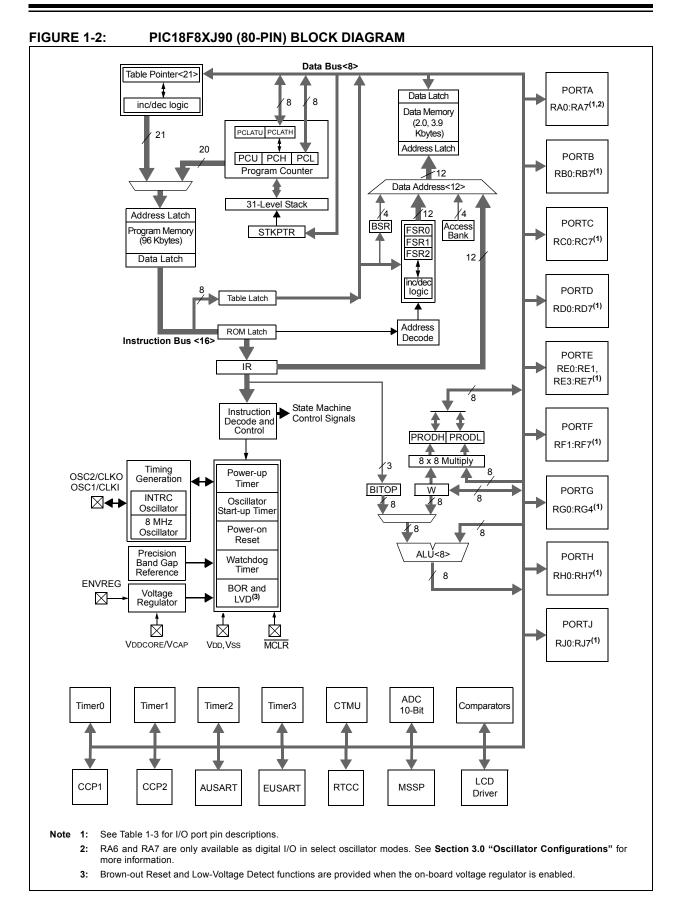


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Туре	Туре	Description			
				PORTG is a bidirectional I/O port.			
RG0/LCDBIAS0 RG0 LCDBIAS0	3	I/O I	ST Analog	Digital I/O. BIAS0 input for LCD.			
RG1/TX2/CK2 RG1 TX2 CK2	4	I/O O I/O	ST — ST	Digital I/O. AUSART asynchronous transmit. AUSART synchronous clock (see related RX2/DT2).			
RG2/RX2/DT2/VLCAP1 RG2 RX2 DT2 VLCAP1	5	I/O I I/O I	ST ST ST Analog	Digital I/O. AUSART asynchronous receive. AUSART synchronous data (see related TX2/CK2). LCD charge pump capacitor input.			
RG3/VLCAP2 RG3 VLCAP2	6	I/O I	ST Analog	Digital I/O. g LCD charge pump capacitor input.			
RG4/SEG26/RTCC RG4 SEG26 RTCC	8	I/O O O	ST Analog —	Digital I/O. SEG26 output for LCD. RTCC output			
Vss	9, 25, 41, 56	Р	_	Ground reference for logic and I/O pins.			
Vdd	26, 38, 57	Р		Positive supply for logic and I/O pins.			
AVss	20	Р		Ground reference for analog modules.			
AVdd	19	Р		Positive supply for analog modules.			
ENVREG	18	Ι	ST	Enable for on-chip voltage regulator.			
VDDCORE/VCAP VDDCORE	10	Р	_	Core logic power or external filter capacitor connection. Positive supply for microcontroller core logic (regulator disabled).			
VCAP		P — External filter capacitor connection (regulator enal					
Legend: TTL = TTL cc ST = Schmi I = Input P = Power $I^2C^{TM} = I^2C/SN$	tt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)			

TABLE 1-3: PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

7.5.2 FLASH PROGRAM MEMORY WRITE SEQUENCE (WORD PROGRAMMING).

The PIC18F87J90 family of devices has a feature that allows programming a single word (two bytes). This feature is enabled when the WPROG bit is set. If the memory location is already erased, the following sequence is required to enable this feature:

- 1. Load the Table Pointer register with the address of the data to be written
- 2. Write the 2 bytes into the holding registers and perform a table write

- 3. Set WPROG to enable single-word write.
- 4. Set WREN to enable write to memory.
- 5. Disable interrupts.
- 6. Write 55h to EECON2.
- 7. Write 0AAh to EECON2.
- 8. Set the WR bit. This will begin the write cycle.
- The CPU will stall for the duration of the write for Tiw (see parameter D133A).
- 10. Re-enable interrupts.

