Rev. 6

104 Freescale Semiconductor

The control and data bytes are described below.

• Bus speed — This one byte indicates the operating bus speed of the MCU. The value of this byte
should be equal to 4 times the bus speed. E.g. for a 4MHz bus, the value is 16 ($10). This control
byte is useful where the MCU clock source is switched between the PLL clock and the crystal clock.

• Data size — This one byte indicates the number of bytes in the data array that are to be
manipulated. The maximum data array size is 255. Routines ERARNGE and MON_ERARNGE do
not manipulate a data array, thus, this data size byte has no meaning.

• Start address — These two bytes, high byte followed by low byte, indicate the start address of the
FLASH memory to be manipulated.

• Data array — This data array contains data that are to be manipulated. Data in this array are
programmed to FLASH memory by the programming routines: PRGRNGE, MON_PRGRNGE. For
the read routines: LDRNGE and data is read from FLASH and stored in this array.

7.5.1 PRGRNGE

PRGRNGE is used to program a range of FLASH locations with data loaded into the data array.

The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the
number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can be
programmed in one routine call is 255 bytes (max. DATASIZE is 255).

ADDRH:ADDRL do not need to be at a page boundary, the routine handles any boundary misalignment
during programming. A check to see that all bytes in the specified range are erased is not performed by
this routine prior programming. Nor does this routine do a verification after programming, so there is no
return confirmation that programming was successful. User must assure that the range specified is first
erased.

The coding example below is to program 64 bytes of data starting at FLASH location $EE00, with a bus
speed of 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the address
pointer, FILE_PTR, pointing to the first byte of the data block.

Table 7-11. PRGRNGE Routine

Routine Name PRGRNGE

Routine Description Program a range of locations

Calling Address $FE10

Stack Used 16 bytes

Data Block Format

Bus speed (BUS_SPD)
Data size (DATASIZE)
Start address high (ADDRH)
Start address (ADDRL)
Data 1 (DATA1)

:
Data N (DATAN)

ROM-Resident Routines

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 105

ORG RAM
:

FILE_PTR:
BUS_SPD DS.B 1 ; Indicates 4x bus frequency
DATASIZE DS.B 1 ; Data size to be programmed
START_ADDR DS.W 1 ; FLASH start address
DATAARRAY DS.B 64 ; Reserved data array

PRGRNGE EQU $FE10
FLASH_START EQU $EE00

ORG FLASH
INITIALISATION:

MOV #20, BUS_SPD
MOV #64, DATASIZE
LDHX #FLASH_START
STHX START_ADDR
RTS

MAIN:
BSR INITIALISATION
:
:
LDHX #FILE_PTR
JSR PRGRNGE

7.5.2 ERARNGE

ERARNGE is used to erase a range of locations in FLASH.

There are two sizes of erase ranges: a page or the entire array. The ERARNGE will erase the page (512
consecutive bytes) in FLASH specified by the address ADDRH:ADDRL. This address can be any address
within the page. Calling ERARNGE with ADDRH:ADDRL equal to $FFFF will erase the entire FLASH
array (mass erase). Therefore, care must be taken when calling this routine to prevent an accidental mass
erase.

The ERARNGE routine do not use a data array. The DATASIZE byte is a dummy byte that is also not
used.

Table 7-12. ERARNGE Routine

Routine Name ERARNGE

Routine Description Erase a page or the entire array

Calling Address $FE13

Stack Used 10 bytes

Data Block Format

Bus speed (BUS_SPD)
Data size (DATASIZE)
Starting address (ADDRH)
Starting address (ADDRL)

Serial Peripheral Interface Module (SPI)

MC68HC908JW32 Data Sheet, Rev. 6

132 Freescale Semiconductor

10.5.3 Transmission Format When CPHA = 1

Figure 10-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing
diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins
are directly connected between the master and the slave. The MISO signal is the output from the slave,
and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The
slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See
10.7.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK
edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can
remain low between transmissions. This format may be preferable in systems having only one master and
only one slave driving the MISO data line.

Figure 10-6. Transmission Format (CPHA = 1)

When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the
transmission begins, no new data is allowed into the shift register from the transmit data register.
Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of
SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the
shift register after the current transmission.

10.5.4 Transmission Initiation Latency

When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA
has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK
signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle.
When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and
the start of the SPI transmission. (See Figure 10-7.) The internal SPI clock in the master is a free-running
derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and
SPMSTR bits are set. SPSCK edges occur halfway through the low time of the internal MCU clock. Since
the SPI clock is free-running, it is uncertain where the write to the SPDR occurs relative to the slower
SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 10-7. This delay is
no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight
MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128.

BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSBMSB

BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSBMSB

1 2 3 4 5 6 7 8SPSCK CYCLE #
FOR REFERENCE

SPSCK; CPOL = 0

SPSCK; CPOL =1

MOSI
FROM MASTER

MISO
FROM SLAVE

SS; TO SLAVE

CAPTURE STROBE

I/O Registers

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 143

SPWOM — SPI Wired-OR Mode Bit
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins
become open-drain outputs.

