
STMicroelectronics - UPSD3433E-40U6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor 8032

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, IrDA, SPI, UART/USART, USB

Peripherals LVD, POR, PWM, WDT

Number of I/O 46

Program Memory Size 160KB (160K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 80-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/upsd3433e-40u6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/upsd3433e-40u6-4429339
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

List of figures UPSD3422, UPSD3433, UPSD3434, UPSD3454

18/300

Figure 49. USB packets in a USB transfer example . 153
Figure 50. IN and OUT bulk transfers . 154
Figure 51. Interrupt transfer . 155
Figure 52. Control transfer . 156
Figure 53. FIFOs with no pairing . 158
Figure 54. FIFO pairing example (1/2 IN paired and 3/4 OUT paired). 159
Figure 55. Typical self powered example . 177
Figure 56. 10-bit ADC . 179
Figure 57. PCA0 block diagram . 181
Figure 58. Timer mode. 184
Figure 59. PWM mode - (x8), fixed frequency . 185
Figure 60. PWM mode - (x8) programmable frequency. 186
Figure 61. PSD module block diagram . 191
Figure 62. Memory page register . 194
Figure 63. Typical system memory map . 198
Figure 64. PSDsoft express memory mapping . 199
Figure 65. Mapping: split second Flash in half. 200
Figure 66. Mapping: all Flash in code space . 201
Figure 67. Mapping: small code / big data . 201
Figure 68. PSD module memory priority . 202
Figure 69. VM register control of memories . 204
Figure 70. VM register example corresponding to memory map example. 204
Figure 71. Data polling flowchart . 214
Figure 72. Data toggle flowchart . 215
Figure 73. DPLD and GPLD . 221
Figure 74. DPLD logic array. 223
Figure 75. GPLD: one OMC, one IMC, and one I/O port (typical pin, port A, B, or C) 224
Figure 76. Detail of a single OMC . 226
Figure 77. OMC allocator . 227
Figure 78. Detail of a single IMC . 230
Figure 79. Detail of a single I/O port (typical of ports A, B, C) . 232
Figure 80. Simple PLD logic example . 237
Figure 81. Pin declarations in PSDsoft express for simple PLD example . 237
Figure 82. Using the design assistant in PSDsoft Express for simple PLD example. 238
Figure 83. Peripheral I/O mode . 239
Figure 84. Port A structure. 243
Figure 85. Port B structure. 244
Figure 86. Port C structure. 246
Figure 87. Port D structure. 247
Figure 88. Automatic power-down (APD) unit . 252
Figure 89. Power-down mode flowchart . 253
Figure 90. JTAG chain in UPSD34xx package . 258
Figure 91. Recommended 4-pin JTAG connections . 259
Figure 92. Recommended 6-pin JTAG connections . 261
Figure 93. Recommended JTAG connector . 262
Figure 94. Example of chaining UPSD34xx devices . 263
Figure 95. PLD ICC / frequency consumption (5 V range) . 265
Figure 96. PLD ICC / frequency consumption (3 V range) . 266
Figure 97. Switching waveforms – key . 270
Figure 98. External READ cycle (80-pin device only) . 275
Figure 99. External WRITE cycle (80-pin device only). 276
Figure 100. Input to output disable / enable. 278

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Description UPSD3422, UPSD3433, UPSD3434, UPSD3454

20/300

1 Description

The Turbo Plus UPSD34xx Series combines a powerful 8051-based microcontroller with a
flexible memory structure, programmable logic, and a rich peripheral mix to form an ideal
embedded controller. At its core is a fast 4-cycle 8032 MCU with a 4-byte instruction
prefetch queue (PFQ) and a 4-entry fully associative branching cache (BC). The MCU is
connected to a 16-bit internal instruction path to maximize performance, enabling loops of
code in smaller localities to execute extremely fast. The 16-bit wide instruction path in the
Turbo Plus Series allows double-byte instructions to be fetched from memory in a single
memory cycle. This keeps the average performance near its peak performance (peak
performance for 5 V, 40 MHz Turbo Plus UPSD34xx is 10 MIPS for single-byte instructions,
and average performance will be approximately 9 MIPS for mix of single- and multi-byte
instructions).

USB 2.0 (full speed, 12Mbps) is included, providing 10 endpoints, each with its own 64-byte
FIFO to maintain high data throughput. Endpoint 0 (control endpoint) uses two of the 10
endpoints for In and Out directions, the remaining eight endpoints may be allocated in any
mix to either type of transfers: Bulk or Interrupt.

Code development is easily managed without a hardware in-circuit emulator by using the
serial JTAG debug interface. JTAG is also used for in-system programming (ISP) in as little
as 10 seconds, perfect for manufacturing and lab development. The 8032 core is coupled to
programmable system device (PSD) architecture to optimize the 8032 memory structure,
offering two independent banks of Flash memory that can be placed at virtually any address
within 8032 program or data address space, and easily paged beyond 64 Kbytes using on-
chip programmable decode logic.

Dual Flash memory banks provide a robust solution for remote product updates in the field
through in-application programming (IAP). Dual Flash banks also support EEPROM
emulation, eliminating the need for external EEPROM chips.

General-purpose programmable logic (PLD) is included to build an endless variety of glue-
logic, saving external logic devices. The PLD is configured using the software development
tool, PSDsoft Express, available from the web at www.st.com/psm, at no charge.

The UPSD34xx also includes supervisor functions such as a programmable watchdog timer
and low-voltage reset.