EXAMPLE 7-4: SINGLE-WORD WRITE TO FLASH PROGRAM MEMORY

	MOVLW	CODE_AI	DDR_UPPER	;	Load TBLPTR with the base address
	MOVWF	TBLPTRU	U		
	MOVLW	CODE_AI	DDR_HIGH		
	MOVWF	TBLPTRI	H		
	MOVLW	CODE_AI	DDR_LOW		
	MOVWF	TBLPTRI	L		
	MOVLW	DATA0			
	MOVWF	TABLAT			
	TBLWT*+				
	MOVLW	DATA1			
	MOVWF	TABLAT			
	TBLWT*				
PROGRAM_MEMORY					
					enable single word write
		EECON1,			enable write to memory
		INTCON,	GIE	;	disable interrupts
	MOVLW	55h			
Required		EECON2		;	write 55h
Sequence	MOVLW	0AAh			
		EECON2			write OAAh
		EECON1,			start program (CPU stall)
		INTCON,			re-enable interrupts
		EECON1,			disable single word write
	BCF	EECON1,	WREN	;	disable write to memory

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	into into into into into into into into
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)
		$(AROIL \bullet ARO2L)$

EXAMPLE 8-3: 16 x 16 UNSIGNED

MULTIPLY ROUTINE

1	MOVF	ARG1L, W		
I	MULWF	ARG2L	; ARG1L * ARG	2L->
			; PRODH:PROD	L
1	MOVFF	PRODH, RES1	;	
1	MOVFF	PRODL, RESO	;	
;				
1	MOVF	ARG1H, W		
1	MULWF	ARG2H	; ARG1H * ARG	2H->
			; PRODH:PROD	L
1	MOVFF	PRODH, RES3	;	
I	MOVFF	PRODL, RES2	;	
;				
1	MOVF	ARG1L, W		
1	MULWF	ARG2H	; ARG1L * ARG	2H->
			; PRODH:PROD	L
1	MOVF	PRODL, W	;	
	ADDWF	RES1, F	; Add cross	
1	MOVF		; products	
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
1	MOVF	ARG1H, W	;	
1	MULWF	ARG2L	; ARG1H * ARG	2L->
			; PRODH:PROD	L
1	MOVF	PRODL, W	;	
	ADDWF	RES1, F	; Add cross	
1	MOVF	PRODH, W	; products	
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
1				

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0=	ARG1H:ARG1L • ARG2H:ARG2L
=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY ROUTINE

MOVF ARG1L, W MULWF ARG2L ; ARG1L * ARG2L -> ; PRODH:PRODL	
MOVFF PRODH, RES1 ;	
MOVFF PRODL, RESO ;	
i	
MOVF ARG1H, W	
MULWF ARG2H ; ARG1H * ARG2H ->	
; PRODH:PRODL	
MOVFF PRODH, RES3 ;	
MOVFF PRODL, RES2 ;	
;	
MOVF ARG1L, W	
MULWF ARG2H ; ARG1L * ARG2H ->	
inclui inclui inclui inclui i	
MOVF PRODL, W ;	
ADDWF RES1, F ; Add cross	
MOVF PRODH, W ; products	
ADDWFC RES2, F ;	
CLRF WREG ;	
ADDWFC RES3, F ;	
;	
MOVF ARG1H, W ;	
MULWF ARG2L ; ARG1H * ARG2L ->	
; PRODH:PRODL	
MOVF PRODL, W ;	
ADDWF RES1, F ; Add cross	
MOVF PRODH, W ; products	
ADDWFC RES2, F ;	
CLRF WREG ;	
ADDWFC RES3, F ;	
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg?	,
; BTFSS ARG2H, 7 ; ARG2H:ARG2L neg? BRA SIGN_ARG1 ; no, check ARG1	
MOVF ARG1L, W ;	
SUBWF RES2 ;	
MOVF ARG1H, W ;	
SUBWFB RES3	
;	
, SIGN_ARG1	
BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?	,
BRA CONT_CODE ; no, done	
MOVF ARG2L, W ;	
SUBWF RES2 ;	
MOVF ARG2H, W ;	
SUBWFB RES3	
:	
, CONT_CODE	

