

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.3 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 6.6 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4,096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each. PIC18FX6J90 and PIC18FX7J90 devices implement all 16 complete banks, for a total of 4 Kbytes. Figure 6-6 and Figure 6-7 show the data memory organization for the devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this section.

To ensure that commonly used registers (select SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to select SFRs, and the lower portion of GPR Bank 0, without using the BSR. **Section 6.3.2 "Access Bank"** provides a detailed description of the Access RAM.

6.3.1 BANK SELECT REGISTER

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits of a location's address; the instruction itself includes the 8 Least Significant bits. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory. The 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 6-7.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h, while the BSR is 0Fh, will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 6-6 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

FIGURE 6-6: DATA MEMORY MAP FOR PIC18FX6J90 AND PIC18FX7J90 DEVICES When a = 0: BSR<3:0> **Data Memory Map** The BSR is ignored and the Access Bank is used. 00h 000h Access RAM The first 96 bytes are general 05Fh = 0000 Bank 0 purpose RAM (from Bank 0). 060h GPR FFh 0FFh The second 160 bytes are 00h 100h Special Function Registers = 0001 (from Bank 15). Bank 1 GPR FFh 1FFh 200h 00h When a = 1: = 0010 Bank 2 GPR The BSR specifies the bank FFh 2FFh used by the instruction. 300h 00h = 0011 Bank 3 GPR FFh 3FFh 00h 400h = 0100 Bank 4 GPR FFh 4FFh 00h 500h = 0101 GPR Bank 5 FFh 5FFh 00h 600h = 0110 GPR Bank 6 FFh 6FFh 700h 00h Access Bank = 0111 GPR Bank 7 00h FFh 7FFh Access RAM Low 5Fh 00h 800h = 1000 60h Access RAM High GPR Bank 8 (SFRs) FFh FFh 8FFh 00h 900h = 1001 Bank 9 GPR FFh 9FFh 00h A00h = 1010 Bank 10 GPR AFFh FFh B00h 00h = 1011 Bank 11 GPR BFFh FFh 00h C00h = 1100 Bank 12 GPR FFh CFFh D00h 00h = 1101 Bank 13 GPR DFFh FFh 00h E00h = 1110 Bank 14 GPR EFFh FFh F00h 00h = 1111 GPR(1) F5Fh Bank 15 F60h/ SFR FFh FFFh **Note 1:** Addresses, F54h through F5Fh, are also used by SFRs, but are not part of the Access RAM. Users must always use the complete address, or load the proper BSR value, to access these registers.

