

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86j90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams – PIC18F6XJ90

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator; the primary clock is shut down. This mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

This mode is entered by setting the SCS bits to '11'. When the clock source is switched to the INTRC (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTRC while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

Register	Applicabl	e Devices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
FSR1H	PIC18F6XJ90	PIC18F8XJ90	xxxx	uuuu	uuuu	
FSR1L	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
BSR	PIC18F6XJ90	PIC18F8XJ90	0000	0000	uuuu	
INDF2	PIC18F6XJ90	PIC18F8XJ90	N/A	N/A	N/A	
POSTINC2	PIC18F6XJ90	PIC18F8XJ90	N/A	N/A	N/A	
POSTDEC2	PIC18F6XJ90	PIC18F8XJ90	N/A	N/A	N/A	
PREINC2	PIC18F6XJ90	PIC18F8XJ90	N/A	N/A	N/A	
PLUSW2	PIC18F6XJ90	PIC18F8XJ90	N/A	N/A	N/A	
FSR2H	PIC18F6XJ90	PIC18F8XJ90	xxxx	uuuu	uuuu	
FSR2L	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
STATUS	PIC18F6XJ90	PIC18F8XJ90	x xxxx	u uuuu	u uuuu	
TMR0H	PIC18F6XJ90	PIC18F8XJ90	0000 0000	0000 0000	uuuu uuuu	
TMR0L	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T0CON	PIC18F6XJ90	PIC18F8XJ90	1111 1111	1111 1111	սսսս սսսս	
OSCCON	PIC18F6XJ90	PIC18F8XJ90	0110 q000	0110 q000	uuuu quuu	
LCDREG	PIC18F6XJ90	PIC18F8XJ90	-011 1100	-011 1000	-uuu uuuu	
WDTCON	PIC18F6XJ90	PIC18F8XJ90	00	00	uu	
RCON ⁽⁴⁾	PIC18F6XJ90	PIC18F8XJ90	0-11 11q0	0-0q qquu	u-uu qquu	
TMR1H	PIC18F6XJ90	PIC18F8XJ90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR1L	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
T1CON	PIC18F6XJ90	PIC18F8XJ90	0000 0000	u0uu uuuu	uuuu uuuu	
TMR2	PIC18F6XJ90	PIC18F8XJ90	0000 0000	0000 0000	uuuu uuuu	
PR2	PIC18F6XJ90	PIC18F8XJ90	1111 1111	1111 1111	1111 1111	
T2CON	PIC18F6XJ90	PIC18F8XJ90	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	PIC18F6XJ90	PIC18F8XJ90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
SSPADD	PIC18F6XJ90	PIC18F8XJ90	0000 0000	0000 0000	uuuu uuuu	
SSPSTAT	PIC18F6XJ90	PIC18F8XJ90	0000 0000	0000 0000	uuuu uuuu	
SSPCON1	PIC18F6XJ90	PIC18F8XJ90	0000 0000	0000 0000	uuuu uuuu	
SSPCON2	PIC18F6XJ90	PIC18F8XJ90	0000 0000	0000 0000	սսսս սսսս	

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for Reset value for specific conditions.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

6.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the lower part of Access RAM (00h to 5Fh) is mapped. Rather than containing just the contents of the bottom part of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see Section 6.3.2 "Access Bank"). An example of Access Bank remapping in this addressing mode is shown in Figure 6-10.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before. Any Indirect or Indexed Addressing operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard Indirect Addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use Direct Addressing and the normal Access Bank map.

6.6.4 BSR IN INDEXED LITERAL OFFSET MODE

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct Addressing, using the BSR to select the data memory bank, operates in the same manner as previously described.

FIGURE 6-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7	INT2IP: INT2 1 = High prio	External Interr	upt Priority bit				
	0 = Low prior	rity					
bit 6	INT1IP: INT1	External Interr	upt Priority bit				
	1 = High prio 0 = Low prior	rity rity					
bit 5	INT3IE: INT3	External Interr	upt Enable bit				
	1 = Enables 0 = Disables	the INT3 extern the INT3 extern	nal interrupt nal interrupt				
bit 4	INT2IE: INT2	External Interr	upt Enable bit				
	1 = Enables 0 = Disables	the INT2 extern the INT2 extern the INT2 extern	nal interrupt nal interrupt				
bit 3	INT1IE: INT1	External Interr	upt Enable bit				
	1 = Enables 0 = Disables	the INT1 extern the INT1 extern	nal interrupt nal interrupt				
bit 2	INT3IF: INT3	External Interr	upt Flag bit				
	1 = The INT3 0 = The INT3	3 external interr 3 external interr	upt occurred (upt did not occ	must be cleared cur	d in software)		
bit 1	INT2IF: INT2	External Interr	upt Flag bit				
	1 = The INT2 0 = The INT2	2 external interr 2 external interr	upt occurred (upt did not occ	must be cleared cur	d in software)		
bit 0	INT1IF: INT1	External Interr	upt Flag bit				
	1 = The INT1 0 = The INT1	l external interr l external interr	upt occurred (upt did not occ	must be cleared cur	d in software)		
Nata					no no nol f		
NOTE:	enable bit or the gare clear prior to	are set when global interrupt enabling an int	enable bit. Us errupt. This fea	er software sho ature allows for	software pollir	ine state of its appropriate int ig.	errupt flag bits

REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	U-0
OSCFIP	CMIP			BCLIP	LVDIP	TMR3IP	_
bit 7	·						bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7	OSCFIP: Osc	cillator Fail Inter	rupt Priority bi	t			
	1 = High prio	ority					
	0 = Low prior	rity					
bit 6	CMIP: Compa	arator Interrupt	Priority bit				
	1 = High prio	ority					
	0 = Low prior	rity					
bit 5-4	Unimplemen	ted: Read as '0)'				
bit 3	BCLIP: Bus (Collision Interru	pt Priority bit				
	1 = High prio	ority					
	0 = Low prior	rity					
bit 2	LVDIP: Low-\	Voltage Detect I	Interrupt Priorit	ty bit			
	1 = High prio	ority					
	0 = Low prior	rity					
bit 1	TMR3IP: TM	R3 Overflow Int	errupt Priority	bit			
	1 = High prio	ority					
	0 = Low prior	rity					
bit 0	Unimplemen	ted: Read as '0	כי				

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description				
RB0/INT0/SEG30	RB0	0	0	DIG	LATB<0> data output.				
		1	Ι	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared.				
	INT0	1	I	ST	External Interrupt 0 input.				
	SEG30	x	0	ANA	LCD Segment 30 output; disables all other pin functions.				
RB1/INT1/SEG8	RB1	0	0	DIG	LATB<1> data output.				
		1	Ι	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared.				
	INT1	1	I	ST	External Interrupt 1 input.				
	SEG8	х	0	ANA	LCD Segment 8 output; disables all other pin functions.				
RB2/INT2/SEG9/	RB2	0	0	DIG	LATB<2> data output.				
CTED1		1	I	TTL	PORTB<2> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.				
	INT2	1	Ι	ST	External Interrupt 2 input.				
	SEG9	x	0	ANA	LCD Segment 9 output; disables all other pin functions.				
	CTED1	x	I	ST	CTMU Edge 1 input.				
RB3/INT3/SEG10/	RB3	0	0	DIG	LATB<3> data output.				
CTED2		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleare				
	INT3	1	I	ST	External Interrupt 3 input.				
	SEG10	x	0	ANA	LCD Segment 10 output; disables all other pin functions.				
	CTED2	x	I	ST	CTMU Edge 2 input.				
RB4/KBI0/SEG11	RB4	0	0	DIG	LATB<4> data output.				
		1	I	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared.				
	KBI0	1	Ι	TTL	Interrupt-on-pin change.				
	SEG11	x	0	ANA	LCD Segment 11 output; disables all other pin functions.				
RB5/KBI1/SEG29	RB5	0	0	DIG	LATB<5> data output.				
		1	I	TTL	PORTB<5> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared.				
	KBI1	1	I	TTL	Interrupt-on-pin change.				
	SEG29	x	0	ANA	LCD Segment 29 output; disables all other pin functions.				
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.				
		1	I	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.				
	KBI2	1	Ι	TTL	Interrupt-on-pin change.				
	PGC	x	I	ST	Serial execution (ICSP [™]) clock input for ICSP and ICD operation.				
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.				
		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.				
	KBI3	1	I	TTL	Interrupt-on-pin change.				
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation.				
		х	Ι	ST	Serial execution data input for ICSP and ICD operation.				

TABLE 10-5: PORTB FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

NOTES:

16.2 Capture Mode

In Capture mode, the CCPR2H:CCPR2L register pair captures the 16-bit value of the TMR1 or TMR3 register when an event occurs on the CCP2 pin (RC1 or RE7, depending on device configuration). An event is defined as one of the following:

- Every falling edge
- Every rising edge
- · Every 4th rising edge
- · Every 16th rising edge

The event is selected by the mode select bits, CCP2M<3:0> (CCP2CON<3:0>). When a capture is made, the interrupt request flag bit, CCP2IF (PIR3<2>), is set; it must be cleared in software. If another capture occurs before the value in register, CCPR2, is read, the old captured value is overwritten by the new captured value.