Note: For a list of known limitations of the UPSD34xx devices, please refer to Section 34:
Important notes.

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

8032 addressing modes UPSD3422, UPSD3433, UPSD3434, UPSD3454

48/300

9 8032 addressing modes

The 8032 MCU uses 11 different addressing modes listed below:

● Register

● Direct

● Register indirect

● Immediate

● External direct

● External indirect

● Indexed

● Relative

● Absolute

● Long

● Bit

9.1 Register addressing
This mode uses the contents of one of the registers R0 - R7 (selected by the last three bits
in the instruction opcode) as the operand source or destination. This mode is very efficient
since an additional instruction byte is not needed to identify the operand. For example:

9.2 Direct addressing
This mode uses an 8-bit address, which is contained in the second byte of the instruction, to
directly address an operand which resides in either 8032 DATA SRAM (internal address
range 00h-07Fh) or resides in 8032 SFR (internal address range 80h-FFh). This mode is
quite fast since the range limit is 256 bytes of internal 8032 SRAM. For example:

9.3 Register indirect addressing
This mode uses an 8-bit address contained in either register R0 or R1 to indirectly address
an operand which resides in 8032 IDATA SRAM (internal address range 80h-FFh). Although
8032 SFR registers also occupy the same physical address range as IDATA, SFRs will not
be accessed by register Indirect mode. SFRs may only be accesses using Direct address
mode. For example:

MOV A, R7 ; Move contents of R7 to accumulator

MOV A, 40h ; Move contents of DATA SRAM

; at location 40h into the accumulator

MOV A, @R0 ; Move into the accumulator the

; contents of IDATA SRAM that is

; pointed to by the address
; contained in R0.

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 UPSD34xx instruction set summary

 55/300

Table 9. Boolean variable manipulation instruction set

Mnemonic(1) and use

1. All mnemonics copyrighted ©Intel Corporation 1980.

Description Length/cycles

CLR C Clear carry 1 byte/1 cycle

CLR bit Clear direct bit 2 byte/1 cycle

SETB C Set carry 1 byte/1 cycle

SETB bit Set direct bit 2 byte/1 cycle

CPL C Compliment carry 1 byte/1 cycle

CPL bit Compliment direct bit 2 byte/1 cycle

ANL C, bit AND direct bit to carry 2 byte/2 cycle

ANL C, /bit AND compliment of direct bit to carry 2 byte/2 cycle

ORL C, bit OR direct bit to carry 2 byte/2 cycle

ORL C, /bit OR compliment of direct bit to carry 2 byte/2 cycle

MOV C, bit Move direct bit to carry 2 byte/1 cycle

MOV bit, C Move carry to direct bit 2 byte/2 cycle

JC rel Jump if carry is set 2 byte/2 cycle

JNC rel Jump if carry is not set 2 byte/2 cycle

JB rel Jump if direct bit is set 3 byte/2 cycle

JNB rel Jump if direct bit is not set 3 byte/2 cycle

JBC bit, rel Jump if direct bit is set and clear bit 3 byte/2 cycle

Table 10. Program branching instruction set

Mnemonic(1) and use Description Length/cycles

Program Branching Instructions

ACALL addr11 Absolute subroutine call 2 byte/2 cycle

LCALL addr16 Long subroutine call 3 byte/2 cycle

RET Return from subroutine 1 byte/2 cycle

RETI Return from interrupt 1 byte/2 cycle

AJMP addr11 Absolute jump 2 byte/2 cycle

LJMP addr16 Long jump 3 byte/2 cycle

SJMP rel Short jump (relative addr) 2 byte/2 cycle

JMP @A+DPTR Jump indirect relative to the DPTR 1 byte/2 cycle

JZ rel Jump if ACC is zero 2 byte/2 cycle

JNZ rel Jump if ACC is not zero 2 byte/2 cycle

CJNE A, direct, rel Compare direct byte to ACC, jump if not equal 3 byte/2 cycle

CJNE A, #data, rel Compare immediate to ACC, jump if not equal 3 byte/2 cycle

CJNE Rn, #data, rel Compare immediate to register, jump if not equal 3 byte/2 cycle

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 Interrupt system

 67/300

3 – – Reserved, do not set to logic '1.'

2 – – Reserved, do not set to logic '1.'

1(1) EI2C R,W Enable I2C Interrupt

0 EUSB R,W Enable USB Interrupt

1. 1 = Enable Interrupt, 0 = Disable Interrupt.

Table 22. IP: interrupt priority register (SFR B8h, reset value 00h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

– – PT2 PS0 PT1 PX1 PT0 PX0

Table 23. IP register bit definition

Bit Symbol R/W Function

7 – – Reserved

6 – – Reserved

5(1)

1. 1 = Assigns high priority level, 0 = Assigns low priority level.

PT2 R,W Timer 2 Interrupt priority level

4(1) PS0 R,W UART0 Interrupt priority level

3(1) PT1 R,W Timer 1 Interrupt priority level

2(1) PX1 R,W External Interrupt INT1 priority level

1(1) PT0 R,W Timer 0 Interrupt priority level

0(1) PX0 R,W External Interrupt INT0 priority level

Table 24. IPA: Interrupt Priority Addition register (SFR B7h, reset value 00h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PADC PSPI PPCA PS1 – – PI2C PUSB

Table 25. IPA register bit definition

Bit Symbol R/W Function

7(1)

1. 1 = Assigns high priority level, 0 = Assigns low priority level.