bit 7 Legend: R = Readable bit -n = Value at POR bit 7 RB 1 = 0 = bit 6 INT 1 =	PU: PORT All PORT PORTB p EDG0: Ext	INTEDG1 W = Writable t '1' = Bit is set B Pull-up Enab B pull-ups are o ull-ups are ena ternal Interrupt	le bit disabled	U = Unimplem '0' = Bit is clea		INT3IP d as '0' x = Bit is unkn	RBIP bit				
Legend: R = Readable bit -n = Value at POR bit 7 RB 1 = 0 = bit 6 INT 1 =	PU: PORT All PORT PORTB p EDG0: Ext	'1' = Bit is set B Pull-up Enab B pull-ups are o ull-ups are ena	le bit disabled	-							
R = Readable bit -n = Value at POR bit 7 RB 1 = 0 = bit 6 INT 1 =	PU: PORT All PORT PORTB p EDG0: Ext	'1' = Bit is set B Pull-up Enab B pull-ups are o ull-ups are ena	le bit disabled	-			own				
bit 7 RB 1 = 0 = bit 6 INT 1 =	PU: PORT All PORT PORTB p EDG0: Ext	'1' = Bit is set B Pull-up Enab B pull-ups are o ull-ups are ena	le bit disabled	-			own				
bit 7 RB 1 = 0 = bit 6 INT 1 =	PU: PORT All PORT PORTB p EDG0: Ext	B Pull-up Enab B pull-ups are o ull-ups are ena	disabled	ʻ0' = Bit is clea	ared	x = Bit is unkn	own				
1 = 0 = bit 6 INT 1 =	All PORT PORTB p EDG0: Ext	B pull-ups are o ull-ups are ena	disabled								
1 = 0 = bit 6 INT 1 =	All PORT PORTB p EDG0: Ext	B pull-ups are o ull-ups are ena	disabled								
bit 6 INT 1 =	EDG0: Ex	•	ماتينا المستحيية المسالية								
1 =		ternal Interrupt	iblea by individ	dual port latch v	alues						
	Interrupt of		0 Edge Select	t bit							
0 =		on rising edge									
		on falling edge									
		ternal Interrupt	1 Edge Select	t bit							
		rupt on rising edge rupt on falling edge									
		•••	2 Edge Select	t bit							
		xternal Interrupt 2 Edge Select bit on rising edge									
		on falling edge									
bit 3 INT	EDG3: Ext	ternal Interrupt	3 Edge Select	t bit							
1 =	Interrupt of	on rising edge									
0 =	Interrupt of	errupt on falling edge									
bit 2 TM	ROIP: TMF	R0 Overflow Inte	errupt Priority	bit							
	High prior										
	Low prior	•									
		External Interru	ipt Priority bit								
	 1 = High priority 0 = Low priority 										
	-	t Change Interi	runt Priority bit								
	High prior	•	upt i nonty bit								
	Low prior										
	·	-									

REGISTER 9-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

9.6 INTx Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1, RB2/INT2 and RB3/INT3 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxIF, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxIE. Flag bit, INTxIF, must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1, INT2 and INT3) can wake-up the processor from the power-managed modes if bit, INTxIE, was set prior to going into the power-managed modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1, INT2 and INT3 is determined by the value contained in the Interrupt Priority bits, INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and INT3IP (INTCON2<1>). There is no priority bit associated with INT0. It is always a high-priority interrupt source.

9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 11.0 "Timer0 Module" for further details on the Timer0 module.

9.8 **PORTB Interrupt-on-Change**

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the Fast Return Stack. If a fast return from interrupt is not used (see **Section 6.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine (ISR). Depending on the user's application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 9-1:	SAVING STATUS, WREG AND BSR REGISTERS IN RAM
--------------	--

MOVWF MOVFF MOVFF ;	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR_TMEP located anywhere
; USER	ISR CODE	
, MOVFF MOVF MOVFF	BSR_TEMP, BSR W_TEMP, W STATUS_TEMP, STATUS	; Restore BSR ; Restore WREG ; Restore STATUS