6.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy more than the top half of Bank 15 (F60h to FFFh). A list of these registers is given in Table 6-2 and Table 6-3. The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	LCDDATA4 ⁽³⁾	F9Fh	IPR1	F7Fh	SPBRGH1	F5Fh	RTCCFG
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	LCDDATA3	F9Eh	PIR1	F7Eh	BAUDCON1	F5Eh	RTCCAL
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	LCDDATA2	F9Dh	PIE1	F7Dh	LCDDATA23 ⁽³⁾	F5Dh	RTCVALH
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	LCDDATA1	F9Ch	(2)	F7Ch	LCDDATA22 ⁽³⁾	F5Ch	RTCVALL
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	LCDDATA0	F9Bh	OSCTUNE	F7Bh	LCDDATA21	F5Bh	ALRMCFG
FFAh	PCLATH	FDAh	FSR2H	FBAh	LCDSE5 ⁽³⁾	F9Ah	TRISJ ⁽³⁾	F7Ah	LCDDATA20	F5Ah	ALRMRPT
FF9h	PCL	FD9h	FSR2L	FB9h	LCDSE4 ⁽³⁾	F99h	TRISH ⁽³⁾	F79h	LCDDATA19	F59h	ALRMVALH
FF8h	TBLPTRU	FD8h	STATUS	FB8h	LCDSE3	F98h	TRISG	F78h	LCDDATA18	F58h	ALRMVALL
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	LCDSE2	F97h	TRISF	F77h	LCDDATA17 ⁽³⁾	F57h	CTMUCONH
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	LCDSE1	F96h	TRISE	F76h	LCDDATA16 ⁽³⁾	F56h	CTMUCONL
FF5h	TABLAT	FD5h	T0CON	FB5h	CVRCON	F95h	TRISD	F75h	LCDDATA15	F55h	CTMUICON
FF4h	PRODH	FD4h	(2)	FB4h	CMCON	F94h	TRISC	F74h	LCDDATA14	F54h	PADCFG1
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB	F73h	LCDDATA13		
FF2h	INTCON	FD2h	LCDREG	FB2h	TMR3L	F92h	TRISA	F72h	LCDDATA12		
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ ⁽³⁾	F71h	LCDDATA11 ⁽³⁾		
FF0h	INTCON3	FD0h	RCON	FB0h	(2)	F90h	LATH ⁽³⁾	F70h	LCDDATA10 ⁽³⁾		
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG	F6Fh	LCDDATA9		
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF	F6Eh	LCDDATA8		
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE	F6Dh	LCDDATA7		
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD	F6Ch	LCDDATA6		
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC	F6Bh	LCDDATA5 ⁽³⁾		
FEAh	FSR0H	FCAh	T2CON	FAAh	LCDPS	F8Ah	LATB	F6Ah	CCPR1H		
FE9h	FSR0L	FC9h	SSPBUF	FA9h	LCDSE0	F89h	LATA	F69h	CCPR1L		
FE8h	WREG	FC8h	SSPADD	FA8h	LCDCON	F88h	PORTJ ⁽³⁾	F68h	CCP1CON		
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	PORTH ⁽³⁾	F67h	CCPR2H		
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	PORTG	F66h	CCPR2L		
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSPCON2	FA5h	IPR3	F85h	PORTF	F65h	CCP2CON		
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	SPBRG2		
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD	F63h	RCREG2		
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	TXREG2		
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	TXSTA2		
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA	F60h	RCSTA2		

TABLE 6-2: SPECIAL FUNCTION REGISTER MAP FOR PIC18F87J90 FAMILY DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on PIC18F6XJ90 devices.

10.8 PORTG, TRISG and LATG Registers

PORTG is a 5-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISG and LATG. All pins on PORTG are digital only and tolerate voltages up to 5.5V.

PORTG is multiplexed with both AUSART and LCD functions (Table 10-16). When operating as I/O, all PORTG pins have Schmitt Trigger input buffers. The RG1 pin is also configurable for open-drain output when the AUSART is active. Open-drain configuration is selected by setting the U2OD control bit (LATG<7>).

RG4 is multiplexed with LCD segment drives controlled by bits in the LCDSE2 register and as the RTCC pin. The I/O port function is only available when the segments are disabled.

RG3 and RG2 are multiplexed with the VLCAP pins for the LCD charge pump and RG0 is multiplexed with the LCDBIAS0 bias voltage input. When these pins are used for LCD bias generation, the I/O and other functions are unavailable.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTG pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register without concern due to peripheral overrides. Although the port itself is only five bits wide, the PORTG<7:5> bits are still implemented to control the weak pull-ups on the I/O ports associated with PORTD, PORTE and PORTJ. Clearing these bits enables the respective port pull-ups. All pull-ups are disabled by default on all device Resets.

Most of the corresponding TRISG and LATG bits are implemented as open-drain control bits for CCP1, CCP2 and SPI (TRISG<7:5>), and the USARTs (LATG<7:6>). Setting these bits configures the output pin for the corresponding peripheral for open-drain operation. LATG<5> is not implemented.

EXAMPLE 10-7:	INITIALIZING PORTG

CLRF	PORTG	; Initialize PORTG by
GLDE	1 100	; data latches
CLRF	LATG	; Alternate method ; to clear output
MOVLW	04h	; data latches ; Value used to
		; initialize data ; direction
MOVWF	TRISG	; Set RG1:RG0 as outputs ; RG2 as input
		; RG4:RG3 as inputs