16.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RC1/CCP2 or RE7/CCP2 is configured
	as an output, a write to the port can cause
	a capture condition.

16.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each CCP module is selected in the T3CON register (see Section 16.1.1 "CCP Modules and Timer Resources").

16.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP2IE bit (PIE3<2>) clear to avoid false interrupts and should clear the flag bit, CCP2IF, following any such change in operating mode.

16.2.4 CCP PRESCALER

There are four prescaler settings in Capture mode. They are specified as part of the operating mode selected by the mode select bits (CCP2M<3:0>). Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 16-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 16-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP2CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP2CON	;	Load CCP2CON with
		;	this value

FIGURE 16-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

16.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR2L register and CCP2CON<5:4> bits.
- 3. Make the CCP2 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP2 module for PWM operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	60
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF		TMR2IF	TMR1IF	62
PIE1	—	ADIE	RC1IE	TX1IE	SSPIE		TMR2IE	TMR1IE	62
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP		TMR2IP	TMR1IP	62
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	_	TRISE1	TRISE0	62
TRISG	SPIOD	CCP2OD	CCP10D	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	62
TMR2	Timer2 Reg	gister							60
PR2	Timer2 Per	iod Register							60
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	60
CCPR1L	Capture/Co	ompare/PWN	1 Register 1	Low Byte					63
CCPR1H	Capture/Co	ompare/PWN	1 Register 1	High Byte					63
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	63
CCPR2L	Capture/Compare/PWM Register 2 Low Byte								64
CCPR2H	Capture/Co	mpare/PWN	1 Register 2	High Byte					63
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	64

TABLE 16-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ACKDT⁽¹⁾ ACKEN⁽²⁾ RCEN⁽²⁾ PEN⁽²⁾ RSEN⁽²⁾ SEN⁽²⁾ GCEN ACKSTAT bit 7 bit 0 Legend: W = Writable bit R = Readable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 GCEN: General Call Enable bit Unused in Master mode. bit 6 ACKSTAT: Acknowledge Status bit (Master Transmit mode only) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave ACKDT: Acknowledge Data bit (Master Receive mode only)⁽¹⁾ bit 5 1 = Not Acknowledge 0 = Acknowledge bit 4 ACKEN: Acknowledge Sequence Enable bit⁽²⁾ 1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit; automatically cleared by hardware 0 = Acknowledge sequence Idle bit 3 RCEN: Receive Enable bit (Master Receive mode only)⁽²⁾ 1 = Enables Receive mode for I^2C^{TM} 0 = Receive Idle PEN: Stop Condition Enable bit⁽²⁾ bit 2 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle RSEN: Repeated Start Condition Enable bit⁽²⁾ bit 1 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle SEN: Start Condition Enable bit⁽²⁾ bit 0 1 = Initiate Start condition on SDA and SCL pins; automatically cleared by hardware 0 = Start condition Idle **Note 1:** Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

REGISTER 18-5: SSPCON2: MSSP CONTROL REGISTER 2 (I²C™ MASTER MODE)

If the I²C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written to (or writes to the SSPBUF are disabled).

18.4.3.2 Address Masking

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which makes it possible to Acknowledge up to 31 addresses in 7-bit mode and up to 63 addresses in 10-bit mode (see Example 18-2).

The l^2C slave behaves the same way, whether address masking is used or not. However, when address masking is used, the l^2C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking SSPBUF.

In 7-Bit Addressing mode, address mask bits, ADMSK<5:1> (SSPCON<5:1>), mask the corresponding address bits in the SSPADD register. For any ADMSK bits that are set (ADMSK<n> = 1), the corresponding address bit is ignored (SSPADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

EXAMPLE 18-2: ADDRESS MASKING EXAMPLES

7-Bit Addressing:

SSPADD<7:1> = A0h (1010000) (SSPADD<0> is assumed to be '0')

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh

10-Bit Addressing:

SSPADD<7:0> = A0h (10100000) (the two MSbs of the address are ignored in this example, since they are not affected by masking)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh

In 10-Bit Addressing mode, the ADMSK<5:2> bits mask the corresponding address bits in the SSPADD register. In addition, ADMSK1 simultaneously masks the two LSbs of the address (SSPADD<1:0>). For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (SSPADD<n> = x). Also note, that although in 10-Bit Addressing mode, the upper address bits reuse part of the SSPADD register bits. The address mask bits do not interact with those bits. They only affect the lower address bits.

Note 1: ADMSK1 masks the two Least Significant bits of the address.