Pin Name	Pin Name Function Set		I/O	l/O Type	Description			
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.			
T13CKI		1	-	ST	PORTC<0> data input.			
	T10S0	x	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O and LCD segment driver.			
	T13CKI	1	Ι	ST	Timer1/Timer3 counter input.			
RC1/T1OSI/	RC1	0	0	DIG	LATC<1> data output.			
CCP2/SEG32		1	Ι	ST	PORTC<1> data input.			
	T10SI	x	Ι	ANA	Timer1 oscillator input.			
	CCP2 ⁽¹⁾	0	0	DIG	CCP2 compare/PWM output.			
		1	Ι	ST	CCP2 capture input.			
	SEG32	x	0	ANA	LCD Segment 32 output; disables all other pin functions.			
RC2/CCP1/	RC2	0	0	DIG	LATC<2> data output.			
SEG13		1	Ι	ST	PORTC<2> data input.			
	CCP1	0	0	DIG	CCP1 compare/PWM output; takes priority over port data.			
		1	Ι	ST	CCP1 capture input.			
	SEG13	x	0	ANA	LCD Segment 13 output; disables all other pin functions.			
		0	DIG	LATC<3> data output.				
SEG17		1	-	ST	PORTC<3> data input.			
	SCK	0	0	DIG	SPI clock output (MSSP module); takes priority over port data.			
		1	Ι	ST	SPI clock input (MSSP module).			
	SCL	0	0	DIG	I ² C [™] clock output (MSSP module); takes priority over port data.			
		1	Ι	I2C	I ² C clock input (MSSP module); input type depends on module setting.			
	SEG17	x	0	ANA	LCD Segment 17 output; disables all other pin functions.			
RC4/SDI/SDA/	RC4	0	0	DIG	LATC<4> data output.			
SEG16		1	Ι	ST	PORTC<4> data input.			
	SDI		Ι	ST	SPI data input (MSSP module).			
	SDA	1	0	DIG	I ² C data output (MSSP module); takes priority over port data.			
		1	Ι	I2C	I ² C data input (MSSP module); input type depends on module setting.			
	SEG16	x	0	ANA	LCD Segment 16 output; disables all other pin functions.			
RC5/SDO/	RC5	0	0	DIG	LATC<5> data output.			
SEG12		1	Ι	ST	PORTC<5> data input.			
	SDO	0	0	DIG	SPI data output (MSSP module).			
	SEG12	x	0	ANA	LCD Segment 12 output; disables all other pin functions.			
RC6/TX1/CK1/	RC6	0	0	DIG	LATC<6> data output.			
SEG27		1	Ι	ST	PORTC<6> data input.			
	TX1	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.			
	CK1	1	0	DIG	Synchronous serial data input (EUSART module); user must configure as an input			
		1	I	ST	Synchronous serial clock input (EUSART module).			
	SEG27	x	0	ANA	LCD Segment 27 output; disables all other pin functions.			
RC7/RX1/DT1/	RC7	0	0	DIG	LATC<7> data output.			
SEG28		1	Ι	ST	PORTC<7> data input.			
	RX1	1	I	ST	Asynchronous serial receive data input (EUSART module).			
	DT1	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.			
		1	Ι	ST	Synchronous serial data input (EUSART module); user must configure as an input			
	SEG28	x	0	ANA	LCD Segment 28 output; disables all other pin functions.			

TABLE 10-7: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, $I2C = I^2C/SMBus$ Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.

15.1.1 RTCC CONTROL REGISTERS

REGISTER 15-1: RTCCFG: RTCC CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0			
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0			
oit 7							bit (
Legend:	hit	\// - \//ritabla	hit.	II – Unimplom	opted bit rea	d oo 'O'				
R = Readable		W = Writable '1' = Bit is set		U = Unimplem						
n = Value at	PUR	I = BILIS SEL		'0' = Bit is clea	irea	x = Bit is unkr	IOWN			
bit 7	RTCEN: RTC	C Enable bit ⁽²⁾)							
		odule is enable								
	0 = RTCC m	odule is disable	ed							
bit 6	Unimplemen	ted: Read as '	0'							
bit 5	RTCWREN:	RTCC Value Re	egisters Write	Enable bit						
			U U	an be written to l						
	0 = RTCVAL	H and RTCVAL	L registers ar	e locked out fro	m being writte	en to by the use	r			
oit 4			•	Synchronizatior						
		H, RTCVALL and ALRMRPT registers can change while reading due to a rollover ripple								
	resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.									
				PT registers ca	n be read wit	thout concern o	over a rollove			
	ripple	,		0						
bit 3	HALFSEC: ⊦	lalf-Second Sta	tus bit ⁽³⁾							
		half period of a								
		period of a sec								
bit 2		RTCOE: RTCC Output Enable bit								
	 1 = RTCC clock output enabled 0 = RTCC clock output disabled 									
		-								
bit 1-0			-	ndow Pointer bit			/ALL registers			
				gisters when rea every read or wri						
	RTCVALH:									
	00 = Minutes									
	01 = Weekda	ıy								
	10 = Month									
	11 = Reserve	a								
	RTCVALL: 00 = Second:	e								
	01 = Hours	<u> </u>								
	10 = Day									
	11 = Year									
	e RTCCFG regi en if the device		cted by a PO	R. For resets ot	her than POR	, RTCC will con	tinue to run			

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

FIGURE 15-6:	TIMER PULSE GENERATION
RTCEN b	it
ALRMEN b	it
RTCC Alarm Ever	nt / / /
RTCC Pi	

15.4 Sleep Mode

The timer and alarm continue to operate while in Sleep mode. The operation of the alarm is not affected by Sleep, as an alarm event can always wake-up the CPU.