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description	
RG0/LCDBIAS0	RG0	0	0	DIG	LATG<0> data output.	
		1	Ι	ST	PORTG<0> data input.	
	LCDBIAS0	x	Ι	ANA	LCD module bias voltage input.	
RG1/TX2/CK2	RG1	0	0	DIG	LATG<1> data output.	
		1	I	ST	PORTG<1> data input.	
	TX2	1	0	DIG	Synchronous serial data output (AUSART module); takes priority over port data.	
	CK2	1	0	DIG	Synchronous serial data input (AUSART module); user must configure as an input.	
		1	I	ST	Synchronous serial clock input (AUSART module).	
RG2/RX2/DT2/	RG2	0	0	DIG	LATG<2> data output.	
VLCAP1		1	Ι	ST	PORTG<2> data input.	
	RX2	1	I	ST	Asynchronous serial receive data input (AUSART module).	
	DT2	1	0	DIG	Synchronous serial data output (AUSART module); takes priority over port data.	
		1	I	ST	Synchronous serial data input (AUSART module); user must configure as an input.	
	VLCAP1	x	Ι	ANA	LCD charge pump capacitor input.	
RG3/VLCAP2	RG3	0	0	DIG	LATG<3> data output.	
		1	I	ST	PORTG<3> data input.	
	VLCAP2	x	I	ANA	LCD charge pump capacitor input.	
RG4/SEG26/	RG4	0	0	DIG	LATG<4> data output.	
RTCC		1	Ι	ST	PORTG<4> data input.	
	SEG26	x	0	ANA	LCD Segment 26 output; disables all other pin functions.	
	RTCC	x	0	DIG	RTCC output.	

TABLE 10-16: PORTG FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTG	RDPU	REPU	RJPU ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	62
LATG	U2OD	U10D	_	LATG4	LATG3	LATG2	LATG1	LATG0	62
TRISG	SPIOD	CCP2OD	CCP10D	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	62
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	61

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTG.

Note 1: Unimplemented on PIC18F6XJ90 devices, read as '0'.

10.10 PORTJ, TRISJ and LATJ Registers

Note:	PORTJ is available only on PIC18F8XJ90
	devices.

PORTJ is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISJ and LATJ. All pins on PORTJ are digital only and tolerate voltages up to 5.5V.

All pins on PORTJ are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	These pins are configured as digital inputs
	on any device Reset.

All PORTJ pins, except RJ0, are multiplexed with LCD segment drives controlled by the LCDSE4 register. I/O port functions are only available on these pins when the segments are disabled.

Each of the PORTJ pins has a weak internal pull-up. The pull-ups are provided to keep the inputs at a known state for the external memory interface while powering up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, RJPU (PORTG<5>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

EXAMPLE 10.9	INITIAL IZING PORT
LARMILL IV-J.	

CLRF	PORTJ	; Initialize PORTJ by
		; clearing output latches
CLRF	LATJ	; Alternate method
		; to clear output latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISJ	; Set RJ3:RJ0 as inputs
		; RJ5:RJ4 as output
		; RJ7:RJ6 as inputs

REGISTER 17-3: LCDSEx: LCD SEGMENT ENABLE REGISTERS

R/W-0	R/W-0						
SE(n + 7)	SE(n + 6)	SE(n + 5)	SE(n + 4)	SE(n + 3)	SE(n + 2)	SE(n + 1)	SE(n)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SEG(n + 7):SEG(n): Segment Enable bits For LCDSE0: n = 0 For LCDSE1: n = 8 For LCDSE2: n = 16 For LCDSE3: n = 24 For LCDSE4: n = 32 For LCDSE5: n = 40 1 = Segment function of the pin is enabled, digital I/O disabled 0 = I/O function of the pin is enabled

TABLE 17-1: LCDSE REGISTERS AND ASSOCIATED SEGMENTS

Register	Segments
LCDSE0	7:0
LCDSE1	15:8
LCDSE2	23:16
LCDSE3	31:24
LCDSE4 ⁽¹⁾	39:32
LCDSE5 ⁽²⁾	47:40

Note 1: LCDSE4<7:1> (SEG<39:33>) registers are not implemented in PIC18F6XJ90 devices.

2: LCDSE5 is not implemented in PIC18F6XJ90 devices.