PADC R,W ADC Interrupt priority level

6(1) PSPI R,W SPI Interrupt priority level

5(1) PPCA R,W PCA Interrupt level

4(1) PS1 R,W UART1 Interrupt priority level

3 – – Reserved

2 – – Reserved

1(1) PI2C R,W I2C Interrupt priority level

0 PUSB R,W USB Interrupt priority level

Table 21. IEA register bit definition (continued)

Bit Symbol R/W Function

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Supervisory functions UPSD3422, UPSD3433, UPSD3434, UPSD3454

92/300

19.2 Low VCC voltage detect, LVD
An internal reset is generated by the LVD circuit when VCC drops below the reset threshold,
VLV_THRESH. After VCC returns to the reset threshold, the MCU_RESET signal will remain
asserted for tRST_ACTV before it is released. The LVD circuit is always enabled (cannot be
disabled by SFR), even in Idle mode and Power-down mode. The LVD input has a voltage
hysteresis of VRST_HYS and will reject voltage spikes less than a duration of tRST_FIL.

Important note: The LVD voltage threshold is VLV_THRESH, suitable for monitoring both the
3.3 V VCC supply on the MCU module and the 3.3 V VDD supply on the PSD module for
3.3 V UPSD34xxV devices, since these supplies are one in the same on the circuit board.

However, for 5 V UPSD34xx devices, VLV_THRESH is not suitable for monitoring the 5 V VDD
voltage supply (VLV_THRESH is too low), but good for monitoring the 3.3 V VCC supply. In the
case of 5 V UPSD34xx devices, an external means is required to monitor the separate 5 V
VDD supply, if desired.

19.3 Power-up reset
At power up, the internal reset generated by the LVD circuit is latched as a logic '1' in the
POR bit of the SFR named PCON (Table 33 on page 74). Software can read this bit to
determine whether the last MCU reset was the result of a power up (cold reset) or a reset
from some other condition (warm reset). This bit must be cleared with software.

19.4 JTAG debug reset
The JTAG Debug Unit can generate a reset for debugging purposes. This reset source is
also available when the MCU is in Idle mode and Power-Down mode (the user can use the
JTAG debugger to exit these modes).

19.5 Watchdog timer, WDT
When enabled, the WDT will generate a reset whenever it overflows. Firmware that is
behaving correctly will periodically clear the WDT before it overflows. Run-away firmware
will not be able to clear the WDT, and a reset will be generated.

By default, the WDT is disabled after each reset.

Note: The WDT is not active during Idle mode or Power-down mode.

There are two SFRs that control the WDT, they are WDKEY (Table 52 on page 94) and
WDRST (Table 54 on page 94).

If WDKEY contains 55h, the WDT is disabled. Any value other than 55h in WDKEY will
enable the WDT. By default, after any reset condition, WDKEY is automatically loaded with
55h, disabling the WDT. It is the responsibility of initialization firmware to write some value
other than 55h to WDKEY after each reset if the WDT is to be used.

The WDT consists of a 24-bit up-counter (Figure 23), whose initial count is 000000h by
default after every reset. The most significant byte of this counter is controlled by the SFR,
WDRST. After being enabled by WDKEY, the 24-bit count is increased by 1 for each MCU
machine cycle. When the count overflows beyond FFFFFh (224 MCU machine cycles), a
reset is issued and the WDT is automatically disabled (WDKEY = 55h again).

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 Supervisory functions

 95/300

Table 55. WDRST register bit definition

Bit Symbol R/W Definition

[7:0] WDRST W

This SFR is the upper byte of the 24-bit WDT up-counter.
Writing this SFR sets the upper byte of the counter to the
written value, and clears the lower two bytes of the counter to
0000h.
Counting begins when WDKEY does not contain 55h.

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Standard 8032 timer/counters UPSD3422, UPSD3433, UPSD3434, UPSD3454

104/300

in use as a baud rate generator, the pin T2X can be used as an extra external interrupt, if
desired.

When Timer 2 is running (TR2 = 1) in a “timer” function in the Baud rate generator mode,
firmware should not read or write TH2 or TL2. Under these conditions the results of a read
or write may not be accurate. However, SFRs RCAP2H and RCAP2L may be read, but
should not be written, because a write might overlap a reload and cause write and/or reload
errors. Timer 2 should be turned off (clear TR2) before accessing Timer 2 or registers
RCAP2H and RCAP2L, in this case.

Table 63 on page 104 shows commonly used baud rates and how they can be obtained
from Timer 2, with T2CON = 34h.

Table 63. Commonly used baud rates generated from timer2
(T2CON = 34h)

fOSC MHz
Desired

baud rate

Timer 2 SFRs Resulting baud
rate

Baud rate
deviationRCAP2H (hex) RCAP2L(hex)

40.0 115200 FF F5 113636 -1.36%

40.0 57600 FF EA 56818 -1.36%

40.0 28800 FF D5 29070 0.94%

40.0 19200 FF BF 19231 0.16%

40.0 9600 FF 7E 9615 0.16%

36.864 115200 FF F6 115200 0

36.864 57600 FF EC 57600 0

36.864 28800 FF D8 28800 0

36.864 19200 FF C4 19200 0

36.864 9600 FF 88 9600 0

36.0 28800 FF D9 28846 0.16%

36.0 19200 FF C5 19067 -0.69%

36.0 9600 FF 8B 9615 0.16%

24.0 57600 FF F3 57692 0.16%

24.0 28800 FF E6 28846 0.16%

24.0 19200 FF D9 19231 0.16%

24.0 9600 FF B2 9615 0.16%

12.0 28800 FF F3 28846 0.16%

12.0 9600 FF D9 9615 0.16%

11.0592 115200 FF FD 115200 0

11.0592 57600 FF FA 57600 0

11.0592 28800 FF F4 28800 0

11.0592 19200 FF EE 19200 0

11.0592 9600 FF DC 9600 0

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 I2C interface

 123/300

23 I2C interface

UPSD34xx devices support one serial I2C interface. This is a two-wire communication
channel, having a bidirectional data signal (SDA, pin P3.6) and a clock signal (SCL, pin
P3.7) based on open-drain line drivers, requiring external pull-up resistors, RP, each with a
typical value of 4.7kΩ (see Figure 40).