The Idle mode does not affect the operation of the timer or alarm.

15.5 Reset

15.5.1 DEVICE RESET

When a device Reset occurs, the ALCFGRPT register is forced to its Reset state causing the alarm to be disabled (if enabled prior to the Reset). If the RTCC was enabled, it will continue to operate when a basic device Reset occurs.

15.5.2 POWER-ON RESET (POR)

The RTCCFG and ALRMRPT registers are reset only on a POR. Once the device exits the POR state, the clock registers should be reloaded with the desired values.

The timer prescaler values can be reset only by writing to the SECONDS register. No device Reset can affect the prescalers.

16.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR2L register and CCP2CON<5:4> bits.
- Make the CCP2 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP2 module for PWM operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	60
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	_	TMR2IF	TMR1IF	62
PIE1	_	ADIE	RC1IE	TX1IE	SSPIE		TMR2IE	TMR1IE	62
IPR1	_	ADIP	RC1IP	TX1IP	SSPIP	-	TMR2IP	TMR1IP	62
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3		TRISE1	TRISE0	62
TRISG	SPIOD	CCP2OD	CCP10D	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	62
TMR2	Timer2 Reg	gister							60
PR2	Timer2 Per	iod Register							60
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	60
CCPR1L	Capture/Compare/PWM Register 1 Low Byte							63	
CCPR1H	Capture/Compare/PWM Register 1 High Byte							63	
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	63
CCPR2L	Capture/Compare/PWM Register 2 Low Byte							64	
CCPR2H	Capture/Compare/PWM Register 2 High Byte							63	
CCP2CON			DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	64

TABLE 16-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

17.2 LCD Clock Source

The LCD driver module generates its internal clock from 3 possible sources:

- System clock (Fosc/4)
- · Timer1 oscillator
- INTRC source

The LCD clock generator uses a configurable divide-by-32/divide-by-8192 postscaler to produce a baseline frequency of about 1 kHz nominal, regardless of the source selected. The clock source selection and the postscaler configuration are determined by the Clock Source Select bits, CS<1:0> (LCDCON<3:2>).

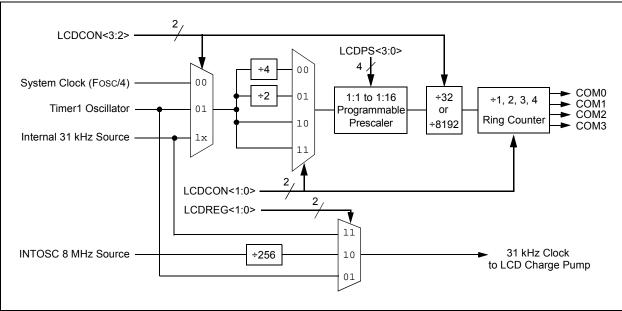
An additional programmable prescaler is used to derive the LCD frame frequency from the 1 kHz baseline. The prescaler is configured using the LP<3:0> bits (LCDPS<3:0>) for any one of 16 options, ranging from 1:1 to 1:16.

Proper timing for waveform generation is set by the LMUX<1:0> bits (LCDCON<1:0>). These bits determine which Commons Multiplexing mode is to be used and divide down the LCD clock source as required. They also determine the configuration of the ring counter that is used to switch the LCD commons on or off.

17.2.1 LCD VOLTAGE REGULATOR CLOCK SOURCE

In addition to the clock source for LCD timing, a separate 31 kHz nominal clock is required for the LCD charge pump. This is provided from a distinct branch of the LCD clock source.

The charge pump clock can use either the Timer1 oscillator or the INTRC source, as well as the 8 MHz INTOSC source (after being divided by 256 by a prescaler). The charge pump clock source is configured using the CKSEL<1:0> bits (LCDREG<1:0>).


17.2.2 CLOCK SOURCE CONSIDERATIONS

When using the system clock as the LCD clock source, it is assumed that the system clock frequency is a nominal 32 MHz (for a Fosc/4 frequency of 8 MHz). Because the prescaler option for the Fosc/4 clock selection is fixed at divide-by-8192, system clock speeds that differ from 32 MHz will produce frame frequencies and refresh rates different than discussed in this chapter. The user will need to keep this in mind when designing the display application.

The Timer1 and INTRC sources can be used as LCD clock sources when the device is in Sleep mode. To use the Timer1 oscillator, it is necessary to set the T1OSCEN bit (T1CON<3>). Selecting either Timer1 or INTRC as the LCD clock source will not automatically activate these sources.