18.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 18-2) will broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if it was a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This, then, would give waveforms for SPI communication, as shown in Figure 18-3, Figure 18-5 and Figure 18-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 18-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 18-3: SPI MODE WAVEFORM (MASTER MODE)

FIGURE 18-5:	SPI N	NODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	· · ·										
808. 6382 * 0	5 5 5 6		, ,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,				· · ·
CR8 + 0)	2 4 5	· • •		, , ,		<	< :	· > /	-	: : :	2 2
808. (0809 * 0 (080 * 0)				······							
989868-99 899978829		< 2000-000 1 1	> 2 4 4	5 - -	:) 6 ((> 2 4 4	s 3 3 3	: 	/ : :	
5333)		: %~; :::: 7	K 284.8	\$ X (1986 5	X 198 4	X 88.5	(N (38 2			1	
\$\$3 	(5									Yypr	; ;
(SMP = 0)		< 1000000 1 2012 - 1012 - 10 2	r - 1999997 1 1	5 - 300000 1 1	: 200000		r 19999997 1 1	: 3000007 ; ;	: 222 - 333 -	2007 24 (C) 25 (C)	
http:// Supermonies	2 2 2										
(3842 = 0)	1	, ,	5 5 2	, , ,		, , ,	торология бологорода. 5 У		:	**************************************	
SSRE http://www. Hac	1 1 1 1	, , , ////////////////////////////////	5 7 7 7	s 5 5 5	: : : :	; ; ; ;	5 7 7 7	< 5 5 5	: : : :		
	(() ()	* * 	e e e	e e torresources	, , ,	5 5 5	e e e	e e e	•) - Nord Or Alter Or	Cycla S
		*	/	,		e de la companya de l	/	/		,	

FIGURE 18-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

19.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

PIC18F87J90 family devices have three serial I/O modules: the MSSP module, discussed in the previous chapter and two Universal Synchronous Asynchronous Receiver Transmitter (USART) modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

There are two distinct implementations of the USART module in these devices: the Enhanced USART (EUSART) discussed here and the Addressable USART discussed in the next chapter. For this device family, USART1 always refers to the EUSART, while USART2 is always the AUSART.

The EUSART and AUSART modules implement the same core features for serial communications; their basic operation is essentially the same. The EUSART module provides additional features, including Automatic Baud Rate Detection and calibration, automatic wake-up on Sync Break reception, and 12-bit Break character transmit. These features make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

The EUSART can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of the EUSART are multiplexed with the functions of PORTC (RC6/TX1/CK1/SEG27 and RC7/RX1/DT1/SEG28). In order to configure these pins as an EUSART:

- bit, SPEN (RCSTA1<7>), must be set (= 1)
- bit, TRISC<7>, must be set (= 1)
- bit, TRISC<6>, must be set (= 1)
- Note: The EUSART control will automatically reconfigure the pin from input to output as needed.

The driver for the TX1 output pin can also be optionally configured as an open-drain output. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor, and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the U1OD bit (LATG<6>). Setting the bit configures the pin for open-drain operation.

19.1 Control Registers

The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control Register 1 (TXSTA1)
- Receive Status and Control Register 1 (RCSTA1)
- Baud Rate Control Register 1 (BAUDCON1)

The registers are described in Register 19-1, Register 19-2 and Register 19-3.

FIGURE 19-7: ASYNCHRONOUS RECEPTION

TABLE 19-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	_	TMR2IF	TMR1IF	62
PIE1	—	ADIE	RC1IE	TX1IE	SSPIE	—	TMR2IE	TMR1IE	62
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP	—	TMR2IP	TMR1IP	62
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	61
RCREG1	EUSART F	Receive Regi	ister						61
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	61
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	63
SPBRGH1	PBRGH1 EUSART Baud Rate Generator Register High Byte								61
SPBRG1	EUSART B	Baud Rate G	enerator Re	gister Low	Byte				61