23.1 I2C interface main features
Byte-wide data is transferred, MSB first, between a Master device and a Slave device on two
wires. More than one bus Master is allowed, but only one Master may control the bus at any
given time. Data is not lost when another Master requests the use of a busy bus because
I2C supports collision detection and arbitration. The bus Master initiates all data movement
and generates the clock that permits the transfer. Once a transfer is initiated by the Master,
any device addressed is considered a Slave. Automatic clock synchronization allows I2C
devices with different bit rates to communicate on the same physical bus. A single device
can play the role of Master or Slave, or a single device can be a Slave only. Each Slave
device on the bus has a unique address, and a general broadcast address is also available.
A Master or Slave device has the ability to suspend data transfers if the device needs more
time to transmit or receive data.

This I2C interface has the following features:

● Serial I/O Engine (SIOE): serial/parallel conversion; bus arbitration; clock generation
and synchronization; and handshaking are all performed in hardware

● Interrupt or Polled operation

● Multi-master capability

● 7-bit Addressing

● Supports standard speed I2C (SCL up to 100kHz), fast mode I2C (101KHz to 400kHz),
and high-speed mode I2C (401KHz to 833kHz)

Figure 40. Typical I2C bus configuration

1. For 3.3 V system, connect RP to 3.3 V VCC. For 5.0 V system, connect RP to 5.0 V VDD.

I2C bus

SDA

SCL

RP RP

VCC or VDD
(1)

Device with I2C
interface

Device with I2C
interface

SDA/P3.6 SCL/P3.7

uPSD34XX(V)

Device with I2C
Interface

AI09623c

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

I2C interface UPSD3422, UPSD3433, UPSD3434, UPSD3454

136/300

Enable individual I2C interrupt and set priority

– SFR IEA.I2C = 1

– SFR IPA.I2C = 1 if high priority is desired

Set the Device address for Slave mode

– SFR S1ADR = XXh, desired address

Enable SIOE (as Slave) to return an ACK signal

– SFR S1CON.AA = 1

Master-Transmitter

Disable all interrupts

– SFR IE.EA = 0

Set pointer to global data xmit buffer, set count

– *xmit_buf = *pointer to data

– buf_length = number of bytes to xmit

Set global variables to indicate Master-Xmitter

– I2C_master = 1, I2C_xmitter = 1

Disable Master from returning an ACK

– SFR S1CON.AA = 0

Enable I2C SIOE

– SFR S1CON.INI1 = 1

Transmit Address and R/W bit = 0 to Slave

– Is bus not busy? (SFR S1STA.BBUSY = 0?)

<If busy, then test until not busy>

– SFR S1DAT[7:0] = Load Slave Address & FEh

– SFR S1CON.STA = 1, send Start on bus

<bus transmission begins>

Enable All Interrupts and go do something else

– SFR IE.EA = 1

Master-Receiver

Disable all interrupts

– SFR IE.EA = 0

Set pointer to global data recv buffer, set count

– *recv_buf = *pointer to data

– buf_length = number of bytes to recv

Set global variables to indicate Master-Xmitter

– I2C_master = 1, I2C_xmitter = 0

Disable Master from returning an ACK

– SFR S1CON.AA = 0

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

I2C interface UPSD3422, UPSD3433, UPSD3434, UPSD3454

140/300

Is this the next to last byte to receive from Slave?

If this is the next to last byte, do not allow Master to ACK
on next interrupt.

– S1CON.AA = 0, don’t let Master return ACK

– Exit ISR, now ready to recv last byte from Slv

If this is not next to last byte, let Master send ACK to
Slave

<S1CON.AA is already 1>

– Exit ISR, ready to recv more bytes from Slave

Else If mode is Slave-Transmitter:

Is this Intr from SIOE detecting a Stop on bus?

If Yes, a Stop was detected:

– S1DAT = dummy, write to release bus

– Exit ISR, Master needs no more data bytes

If No, a Stop was not detected, continue:

ACK recvd from Master? (status.ACK_RESP=0?)

If No, an ACK was not received:

– S1DAT = dummy, write to release bus

– Exit ISR, Master needs no more data bytes

If Yes, ACK was received, then continue:

– S1DAT = xmit_buf[buffer_index], transmit byte

– Exit ISR, transmit next byte on next interrupt

Else If mode is Slave-Receiver:

Is this Intr from SIOE detecting a Stop on bus?

If Yes, a Stop was detected:

– recv_buf[buffer_index] = S1DAT, get last byte

– Exit ISR, Master has sent last byte

If No, a Stop was not detected, continue:

Determine if this Interrupt is from receiving an address or a data
byte from a Master.

Is (S1CON.ADDR = 1 and S1CON.AA =1)?

If No, intr is from receiving data, goto C:

If Yes, intr is from an address, continue:

– slave_is_adressed = 1, local variable set true

<indicates Master selected this slave>

– S1CON.ADDR = 0, clear address match flag

Determine if R/W bit indicates transmit or receive.