Similarly, selecting the INTOSC as the charge pump clock source will not turn the oscillator on. To use INTOSC, it must be selected as the system clock source by using the FOSC2 Configuration bit.

If Timer1 is used as a clock source for the device, either as an LCD clock source or for any other purpose, LCD segment 32 become unavailable.

FIGURE 17-2: LCD CLOCK GENERATION

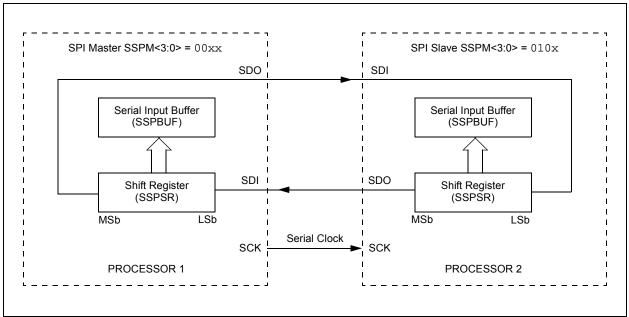
18.3.3 ENABLING SPI I/O

To enable the serial port, the MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISF<7> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

18.3.4 OPEN-DRAIN OUTPUT OPTION


The drivers for the SDO output and SCK clock pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor, and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the SPIOD bit (TRISG<7>). Setting this bit configures both pins for open-drain operation.

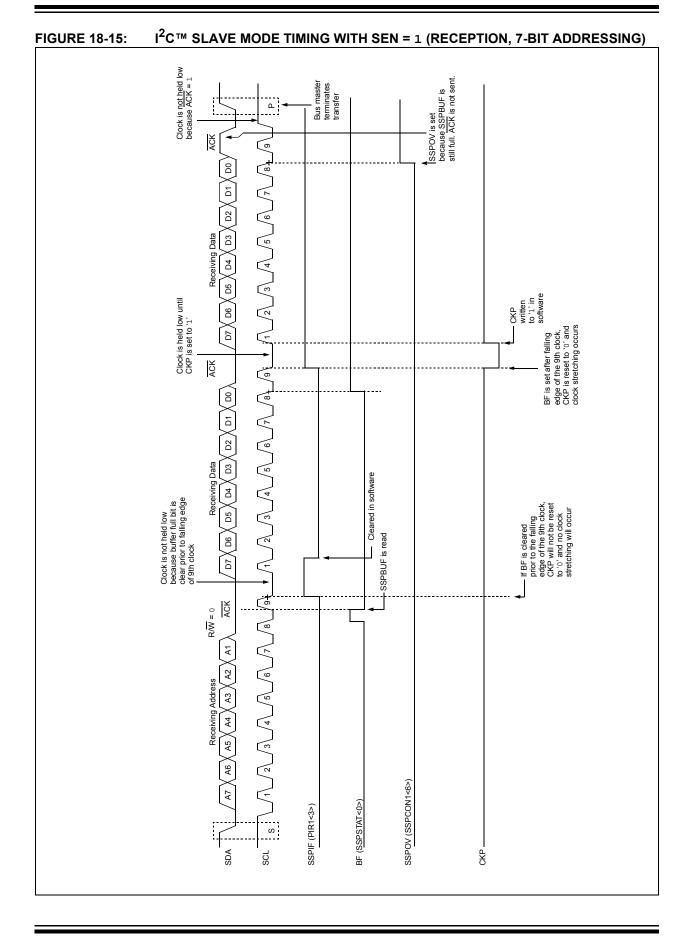
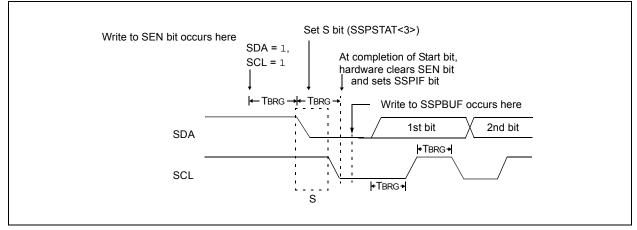

18.3.5 TYPICAL CONNECTION

Figure 18-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 18-2: SPI MASTER/SLAVE CONNECTION

18.4.8 I²C MASTER MODE START CONDITION TIMING


To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA pin being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware. The Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs. The Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

18.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 18-21: FIRST START BIT TIMING