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

R/W-0	U-0	R/	W-0	R/	W-0	R/	'W-0	R	/W-0	R	/W-0	R	:/W-0
TRIGSEL	—	VC	FG1	VC	FG0	PC	FG3	PC	CFG2	P	CFG1	P	CFG0
bit 7													bit (
Legend:													
R = Readable	e bit	W = Writable bit				U = U	Inimple	mented	l bit, rea	ad as '0	, 		
-n = Value at POR		'1' = E	Bit is set	['O' = E	Bit is cle	eared		x = E	Bit is unl	known	
bit 7	TRIGSEL: Sr	pecial T	rigger S	Select b	it								
	1 = Selects t	he spec	cial trigg	ger from	n the CT	MU							
	0 = Selects t	he spec	cial trigg	ger from	the CO	CP2							
bit 6	Unimplemen	ited: Re	ead as '	0'									
bit 5	VCFG1: Volta	age Ref	erence	Configu	uration	bit (VRE	F- sour	ce)					
	1 = VREF- (A 0 = AVSS	N2)											
bit 4	VCFG0: Volta	age Ref	erence	Configu	uration	bit (VRE	F+ sou	ce)					
	1 = VREF+ (A 0 = AVDD	AN3)		-				-					
bit 3-0	PCFG<3:0>:	A/D Pc	ort Confi	guratio	n Contr	ol bits:							
		1	1	-	1		1	1			1	1	
	PCFG<3:0>	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
	0000	A	A	A	A	A	A	A	A	A	A	A	A
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
	0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	0011	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А
	0100	D	Α	Α	Α	Α	Α	А	А	Α	Α	Α	А
	0101	D	D	А	Α	А	А	А	А	А	А	Α	А
	0110	D	D	D	А	А	А	А	А	А	А	Α	А
	0111	D	D	D	D	Α	Α	А	А	Α	Α	Α	А
	1000	D	D	D	D	D	Α	Α	А	Α	Α	Α	А
	1001	D	D	D	D	D	D	Α	А	Α	Α	Α	А
	1010	D	D	D	D	D	D	D	А	Α	Α	Α	А
	1011	D	D	D	D	D	D	D	D	Α	Α	А	А
	1100	D	D	D	D	D	D	D	D	D	Α	Α	А
	1101	D	D	D	D	D	D	D	D	D	D	Α	А
	1110	D	D	D	D	D	D	D	D	D	D	D	Α
	1111	D	D	D	D	D	D	D	D	D	D	D	D

REGISTER 21-2: ADCON1: A/D CONTROL REGISTER 1

A = Analog input

D = Digital I/O

NOTES:

REGISTER 24-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	ITRIM<5:0>: Current Source Trim bits						
	011111 = Maximum positive change from nominal current						
	011110						
	•						
	•						
	000001 = Minimum positive change from nominal current						
	000000 = Nominal current output specified by IRNG<1:0>						
	111111 = Minimum negative change from nominal current						
	100010						
	100001 = Maximum negative change from nominal current						
bit 1-0	IRNG<1:0>: Current Source Range Select bits						
	11 = 100 x Base current						
	10 = 10 x Base current						
	01 = Base current level (0.55 μA nominal)						

00 = Current source disabled

TABLE 24-1: REGISTERS ASSOCIATED WITH CTMU MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page:
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_
CTMUCONL	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	—
CTMUICON	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	_

Legend: — = unimplemented, read as '0'. Shaded cells are not used during ECCP operation.

25.3.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC18F87J90 family devices also have a simple Brown-out Reset capability. If the voltage supplied to the regulator falls to a level that is inadequate to maintain a regulated output for full-speed operation, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<0>).

The operation of the BOR is described in more detail in Section 5.4 "Brown-out Reset (BOR)" and Section 5.4.1 "Detecting BOR".

25.3.3 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts.

25.3.4 OPERATION IN SLEEP MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD. This includes when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be configured to automatically disable itself whenever the device goes into Sleep mode. This feature is controlled by the REGSLP bit (WDTCON<7>). Setting this bit disables the regulator in Sleep mode, and reduces its current consumption to a minimum.

Substantial Sleep mode power savings can be obtained by setting the REGSLP bit, but device wake-up time will increase in order to ensure the regulator has enough time to stabilize. The REGSLP bit is automatically cleared by hardware when a Low-Voltage Detect condition occurs. The REGSLP bit can be set again in software, which would continue to keep the voltage regulator in Low-Power mode. This, however, is not recommended if any write operations to the Flash will be performed.