1 = Wired-OR SPSCK, MOSI, and MISO pins
0 = Normal push-pull SPSCK, MOSI, and MISO pins

SPE — SPI Enable
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 10.9
Resetting the SPI.) Reset clears the SPE bit.

1 = SPI module enabled
0 = SPI module disabled

SPTIE— SPI Transmit Interrupt Enable
This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte
transfers from the transmit data register to the shift register. Reset clears the SPTIE bit.

1 = SPTE CPU interrupt requests enabled
0 = SPTE CPU interrupt requests disabled

10.13.2 SPI Status and Control Register

The SPI status and control register contains flags to signal these conditions:
• Receive data register full
• Failure to clear SPRF bit before next byte is received (overflow error)
• Inconsistent logic level on SS pin (mode fault error)
• Transmit data register empty

The SPI status and control register also contains bits that perform these functions:
• Enable error interrupts
• Enable mode fault error detection
• Select master SPI baud rate

SPRF — SPI Receiver Full Bit
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data
register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register
with SPRF set and then reading the SPI data register. Reset clears the SPRF bit.

1 = Receive data register full
0 = Receive data register not full

Address $004D

Bit 7 6 5 4 3 2 1 Bit 0

Read: SPRF
ERRIE

OVRF MODF SPTE
MODFEN SPR1 SPR0

Write:

Reset: 0 0 0 0 1 0 0 0

= Unimplemented

Figure 10-14. SPI Status and Control Register (SPSCR)

USB Module Architecture

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 151

11.3.4.1 Configuration Process

All USB devices must be configured before used. The host will configure the device according to the
configuration process defined by the USB specification 2.0 Chapter 9. During the process most of the
USB commands issued by the host are responded automatically except GET_DESCRIPTOR,
SYNC_FRAME, vendor specific and class specific commands where user interaction is required. These
are known as the user commands. The number of configurations and interfaces supported is limited by
the module. This module can support a single configuration and maximum of two interfaces. No alternate
setting is allowed.

Upon the reception of the user commands, no module level decoding is done instead user is notified by
the SETUP flag and TFRC_OUT flag. User can then decode the command through the dedicated 8-byte
endpoint 0 buffer. For instance, when a valid GET_DESCRIPTOR command is detected, user is notified
by the SETUP, TFRC_OUT flag and DVALID_OUT flag. User should decode the command via the 8-byte
endpoint 0 OUT buffer. Corresponding return descriptor is written to the endpoint 0 IN buffer 8 bytes at a
time. By setting the DVALID_IN bit, the data is sent to the host in the next IN packet. Otherwise, the
module will return NAK to all IN packet. If ACK is not returned from the host, the data is re-sent
automatically in the next IN packet until ACK is returned from the host, then transfer complete flag
TFRC_IN is set, the next 8 bytes of data can be written to the endpoint 0 IN buffer. The process continues
until the requested descriptor is sent completely.

NOTE
Please note the module will return ACK to all valid SETUP packet. No
software attention is required.

Endpoint 0 buffer and endpoint 0 data size register (DSIZE) will be updated
on every incoming SETUP packet. However, SETUP or TFRC_OUT will
not be set unless the SETUP packet is a valid GET_DESCRIPTOR,
SYNC_FRAME or class/vendor specific SETUP command.

11.3.4.2 Control Endpoint 0

Endpoint 0 is always treated as control endpoint. It has eight bytes dedicated buffer for device transmit
(IN packet) and eight bytes dedicated buffer for device receive (OUT packet). Most of the host requests
is handled by the requestor processor excepts the class/vendor specified request, GET_DESCRIPTOR
request and the SYNC_FRAME request. If the user is notified by the module about the arrival of such
requests, user can decode the request command by reading the endpoint 0 data register.

The SETUP flag will be set if the 8-byte setup packet is received without CRC/Token/EOP error for
Vendor/Class/SetDescriptor/SynchFrame commands only.

NOTE
For any OUT data received in the 8-byte endpoint OUT buffer, they are only
valid until the start of any SETUP packet addressed to the device, even if
the packet is corrupted the 8-byte OUT buffer may still be overwritten by
this new SETUP packet. There is no indication of the corruption built into
this module.

11.3.5 Endpoint Controller

The module has four independent endpoint controllers that managed the data transfer between CPU and
the USB host. Each of these endpoint can be configured to either one of the two modes - bulk or interrupt.