 The two Most Significant bits of the address are not affected by address masking.

18.4.7.2 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 18-20).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	CSRC: Cloc	k Source Select	bit				
	Asynchrono Don't care.	us mode:					
	<u>Synchronou</u>	<u>s mode:</u>					
	1 = Master r 0 = Slave m	node (clock gene ode (clock from e	erated interna external sourc	lly from BRG) ce)			
bit 6	TX9: 9-Bit T	ransmit Enable b	bit				
	1 = Selects	9-bit transmissio	n				
	0 = Selects	8-bit transmissio	n				
bit 5	TXEN: Trans	smit Enable bit ⁽¹⁾					
	1 = Iransm 0 = Transm	it enabled					
bit 4	SYNC: EUS	ART Mode Selec	ct bit				
	1 = Synchro	onous mode					
	0 = Asynch	ronous mode					
bit 3	SENDB: Se	nd Break Charac	ter bit				
	Asynchrono	<u>us mode:</u>					
	1 = Send Sy 0 = Sync Br	ync Break on nex reak transmissior	kt transmissio n completed	n (cleared by ha	ardware upon	completion)	
	<u>Synchronou</u> Don't care.	<u>s mode:</u>					
bit 2	BRGH: High	n Baud Rate Sele	ect bit				
	Asynchrono	us mode:					
	1 = High sp	eed					
	Synchronou	s mode [.]					
	Unused in th	nis mode.					
bit 1	TRMT: Trans	smit Shift Registe	er Status bit				
	1 = TSR en 0 = TSR ful	npty I					
bit 0	TX9D: 9th b	it of Transmit Da	ta				
	Can be addr	ress/data bit or a	parity bit.				
Note 1:	SREN/CREN ov	verrides TXEN in	Sync mode.				

REGISTER 19-1: TXSTA1: EUSART TRANSMIT STATUS AND CONTROL REGISTER

	21-3. ADC						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D 1 = Right jus 0 = Left just	Result Format Se stified ified	elect bit				
bit 6	Unimpleme	nted: Read as '0	,				
bit 5-3	ACQT<2:0>	A/D Acquisition	Time Select	bits			
	111 = 20 TA 110 = 16 TA 101 = 12 TA 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD 000 = 0 TAD	ND ND ND N N N N N N N N N N N N N N N					
bit 2-0	ADCS<2:0> 111 = FRC (110 = FOSC 101 = FOSC 011 = FRC (010 = FOSC 001 = FOSC 000 = FOSC	: A/D Conversion clock derived from /64 /16 /4 clock derived from /32 /8 /2	Clock Selec n A/D RC osc n A/D RC osc	t bits cillator) ⁽¹⁾ cillator) ⁽¹⁾			

REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 7				•			bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown			
bit 7	EDG2POL: E 1 = Edge 2 p 0 = Edge 2 p	dge 2 Polarity rogrammed for rogrammed for	Select bit a positive edg a negative edg	e response ge response						
bit 6-5	EDG2SEL<1: 11 = CTEDG 10 = CTEDG 01 = CCP1 S 00 = CCP2 S	0>: Edge 2 So 1 pin 2 pin pecial Event Tr pecial Event Tr	urce Select bit igger igger	S						
bit 4	EDG1POL: E 1 = Edge 1 p 0 = Edge 1 p	dge 1 Polarity rogrammed for rogrammed for	Select bit a positive edg a negative edg	e response ge response						
bit 3-2	EDG1SEL<1: 11 = CTEDG 10 = CTEDG2 01 = CCP1 Sp 00 = CCP2 Sp	0>: Edge 1 So 1 pin 2 pin pecial Event Tr pecial Event Tr	urce Select bit igger igger	S						
bit 1	EDG2STAT: E 1 = Edge 2 e 0 = Edge 2 e	Edge 2 Status b vent has occur vent has not oc	red ccurred							
bit 0	EDG1STAT: E 1 = Edge 1 e 0 = Edge 1 e	Edge 1 Status b vent has occur vent has not oc	it red ccurred							