25.4 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the Primary Oscillator mode is HS or HSPLL (Crystal-Based) modes. Since the EC and ECPLL modes do not require an OST start-up delay, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

FIGURE 25-3: TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)

25.5.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 2H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTRC oscillator provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexor. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

25.5.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexor selects the clock source selected by the OSCCON register. Fail-Safe Clock Monitoring of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTRC multiplexor. An automatic transition back to the failed clock source will not occur.

25.5.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is either EC or INTRC mode, monitoring can begin immediately following these events.

For HS or HSPLL modes, the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FSCM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in Section 25.4.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new power-managed mode is selected, the primary clock is disabled.

DEC	FSZ	Decrement	Decrement f, Skip if 0							
Synta	ax:	DECFSZ f	DECFSZ f {,d {,a}}							
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Oper	ation:	(f) – 1 \rightarrow de skip if resul	est, t = 0							
Statu	s Affected:	None								
Enco	ding:	0010	0010 11da ffff ffff							
Desc	ription:	The conten decremente placed in W placed back	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.							
		If the result which is alro and a NOP i it a two-cyc	is '0', the nex eady fetched s executed in le instruction.	t instruction is discarded stead, making						
		lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	he Access Ba he BSR is use	nk is selected. d to select the						
If 'a' is '0' and the extended instr set is enabled, this instruction op in Indexed Literal Offset Address mode whenever f ≤ 95 (5Fh). Se Section 26.2.3 "Byte-Oriented Bit-Oriented Instructions in In Literal Offset Mode" for details										
Word	ls:	1								
Cycle	es:	1(2) Note: 3 cy by a	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.							
QC	ycle Activity:	,								
	Q1	Q2	Q3	Q4						
	Decode	Read	Process	Write to						
lf sk	ip:	register i	Data	destination						
	Q1	Q2	Q3	Q4						
	No	No	No	No						
lfek	operation	operation	operation	operation						
11 010	Q1	Q2	Q3	Q4						
	No	No	No	No						
	operation	operation	operation	operation						
	N0 operation	N0 operation	N0 operation	N0 operation						
	oporation	oporation	oporation	oporation						
Exan	nple:	HERE	DECFSZ	CNT, 1, 1						
		CONTINUE	G010	TOOD						
	Before Instruc PC	tion = Address	(HERE)							
	After Instructio	•								
$\frac{1}{PC} = 0;$										
	If CNT PC	≠ 0;= Address	6 (HERE + 2	2)						

DCFSNZ	Decrement	f, Skip if Not	0					
Syntax:	DCFSNZ	DCFSNZ f {,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Operation:	(f) – 1 \rightarrow de skip if resul	est , t ≠ 0						
Status Affected:	None							
Encoding:	0100	11da fff	f ffff					
Description:	The conten decremente placed in W placed back	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.						
	If the result instruction of discarded a instead, ma instruction.	is not '0', the i which is alread ind a NOP is e iking it a two-c	next ly fetched is kecuted ycle					
	lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	ne Access Bar ne BSR is used	ik is selected. d to select the					
If 'a' is '0' and the extended instruct set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indey								
Words:	1							
Cycles:	1(2) Note: 3 c by	ycles if skip ar a 2-word instru	nd followed uction.					
Q Cycle Activity:	02	02	04					
Decode	Read	Process	Q4 Write to					
Decode	register 'f'	Data	destination					
lf skip:								
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
	a by 2-wora in:		01					
No	No.	No	No.					
operation	operation	operation	operation					
No	No	No	No					
operation	operation	operation	operation					
<u>Example:</u>	HERE I ZERO NZERO	DCFSNZ TEM :	IP, 1, 0					
Before Instruc TEMP	tion =	?						
Atter Instructio	on =	TEMP – 1						
If TEMP	=	0;						
PC If TEMP PC	= ≠ =	Address (2 0; Address (1)	ZERO)					

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J90 Family (Industrial)