Introduction

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 169

B

0 DDRB0
LED POCR1 ($1A) LEDB0

PTB0
PULLUP PULLCR ($3E) PULL0EN

1 DDRB1
LED POCR1 ($1A) LEDB1

PTB1
PULLUP PULLCR ($3E) PULL1EN

2 DDRB2
LED POCR1 ($1A) LEDB2

PTB2
PULLUP PULLCR ($3E) PULL2EN

3 DDRB3
LED POCR1 ($1A) LEDB3

PTB3
PULLUP PULLCR ($3E) PULL3EN

4 DDRB4
LED POCR1 ($1A) LEDB4

PTB4
PULLUP PULLCR ($3E) PULL4EN

5 DDRB5
LED POCR1 ($1A) LEDB5

PTB5
PULLUP PULLCR ($3E) PULL5EN

6 DDRB6
LED POCR1 ($1A) LEDB6

PTB6
PULLUP PULLCR ($3E) PULL6EN

7 DDRB7
LED POCR1 ($1A) LEDB7

PTB7
PULLUP PULLCR ($3E) PULL7EN

C

0 DDRC0

TIM1

T1SC0 ($10) ELS0B:ELS0A PTC0/T1CH0

1 DDRC1 T1SC ($0A) PS[2:0] PTC1/TCLK1

2 DDRC2 T1SC1 ($13) ELS1B:ELS1A PTC2/T1CH1

3 DDRC3 — — — PTC3

D

0 DDRD0 — — — PTD0

1 DDRD1 — — — PTD1

2 DDRD2
PULLUP POCR2 ($1B)

PTD2PD PTD2

3 DDRD3 PTD3PD PTD3

4 DDRD4

— — —

PTD4

5 DDRD5 PTD5

6 DDRD6 PTD6

7 DDRD7 PULLUP POCR2 ($1B) PTD7PD PTD7

Table 13-1. Port Control Register Bits Summary (Continued)

Port Bit DDR
Module Control

Pin
Module Register Control Bit

Port B

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 173

DDRB[7:0] — Data Direction Register B Bits
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins
as inputs.

1 = Corresponding port B pin configured as output
0 = Corresponding port B pin configured as input

NOTE
Avoid glitches on port B pins by writing to the port B data register before
changing data direction register B bits from 0 to 1.

Figure 13-7 shows the port B I/O circuit logic.

Figure 13-7. Port B I/O Circuit

When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a
logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 13-3 summarizes the operation of the port B pins.

Address: $0005

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 13-6. Data Direction Register D (DDRD)

Table 13-3. Port B Pin Functions

DDRB
Bit

PTB Bit I/O Pin Mode
Accesses
to DDRB

Accesses to PTB

Read/Write Read Write

0 X(1)

1. X = don’t care

Input, Hi-Z(2)

2. Hi-Z = high impedance

DDRB[7:0] Pin PTB[7:0](3)

3. Writing affects data register, but does not affect input.

1 X Output DDRB[7:0] PTB[7:0] PTB[7:0]

READ DDRD ($0007)

WRITE DDRD ($0007)

RESET

WRITE PTD ($0003)

READ PTD ($0003)

PTBx

DDRBx

PTBx

IN
TE

R
N

AL
 D

AT
A

BU
S

Port D

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 177

Figure 13-13 shows the port D I/O circuit logic.

Figure 13-13. Port D I/O Circuit

When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a
logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 13-6 summarizes the operation of the port D pins.

Table 13-6. Port D Pin Functions

DDRD
Bit

PTD Bit I/O Pin Mode

Accesses
to DDRD

Accesses to PTD

Read/Write Read Write

0 X(1)

1. X = don’t care

Input, Hi-Z(2)

2. Hi-Z = high impedance

DDRD[7:0] Pin PTD[7:0](3)

3. Writing affects data register, but does not affect input.

1 X Output DDRD[7:0] PTD[7:0] PTD[7:0]

READ DDRD ($0008)

WRITE DDRD ($0008)

RESET

WRITE PTD ($0003)

READ PTD ($0003)

PTDx

DDRDx

PTDx

IN
TE

R
N

AL
 D

AT
A

BU
S

Functional Description

MC68HC908JW32 Data Sheet, Rev. 6

Freescale Semiconductor 193

The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may
occur in any order.

If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a
vector fetch or software clear immediately clears the keyboard interrupt request.

Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a
keyboard interrupt pin stays at logic 0.

The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending
interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes
it useful in applications where polling is preferred.

To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the
pin as an input and read the data register.

NOTE
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding
keyboard interrupt pin to be an input, overriding the data direction register.
However, the data direction register bit must be a logic 0 for software to
read the pin.

15.4.1 Keyboard Initialization

When a keyboard interrupt pin is enabled, it takes time for the pullup device to reach a logic 1. Therefore,
a false interrupt can occur as soon as the pin is enabled.

To prevent a false interrupt on keyboard initialization:
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.
4. Clear the IMASKK bit.

An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that
depends on the external load.

Another way to avoid a false interrupt:
1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction

register A.
2. Write logic 1s to the appropriate port A data register bits.
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.