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

USB interface UPSD3422, UPSD3433, UPSD3434, UPSD3454

156/300

Figure 52. Control transfer

25.3 Endpoint FIFOs
The UPSD34xx’s USB module includes 5 endpoints and 10 FIFOs. Each endpoint has two
FIFOs with one for IN and the other for OUT transactions. Each FIFO is 64 bytes long and
is selectively made visible in a 64-byte XDATA segment for CPU access. For efficient data
transfers, the FIFOs may be paired for double buffering. With double buffering, the CPU may
operate on the contents in one buffer while the SIE is transmitting or receiving data in the
paired buffer. UPSD34xx supported endpoints and FIFOs are shown in Table 98

25.3.1 Busy bit (BSY) operation

Each FIFO has a busy bit (BSY) that indicates when the USB SIE has ownership of the
FIFO. When the SIE has ownership of the FIFO, it is either writing data to or reading data
from the FIFO. The SIE writes data to the FIFO when it is receiving an OUT packet and
reads data from the FIFO when it is sending data in response to an IN packet. The CPU is
only permitted to access the FIFO when it is not busy and accesses to it while busy are
ignored. Once the IN FIFO has been written with data by the CPU, the CPU updates the
USIZE register with the number of bytes written to the FIFO. The value written to the USIZE
register tells the SIE the number of bytes to send to the host in response to an IN packet.
Once the USIZE register is written, the FIFOs busy bit is set and remains set until the data
has been transmitted in response to an IN packet. The busy bit for an OUT FIFO is set as
soon as the SIE starts receiving an OUT packet from the host. Once all the data has been
received and written to the FIFO, the SIE clears the busy bit and writes the number of bytes
received to the USIZE register.

25.3.2 Busy bit and interrupts

When the FIFO’s interrupt is enabled, a transition of the busy bit from a '1' to a '0' (when
ownership of the FIFO changes from the SIE to the CPU) generates a USB interrupt with the
corresponding flag set. For an interrupt on an IN FIFO, the CPU must fill the FIFO with the
next set of data to be sent and then update the USIZE register with the number of bytes to
send. For an interrupt on an OUT FIFO, the CPU reads the USIZE register to determine the
number of bytes received and then reads that number of data bytes out of the FIFO.

Token packet Data packet Handshake packet

SETUP ADDR ENDP CRC5 CRC16
SETUP
stage

DATA
stage

(optional)

STATUS
stage

ACKData0 Payload
data (8 bytes)

Token packet Data packet Handshake packet

IN ADDR ENDP CRC5 CRC16 ACKData1 Payload
data

Token packet Data packet
Handshake

packet

OUT ADDR ENDP CRC5 CRC16 ACKData1

AI10492b

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 USB interface

 157/300

25.3.3 FIFO pairing

The FIFOs on endpoints 1 through 4 may be used independently as shown in Figure 53 as
FIFOs with no Pairing or they may be selectively paired to provide double buffering (see
Figure 54 on page 159). Double buffering provides an efficient way to optimize data transfer
rates with bulk transfers. Double buffering allows the CPU to process a data packet for an
Endpoint while the SIE is receiving or transmitting another packet of data on the same
Endpoint and direction. FIFO pairing is controlled by the USB pairing control register (see
UPAIR, Table 102 on page 162). FIFO pairing options are listed below:

● IN FIFO 1 and 2

● OUT FIFO 1 and 2

● IN FIFO 3 and 4

● OUT FIFO 3 and 4

Note: When the FIFOs are paired, the CPU must access the odd numbered FIFO while the even
numbered FIFOs are no longer available for use. Also when they are paired, the active FIFO
is automatically toggled by the update of USIZE.

● Non-pairing FIFOs Example

Consider a case where the device needs to send 1024 bytes of data to the host.
Without FIFO pairing (see Figure 53), the CPU loads the IN Endpoint0 FIFO with 64
bytes of data and waits until the host sends an IN token to Endpoint0, and the SIE
transfers the data to the host. Once all 64 bytes have been transferred by the SIE, the
FIFO becomes empty and the CPU starts writing the next 64 bytes of data to the FIFO.
While the CPU is writing the data to the FIFO, the host is sending IN tokens to
Endpoint0, requesting the next 64 bytes of data, but only gets NAKs while the FIFO is
being loaded. Once the FIFO has been loaded by the CPU, the SIE starts sending the
data to the host with the next IN Endpoint0 token. Again, the CPU waits until the SIE
transfers the 64 bytes of data to the host. This is repeated until all 1024 bytes have
been transferred.

Table 98. UPSD34xx supported endpoints

Endpoint Function
Max packet size (FIFO

size)
Supported directions

0 Control 64 bytes OUT

0 Control 64 bytes IN

1 Bulk/Interrupt OUT 64 bytes OUT

1 Bulk/Interrupt IN 64 bytes IN

2 Bulk/Interrupt OUT 64 bytes OUT

2 Bulk/Interrupt IN 64 bytes IN

3 Bulk/Interrupt OUT 64 bytes OUT

3 Bulk/Interrupt IN 64 bytes IN

4 Bulk/Interrupt OUT 64 bytes OUT

4 Bulk/Interrupt In 64 bytes IN

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 PSD module

 199/300

Table 159. HDL statement example generated from PSDsoft express for memory
map

Figure 64. PSDsoft express memory mapping

28.2.4 EEPROM emulation

EEPROM emulation is needed if it is desired to repeatedly change only a small number of
bytes of data in Flash memory. In this case EEPROM emulation is needed because
although Flash memory can be written byte-by-byte, it must be erased sector-by-sector, it is
not erasable byte-by-byte (unlike EEPROM which is written AND erased byte-by-byte). So
changing one or two bytes in Flash memory typically requires erasing an entire sector each
time only one byte is changed within that sector.