PIC18F87J90 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Device	Тур	Max	Units	Conditions		
	Power-Down Current (IPD)	(1)					
	All devices	0.4	1.4	μA	-40°C		
		0.1	1.4	μA	+25°C	VDD = 2.0V ⁽⁴⁾	
		0.8	6	μA	+60°C	(Sleep mode)	
		5.5	10.2	μA	+85°C		
	All devices	0.5	1.5	μA	-40°C		
		0.1	1.5	μA	+25°C	VDD = 2.5V ⁽⁴⁾	
		1	8	μA	+60°C	(Sleep mode)	
		6.8	12.6	μA	+85°C		
	All devices	2.9	7	μA	-40°C		
		3.6	7	μA	+25°C	VDD = 3.3V ⁽⁵⁾	
		4.1	10	μA	+60°C	(Sleep mode)	
		9.6	19	μA	+85°C		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

Operation During Sleep 30	6
Compare (CCP Module) 17	7
Capture Compare Timer1 Timers Associated	
Registers 17	8
CCP Pin Configuration 17	7
CCPR2 Register 17	7
Software Interrunt 17	7
Special Event Trigger 153, 177, 20	6
Timer1/Timer3 Mode Selection	7
Computed COTO	á
Configuration Rite 32	5
Configuration Dissurate (CM)	5
Configuration Projector Protection 22	7
Corre Eastures	1
	~
Easy Migration	9
Extended Instruction Set	9
Memory Options	9
nanovvatt Technology	9
	9
CPFSEQ	6
CPFSG1	7
CPFSL1	7
Crystal Oscillator/Ceramic Resonator	9
Customer Change Notification Service	5
Customer Notification Service	5
Customer Support	5
_	

D

Data Addressing Modes	82
Comparing Addressing Modes with the	
Extended Instruction Set Enabled	86
Direct	82
Indexed Literal Offset	85
BSR	87
Instructions Affected	85
Mapping Access Bank	
Indirect	82
Inherent and Literal	82
Data Memory	72
Access Bank	74
Bank Select Register (BSR)	72
Extended Instruction Set	85
General Purpose Registers	74
Memory Maps	
PIC18FX6J90/X7J90 Devices	73
Special Function Registers	75
Special Function Registers	75
DAW	358
DC Characteristics	
Power-Down and Supply Current	396
Supply Voltage	395
DCFSNZ	359
DECF	358
DECFSZ	359
Default System Clock	
Details on Individual Family Members	10
Development Support	
Device Overview	9
Features (64-Pin Devices)	11
Features (80-Pin Devices)	11
Direct Addressing	83

Е

L	
Effect on Standard PIC18 Instructions	386
Effects of Power-Managed Modes on Various	
Clock Sources	43
Electrical Characteristics	393
Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART). See EUSART.	
ENVREG Pin	333
Equations	
16 x 16 Signed Multiplication Algorithm	100
16 x 16 Unsigned Multiplication Algorithm	100
A/D Acquisition Time	294
A/D Minimum Charging Time	294
Calculating the Minimum Required	
Acquisition Time	294
Converting Error Clock Pulses	168
LCD Static and Dynamic Current	193
Frrata	100
FUSART	
Asynchronous Mode	264
12-Bit Break Transmit and Receive	269
Associated Registers Receive	267
Associated Registers, Transmit	265
Auto-Wake-up on Sync Break Character	268
Raceiver	200
Sotting up 0 Bit Mode with	200
Address Detect	266
Address Delect	200
Paud Data Conceptor (DDC)	204
Baud Rate Generator (BRG)	259
Associated Registers	259
Auto-Baud Rate Detect	262
Baud Rate Error, Calculating	259
Baud Rates, Asynchronous Modes	260
High Baud Rate Select (BRGH Bit)	259
Operation in Power-Managed Modes	259
Sampling	259
Synchronous Master Mode	270
Associated Registers, Receive	272
Associated Registers, Transmit	271
Reception	272
Transmission	270
Synchronous Slave Mode	273
Associated Registers, Receive	274
Associated Registers, Transmit	273
Reception	274
Transmission	273
Extended Instruction Set	
ADDFSR	382
ADDULNK	382
CALLW	383
MOVSF	383
MOVSS	384
PUSHL	384
SUBFSR	385
SUBULNK	385
External Oscillator Modes	
Clock Input (EC Modes)	40
HS	39