REGISTER 24-2: CTMUCONL: CTMU CONTROL LOW REGISTER

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

28.3 DC Characteristics: PIC18F87J90 Family (Industrial)

DC CHARACTERISTICS			Standard Opera Operating tempe	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	ol Characteristic Min Max		Units	Conditions				
	VIL	Input Low Voltage							
		All I/O Ports:							
D030		with TTL Buffer	Vss	0.15 Vdd	V	Vdd < 3.3V			
D030A			_	0.8	V	$3.3V \le V\text{DD} \le 3.6V$			
D031		with Schmitt Trigger Buffer	Vss	0.2 Vdd	V				
D031A		with RC3 and RC4	Vss	0.3 Vdd	V	I ² C [™] enabled			
D031B			Vss	0.8	V	SMBus enabled			
D032		MCLR	Vss	0.2 Vdd	V				
D033		OSC1	Vss	0.3 Vdd	V	HS, HSPLL modes			
D033A		OSC1	Vss	0.2 Vdd	V	EC, ECPLL modes			
D034		Т13СКІ	Vss	0.3	V				
	Vih	Input High Voltage							
		I/O Ports with non 5.5V Tolerance:							
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 3.3V			
D040A			2.0	Vdd	V	$3.3V \leq V\text{DD} \leq 3.6V$			
D041		with Schmitt Trigger Buffer	0.8 VDD	Vdd	V				
D041A		RC3 and RC4	0.7 VDD	Vdd	V	I ² C enabled			
D041B			2.1	Vdd	V	SMBus enabled			
		I/O Ports with 5.5V Tolerance:							
		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	VDD < 3.3V			
			2.0	5.5	V	$3.3V \leq V\text{DD} \leq 3.6V$			
		with Schmitt Trigger Buffer	0.8 VDD	5.5	V				
D042		MCLR	0.8 VDD	Vdd	V				
D043		OSC1	0.7 VDD	Vdd	V	HS, HSPLL modes			
D043A		OSC1	0.8 VDD	Vdd	V	EC, ECPLL modes			
D044		т13СКІ	1.6	Vdd	V				
	lı∟	Input Leakage Current ⁽¹⁾							
D060		I/O Ports with Analog Functions	_	200	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance			
		Digital Only I/O Ports	_	200	nA	$VSS \le VPIN \le 5.5V$			
D061		MCLR	—	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063		OSC1		±1	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$			
	IPU	Weak Pull-up Current							
D070	I PURB	PORTB Weak Pull-up Current	30	400	μA	VDD = 3.3V, VPIN = VSS			

Note 1: Negative current is defined as current sourced by the pin.

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only	
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only	
F12	t _{rc}	PLL Start-up Time (Lock Time)	_	—	2	ms		
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%		

TABLE 28-8:	PLL CLOCK TIMING SPECIFICATIONS ((VDD = 2.15V TO 3.6V)
-------------	-----------------------------------	-----------------------

† Data in "Typ" column is at 3.3V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 28-9: INTERNAL RC ACCURACY (INTOSC AND INTRC SOURCES)

PIC18Fa	87J90 Family ustrial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Device	Min	Тур	Max	Units	Conditions		
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz, 31 kHz ⁽¹⁾							
	All Devices	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V	
		-5	-	5	%	-10°C to +85°C	VDD = 2.0-3.3V	
		-10	+/-1	10	%	-40°C to +85°C	VDD = 2.0-3.3V	
	INTRC Accuracy @ Freq = 31 kHz ⁽¹⁾							
	All Devices	21.7	_	40.3	kHz	-40°C to +85°C	VDD = 2.0-3.3V	

Note 1: The accuracy specification of the 31 kHz clock is determined by which source is providing it at a given time. When INTSRC (OSCTUNE<7>) is '1', use the INTOSC accuracy specification. When INTSRC is '0', use the INTRC accuracy specification.

FIGURE 28-7: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 28-12:	TIMER0 AND TIME	R1 EXTERNAL	CLOCK REQUIREMENTS
--------------	-----------------	-------------	--------------------

Param No.	Symbol	Characteristic			Min	Max	Units	Conditions
40	T⊤0H	T0CKI High Pulse Width		No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10	—	ns	
41	T⊤0L	T0CKI Low Pulse Width		No prescaler	0.5 Tcy + 20	_	ns	
				With prescaler	10	—	ns	
42	T⊤0P	T0CKI Period		No prescaler	Tcy + 10	—	ns	
				With prescaler	Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)
45	T⊤1H	T13CKI High Time	Synchronous, no prescaler		0.5 Tcy + 20	—	ns	
			Synchronous, with prescaler		10	—	ns	
			Asynchronous		30	_	ns	
46	TT1L	L T13CKI Low Time	Synchronous, no prescaler		0.5 Tcy + 5	_	ns	
			Synchronous, with prescaler		10	—	ns	
			Asynchronous		30	—	ns	
47	T⊤1P T13CKI Input Period		Synchronous		Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	ns	
	F⊤1	T13CKI Oscill	lator Input Frequency Range		DC	50	kHz	
48	TCKE2TMRI	Delay from External T13CKI Clock Edge to Timer Increment			2 Tosc	7 Tosc	_	