However, two of the 8 Kbyte sectors of Secondary Flash memory may be used to emulate
EEPROM by using a linked-list software technique to create a small data set that is

rs0 = ((address ≥ ^h0000) & (address ≤ ^h1FFF));

csiop = ((address ≥ ^h2000) & (address ≤ ^h20FF));

fs0 = ((address ≥ ^h0000) & (address ≤ ^h3FFF));

fs1 = ((address ≥ ^h4000) & (address ≤ ^h7FFF));

fs2 = ((page == 0) & (address ≥ ^h8000) & (address ≤ ^hBFFF));

fs3 = ((page == 0) & (address ≥ ^hC000) & (address ≤ ^hFFFF));

fs4 = ((page == 1) & (address ≥ ^h8000) & (address ≤ ^hBFFF));

fs5 = ((page == 1) & (address ≥ ^hC000) & (address ≤ ^hFFFF));

fs6 = ((page == 2) & (address ≥ ^h8000) & (address ≤ ^hBFFF));

fs7 = ((page == 2) & (address ≥ ^hC000) & (address ≤ ^hFFFF));

csboot0 = ((address ≥ ^h8000) & (address ≤ ^h9FFF));

csboot1 = ((address ≥ ^hA000) & (address ≤ ^hBFFF));

csboot2 = ((address ≥ ^hC000) & (address ≤ ^hDFFF));

csboot3 = ((address ≥ ^hE000) & (address ≤ ^hFFFF));

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

PSD module UPSD3422, UPSD3433, UPSD3434, UPSD3454

212/300

28.5.9 Erase time-out flag (DQ3)

The Erase Time-out Flag Bit (DQ3) reflects the time-out period allowed between two
consecutive sector erase instruction sequence bytes. If multiple sector erase commands are
desired, the additional sector erase commands (30h) must be sent by the 8032 within 80us
after the previous sector erase command. DQ3 is 0 before this time period has expired,
indicating it is OK to issue additional sector erase commands. DQ3 will go to logic ’1’ if the
time has been longer than 80µs since the previous sector erase command (time has
expired), indication that is not OK to send another sector erase command. In this case, the
8032 must start a new sector erase instruction sequence (unlock and command) beginning
again after the current sector erase operation has completed.

28.5.10 Programming Flash memory

When a byte of Flash memory is programmed, individual bits are programmed to logic '0.'
cannot program a bit in Flash memory to a logic ’1’ once it has been programmed to a logic
'0.' A bit must be erased to logic ’1’, and programmed to logic '0.' That means Flash memory
must be erased prior to being programmed. A byte of Flash memory is erased to all 1s
(FFh). The 8032 may erase the entire Flash memory array all at once, or erase individual
sector-by-sector, but not erase byte-by-byte. However, even though the Flash memories
cannot be erased byte-by-byte, the 8032 may program Flash memory byte-by-byte. This
means the 8032 does not need to program group of bytes (64, 128, etc.) at one time, like
some Flash memories.

Each Flash memory requires the 8032 to send an instruction sequence to program a byte or
to erase sectors (see Table 163 on page 209).

If the byte to be programmed is in a protected Flash memory sector, the instruction
sequence is ignored.

Important note: It is mandatory that a chip-select signal is active for the Flash sector where
a programming instruction sequence is targeted. The user must make sure that the correct
chip-select equation, FSx or CSBOOTx specified in PSDsoft Express matches the address
range that the 8032 firmware is accessing, otherwise the instruction sequence will not be
recognized by the Flash array. If memory paging is used, be sure that the 8032 firmware
sets the page register to the correct page number before issuing an instruction sequence to
the Flash memory segment on a particular memory page, otherwise the correct sector
select signal will not become active.

Once the 8032 issues a Flash memory program or erase instruction sequence, it must
check the status bits for completion. The embedded algorithms that are invoked inside a
Flash memory array provide several ways to give status to the 8032. Status may be checked
using any of three methods: Data Polling, Data Toggle, or Ready/Busy (pin PC3).

Table 164. Flash memory status bit definition(1) (2)

1. X = Not guaranteed value, can be read either '1' or '0.'

2. DQ7-DQ0 represent the 8032 data bus bits, D7-D0.

Functional
block

FSx, or CSBOOTx DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0

Flash
memory

Active (the desired
segment is selected)

Data
polling

Toggle
flag

Error
flag

X
Erase

timeout
X X X

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

PSD module UPSD3422, UPSD3433, UPSD3434, UPSD3454

228/300

28.5.32 Loading and reading OMCs

Each of the two OMC groups (eight OMCs each) occupies a byte in csiop space, named
MCELLAB and MCELLBC (see Table 169 and Table 170). When the 8032 writes or reads
these two OMC registers in csiop it is accessing each of the OMCs through its 8-bit data
bus, with the bit assignment shown in Table 168 on page 227. Sometimes it is important to
know the bit assignment when the user builds GPLD logic that is accessed by the 8032. For
example, the user may create a 4-bit counter that must be loaded and read by the 8032, so
the user must know which nibble in the corresponding csiop OMC register the firmware must
access. The fitter report generated by PSDsoft Express will indicate how it assigned the
OMCs and data bus bits to the logic. The user can optionally force PSDsoft Express to
assign logic to specific OMCs and data bus bits if desired by using the ‘PROPERTY’
statement in PSDsoft Express. Please see the PSDsoft Express User’s Manual for more
information on OMC assignments.