24.3.2 CAPACITANCE CALIBRATION

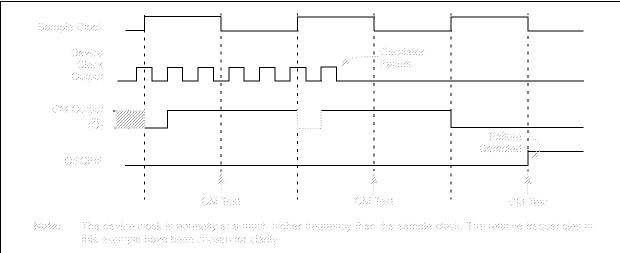
There is a small amount of capacitance from the internal A/D Converter sample capacitor as well as stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken by making sure the desired capacitance to be measured has been removed. The measurement is then performed using the following steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT (= 1).
- 3. Wait for a fixed delay of time, t.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.
- 6. Calculate the stray and A/D sample capacitances:

$$COFFSET = CSTRAY + CAD = (I \cdot t)/V$$

where I is known from the current source measurement step, t is a fixed delay and V is measured by performing an A/D conversion.

This measured value is then stored and used for calculations of time measurement or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of CSTRAY + CAD is approximately known; CAD is approximately 4 pF.


An iterative process may need to be used to adjust the time, t, that the circuit is charged to obtain a reasonable voltage reading from the A/D Converter. The value of t may be determined by setting COFFSET to a theoretical value, then solving for t. For example, if CSTRAY is theoretically calculated to be 11 pF, and V is expected to be 70% of VDD, or 2.31V, then t would be:

$$(4 \text{ pF} + 11 \text{ pF}) \cdot 2.31 \text{V}/0.55 \text{ }\mu\text{A}$$

or 63 µs.

See Example 24-3 for a typical routine for CTMU capacitance calibration.

25.5.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 2H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTRC oscillator provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexor. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

25.5.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexor selects the clock source selected by the OSCCON register. Fail-Safe Clock Monitoring of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTRC multiplexor. An automatic transition back to the failed clock source will not occur.

25.5.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is either EC or INTRC mode, monitoring can begin immediately following these events.

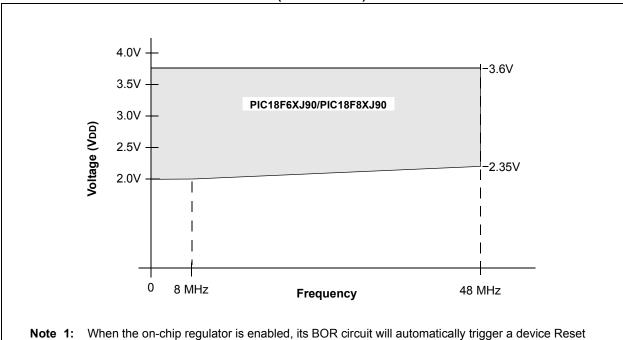
For HS or HSPLL modes, the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FSCM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in Section 25.4.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new power-managed mode is selected, the primary clock is disabled.

26.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Liter	Add Literal to FSR						
Synta	ax:	ADDFSR	ADDFSR f, k						
Operands:		$0 \le k \le 63$	$0 \le k \le 63$						
		f ∈ [0, 1,	2]						
Oper	ation:	FSR(f) + k	$s \rightarrow FSR($	f)					
Statu	s Affected:	None							
Enco	ding:	1110	1000	ffk	k kkkk				
Desc	ription:	The 6-bit	The 6-bit literal 'k' is added to the						
		contents of	of the FSF	R spe	cified	d by 'f'.			
Word	s:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3			Q4			
	Decode	Read	Proces	SS	W	/rite to			
		literal 'k'	Data			FSR			


Before Instru	ction	
FSR2	=	03FFh
After Instruct		
FSR2	=	0422h

ADD	ULNK	Add Liter	Add Literal to FSR2 and Return					
Synta	ax:	ADDULN	ADDULNK k					
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$					
Oper	ation:	FSR2 + k	\rightarrow FSR2					
		$(TOS) \rightarrow I$	$(TOS) \rightarrow PC$					
Statu	s Affected:	None						
Enco	ding:	1110	1000	11k	k k	kkk		
Desc	ription:	contents o	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS.					
		execute; a	The instruction takes two cycles to execute; a NOP is performed during the second cycle.					
		This may l case of the where f = only on FS	e ADDFSI 3 (binary	r instr	uction	,		
Word	ls:	1						
Cycle	es:	2						
-	ycle Activity:							
	Q1	Q2	Q3		G	24		
	Decode	Read	Proces	SS	Writ	e to		
		literal 'k'	Data	l	FSR			
	No	No	No		N	0		
	Operation	Operation	Operat	ion	Oper	ation		
<u>Exan</u>	<u>nple:</u>	ADDULNK 2	23h					

impie.	A	DDULNK 2
Before Instruc	tion	
FSR2	=	03FFh
PC	=	0100h
After Instruction	on	
FSR2	=	0422h
PC	=	(TOS)