Loading the OMC flip-flops with data from the 8032 takes priority over the PLD logic
functions. As such, the preset, clear, and clock inputs to the flip-flop can be asynchronously
overridden when the 8032 writes to the csiop registers to load the individual OMCs.

MCELLBC3 Port B3 or C3 4 5 D3

MCELLBC4 Port B4 or C4 4 6 D4

MCELLBC5 Port B5 4 6 D5

MCELLBC6 Port B6 4 6 D6

MCELLBC7 Port B7 orC7 4 6 D7

1. MCELLAB0-MCELLAB7 can be output to Port A pins only on 80-pin devices. Port A is not available on 52-
pin devices.

2. Port pins PC0, PC1, PC5, and PC6 are dedicated JTAG pins and are not available as outputs for
MCELLBC 0, 1, 5, or 6.

Table 168. OMC port and data bit assignments (continued)

OMC
Port

assignment(1),(2)

Native product
terms from AND-OR

array

Maximum
borrowed product

terms

Data bit on 8032
data bus for
loading or

reading OMC

Table 169. Output macrocell MCELLAB (address = csiop + offset 20h)(1)

1. All bits clear to logic ’0’ at power-on reset, but do not clear after warm reset conditions (non-power-on
reset).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MCELLAB
7

MCELLAB
6

MCELLAB
5

MCELLAB
4

MCELLAB
3

MCELLAB
2

MCELLAB
1

MCELLAB
0

Table 170. Output macrocell MCELLBC (address = csiop + offset 21h)(1)

1. All bits clear to logic ’0’ at power-on reset, but do not clear after warm reset conditions (non-power-on
reset).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MCELLBC
7

MCELLBC
6

MCELLBC
5

MCELLBC
4

MCELLBC
3

MCELLBC
2

MCELLBC
1

MCELLBC
0

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 PSD module

 257/300

28.6.1 JTAG ISP and JTAG debug

An IEEE 1149.1 serial JTAG interface is used on UPSD34xx devices for ISP (in-system
programming) of the PSD module, and also for debugging firmware on the MCU module.
IEEE 1149.1 Boundary Scan operations are not supported in the UPSD34xx.

The main advantage of JTAG ISP is that a blank UPSD34xx device may be soldered to a
circuit board and programmed with no involvement of the 8032, meaning that no 8032
firmware needs to be present for ISP. This is good for manufacturing, for field updates, and
for easy code development in the lab. JTAG-based programmers and debuggers for
UPSD34xx are available from STMicroelectronics and 3rd party vendors.

ISP is different than IAP (in-application programming). IAP involves the 8032 to program
Flash memory over any interface supported by the 8032 (e.g., UART, SPI, I2C), which is
good for remote updates over a communication channel. UPSD34xx devices support both
ISP and IAP. The entire PSD module (Flash memory and PLD) may be programmed with
JTAG ISP, but only the Flash memories may be programmed using IAP.

28.6.2 JTAG chaining inside the package

JTAG protocol allows serial “chaining” of more than one device in a JTAG chain. The
UPSD34xx is assembled with a stacked die process combining the PSD module (one die)
and the MCU module (the other die). These two die are chained together within the
UPSD34xx package. The standard JTAG interface has four basic signals:

● TDI - Serial data into device

● TDO - Serial data out of device

● TCK - Common clock

● TMS - Mode Selection

Every device that supports IEEE 1149.1 JTAG communication contains a test access port
(TAP) controller, which is a small state machine to manage JTAG protocol and serial
streams of commands and data. Both the PSD module and the MCU module each contain a
TAP controller.

Figure 90 illustrates how these die are chained within a package. JTAG programming/test
equipment will connect externally to the four IEEE 1149.1 JTAG pins on Port C. The TDI pin
on the UPSD34xx package goes directly to the PSD module first, then exits the PSD module
through TDO. TDO of the PSD module is connected to TDI of the MCU module. The serial
path is completed when TDO of the MCU module exits the UPSD34xx package through the
TDO pin on Port C. The JTAG signals TCK and TMS are common to both modules as
specified in IEEE 1149.1. When JTAG devices are chained, typically one devices is in
BYPASS mode while another device is executing a JTAG operation. For the UPSD34xx, the

VM register(1) Initialized with value that
was specified in PSDsoft

Initialized with value that
was specified in PSDsoft

Unchanged

All other csiop registers Cleared to 00h Cleared to 00h Unchanged

1. VM register Bit 7 (PIO_EN) and Bit 0 (SRAM in 8032 program space) are cleared to zero at power-up and warm reset
conditions.

Table 203. Function status during power-up reset, warm reset, power-down mode (continued)

Port configuration or
register

Power-up reset Warm reset APD Power-down mode

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 AC/DC parameters

 267/300

ICC(MCUactive) = 20 mA

IPD(pwrdown) = 250 µA

ICC(PSDactive) = ICC(ac) + ICC(dc)

= %flash x 2.5 mA/MHz x Freq ALE

+ %SRAM x 1.5 mA/MHz x Freq ALE

+ % PLD x (from graph using Freq PLD)

= 0.8 x 2.5 mA/MHz x 2 MHz + 0.15 x 1.5 mA/MHz x 2 MHz +
24 mA

= (4 + 0.45 + 24) mA

= 28.45 mA

ICC total = 20 mA x 40% + 28.45 mA x 40% + 250 µA x 60%

= 8 mA + 11.38 mA + 150 µA

= 19.53 mA

This is the operating power with no Flash memory Erase or Program cycles in progress. Calculation
is based on all I/O pins being disconnected and IOUT = 0 mA.