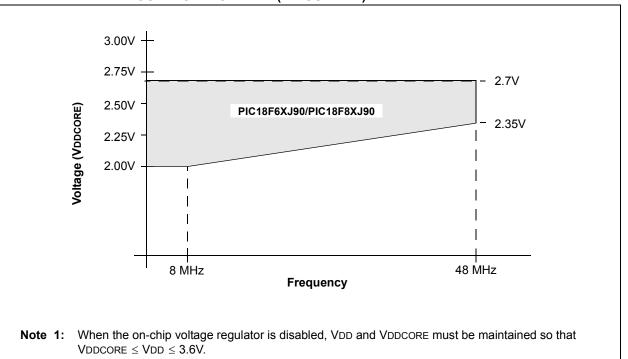

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

FIGURE 28-1: VOLTAGE-FREQUENCY GRAPH, REGULATOR ENABLED (INDUSTRIAL)⁽¹⁾

before VDD reaches a level at which full-speed operation is not possible.

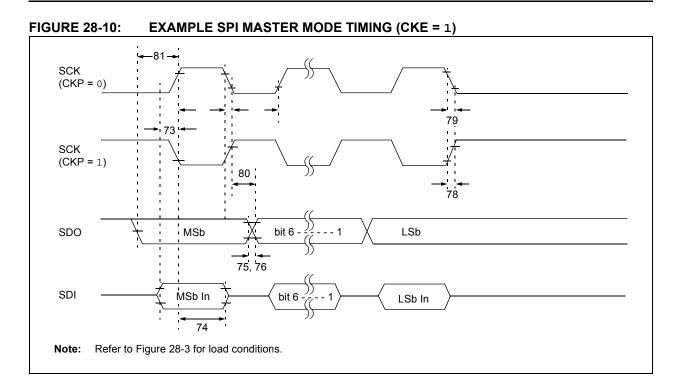
28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J90 Family (Industrial) (Continued)

	7J90 Family strial)	Standard Operating	-	-	•	otherwise stated) ≨ +85°C for industrial		
Param No.	Device	Тур	Max	Units		Condition	S	
	Supply Current (IDD) ^(2,3)							
	All devices	5	14.2	μA	-40°C			
		5.5	14.2	μA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V(4)$		
		10	19.0	μA	+85°C	VBBOOKE 2.0V		
	All devices	6.8	16.5	μA	-40°C		Fosc = 31 kHz	
		7.6	16.5	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	(RC_RUN mode,	
		14	22.4	μA	+85°C	VBBOOKE 2.0V	internal oscillator source	
	All devices	37	84	μA	-40°C			
		51	84	μA	+25°C	VDD = 3.3V ⁽⁵⁾		
		72	108	μA	+85°C			
	All devices	0.43	0.82	mA	-40°C	N/ 0.01/	Fosc = 1 MHz (RC_RUN mode,	
		0.47	0.82	mA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V(4)$		
		0.52	0.95	mA	+85°C			
	All devices	0.52	0.98	mA	-40°C			
		0.57	0.98	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$		
		0.63	1.10	mA	+85°C	VBBOOKE 2.0V	internal oscillator source	
	All devices	0.59	0.96	mA	-40°C			
		0.65	0.96	mA	+25°C	VDD = 3.3V ⁽⁵⁾		
		0.72	1.18	mA	+85°C			
	All devices	0.88	1.45	mA	-40°C	N/ 0.01/		
		1	1.45	mA	+25°C	$VDD = 2.0V,$ $VDDCORE = 2.0V^{(4)}$		
		1.1	1.58	mA	+85°C	VBBOOKE 2.0V		
	All devices	1.2	1.72	mA	-40°C	(22 - 25)'	Fosc = 4 MHz	
		1.3	1.72	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	(RC_RUN mode,	
		1.4	1.85	mA	+85°C		internal oscillator source	
	All devices	1.3	2.87	mA	-40°C			
		1.4	2.87	mA	+25°C	VDD = 3.3V ⁽⁵⁾		
		1.5	2.96	mA	+85°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

TABLE 28-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to SCK Edge	20	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2dlL, TscL2dlL	Hold Time of SDI Data Input to SCK Edge	40	_	ns	
75	TDOR	SDO Data Output Rise Time	—	25	ns	
76	TDOF	SDO Data Output Fall Time	—	25	ns	
78	TscR	SCK Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCK Output Fall Time (Master mode)	—	25	ns	
80	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	—	50	ns	
81	TDOV2scH, TDOV2scL	SDO Data Output Setup to SCK Edge	Тсү	—	ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.