Table 204. PSD module example, typ. power calculation at VCC = 5.0 V (turbo mode
off) (continued)

Conditions

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

DC and AC parameters UPSD3422, UPSD3433, UPSD3434, UPSD3454

280/300

Figure 101. Synchronous Clock mode timing – PLD

Table 222. CPLD macrocell synchronous clock mode timing (5 V PSD module)

Symbol Parameter Conditions Min Max
PT

Aloc
Turbo

Off
Slew
rate(1)

1. Fast slew rate output available on PA3-PA0, PB3-PB0, and PD2-PD1. Decrement times by given amount.

Unit

fMAX

Maximum frequency
external feedback

1/(tS+tCO) 40.0 MHz

Maximum frequency
internal feedback (fCNT)

1/(tS+tCO–10) 66.6 MHz

Maximum frequency
pipelined data

1/(tCH+tCL) 83.3 MHz

tS Input setup time 12 + 2 + 10 ns

tH Input hold time 0 ns

tCH Clock high time Clock input 6 ns

tCL Clock low time Clock input 6 ns

tCO Clock to output delay Clock input 13 – 2 ns

tARD CPLD array delay
Any

macrocell
11 + 2 ns

tMIN Minimum clock period(2)

2. CLKIN (PD1) tCLCL = tCH + tCL.

tCH+tCL 12 ns

tCH tCL

tCO

tHtS

CLKIN

INPUT

REGISTERED
OUTPUT

AI02860

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

Obso
lete Product(

s)
- O

bso
lete Product(

s)

UPSD3422, UPSD3433, UPSD3434, UPSD3454 Part numbering

 293/300

Note: Operating temperature is in the Industrial range (–40 °C to 85 °C).

Table 240. Order codes

Part number
Max
MHz

1st
Flash

2nd
Flash

SRAM
GPIO

8032
bus

VCC VDD Package

(bytes)

UPSD3422E-40T6 40 64K 32K 4K 35 No 3.3 V 5.0 V LQFP52

UPSD3422EV-40T6 40 64K 32K 4K 35 No 3.3 V 3.3 V LQFP52

UPSD3422E-40U6 40 64K 32K 4K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3422EV-40U6 40 64K 32K 4K 46 Yes 3.3 V 3.3 V LQFP80

UPSD3433E-40T6 40 128K 32K 8K 35 No 3.3 V 5.0 V LQFP52

UPSD3433EV-40T6 40 128K 32K 8K 35 No 3.3 V 3.3 V LQFP52

UPSD3433E-40U6 40 128K 32K 8K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3433EV-40U6 40 128K 32K 8K 46 Yes 3.3 V 3.3 V LQFP80

UPSD3434E-40T6 40 256K 32K 8K 35 No 3.3 V 5.0 V LQFP52

UPSD3434EV-40T6 40 256K 32K 8K 35 No 3.3 V 3.3 V LQFP52

UPSD3434E-40U6 40 256K 32K 8K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3434EV-40U6 40 256K 32K 8K 46 Yes 3.3 V 3.3 V LQFP80

UPSD3454E-40T6 40 256K 32K 32K 35 No 3.3 V 5.0 V LQFP52

UPSD3454EV-40T6 40 256K 32K 32K 35 No 3.3 V 3.3 V LQFP52

UPSD3454E-40U6 40 256K 32K 32K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3454EV-40U6 40 256K 32K 32K 46 Yes 3.3 V 3.3 V LQFP80

UPSD3422EB40T6 40 64K 32K 4K 35 No 3.3 V 5.0 V LQFP52

UPSD3422EVB40T6 40 64K 32K 4K 35 No 3.3 V 3.3 V LQFP52

UPSD3422EB40U6 40 64K 32K 4K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3422EVB40U6 40 64K 32K 4K 46 Yes 3.3 V 3.3 V LQFP80

UPSD3433EB40T6 40 128K 32K 8K 35 No 3.3 V 5.0 V LQFP52

UPSD3433EVB40T6 40 128K 32K 8K 35 No 3.3 V 3.3 V LQFP52

UPSD3433EB40U6 40 128K 32K 8K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3433EVB40U6 40 128K 32K 8K 46 Yes 3.3 V 3.3 V LQFP80

UPSD3434EB40T6 40 256K 32K 8K 35 No 3.3 V 5.0 V LQFP52

UPSD3434EVB40T6 40 256K 32K 8K 35 No 3.3 V 3.3 V LQFP52

UPSD3434EB40U6 40 256K 32K 8K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3434EVB40U6 40 256K 32K 8K 46 Yes 3.3 V 3.3 V LQFP80

UPSD3454EB40T6 40 256K 32K 32K 35 No 3.3 V 5.0 V LQFP52

UPSD3454EVB40T6 40 256K 32K 32K 35 No 3.3 V 3.3 V LQFP52

UPSD3454EB40U6 40 256K 32K 32K 46 Yes 3.3 V 5.0 V LQFP80

UPSD3454EVB40U6 40 256K 32K 32K 46 Yes 3.3 V 3.3 V LQFP80

 O

bso
lete Product(

s)
- O

bso
lete Product(

s)

