

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j90t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 LCD Driver

The on-chip LCD driver includes many features that make the integration of displays in low-power applications easier. These include an integrated voltage regulator with charge pump that allows contrast control in software and display operation above device VDD.

1.3 Other Special Features

- Communications: The PIC18F87J90 family incorporates a range of serial communication peripherals, including an Addressable USART, a separate Enhanced USART that supports LIN/J2602 specification 1.2, and one Master SSP module capable of both SPI and I²C[™] (Master and Slave) modes of operation.
- CCP Modules: All devices in the family incorporate two Capture/Compare/PWM (CCP) modules. Up to four different time bases may be used to perform several different operations at once.
- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reducing code overhead.
- Charge Time Measurement Unit (CTMU): The CTMU is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation.

Together with other on-chip analog modules, the CTMU can precisely measure time, measure capacitance or relative changes in capacitance, or generate output pulses that are independent of the system clock.

- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 28.0 "Electrical Characteristics" for time-out periods.
- Real-Time Clock and Calendar Module (RTCC): The RTCC module is intended for applications requiring that accurate time be maintained for extended periods of time with minimum to no intervention from the CPU.

The module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

1.4 Details on Individual Family Members

Devices in the PIC18F87J90 family are available in 64-pin and 80-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in four ways:

- Flash program memory (two sizes, 64 Kbytes for PIC18FX6J90 devices and 128 Kbytes for PIC18FX7J90 devices).
- 2. Data RAM (3,923 bytes RAM for both PIC18FX6J90 and PIC18FX7J90 devices).
- I/O ports (7 bidirectional ports on PIC18F6XJ90 devices, 9 bidirectional ports on PIC18F8XJ90 devices).
- LCD Pixels: 132 pixels (33 SEGs x 4 COMs) can be driven by 64-pin devices; 192 pixels (48 SEGs x 4 COMs) can be driven by 80-pin devices.

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

The pinouts for all devices are listed in Table 1-3 and Table 1-4.

3.3.1 CLOCK SOURCE SELECTION

The System Clock Select bits, SCS<1:0> (OSCCON<1:0>), select the clock source. The available clock sources are the primary clock defined by the FOSC<2:0> Configuration bits, the secondary clock (Timer1 oscillator) and the internal oscillator. The clock source changes after one or more of the bits is written to, following a brief clock transition interval.

The OSTS (OSCCON<3>) and T1RUN (T1CON<6>) bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer (OST) has timed out and the primary clock is providing the device clock in Primary Clock modes. The T1RUN bit indicates when the Timer1 oscillator is providing the device clock in Secondary Clock modes. In power-managed modes, only one of these bits will be set at any time. If neither of these bits is set, the INTRC is providing the clock, or the internal oscillator has just started and is not yet stable.

The IDLEN bit determines if the device goes into Sleep mode or one of the Idle modes when the ${\tt SLEEP}$ instruction is executed.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "Power-Managed Modes".

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction or a very long delay may occur while the Timer1 oscillator starts.

3.3.1.1 System Clock Selection and Device Resets

Since the SCS bits are cleared on all forms of Reset, this means the primary oscillator defined by the FOSC<2:0> Configuration bits is used as the primary clock source on device Resets. This could either be the internal oscillator block by itself or one of the other primary clock source (HS, EC, HSPLL, ECPLL1/2 or INTPLL1/2).

In those cases when the internal oscillator block, without PLL, is the default clock on Reset, the Fast RC oscillator (INTOSC) will be used as the device clock source. It will initially start at 1 MHz; the postscaler selection that corresponds to the Reset value of the IRCF<2:0> bits ('100').

Regardless of which primary oscillator is selected, INTRC will always be enabled on device power-up. It serves as the clock source until the device has loaded its configuration values from memory. It is at this point that the FOSC Configuration bits are read and the oscillator selection of the operational mode is made.

Note that either the primary clock source, or the internal oscillator, will have two bit setting options for the possible values of the SCS<1:0> bits at any given time.

3.3.2 OSCILLATOR TRANSITIONS

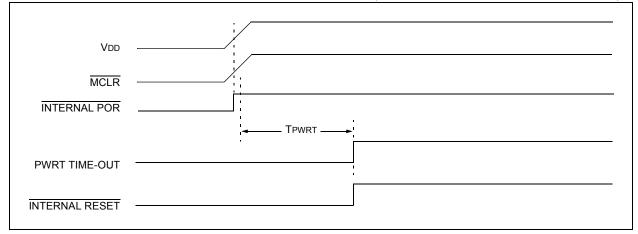
PIC18F87J90 family devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 4.1.2 "Entering Power-Managed Modes"**.

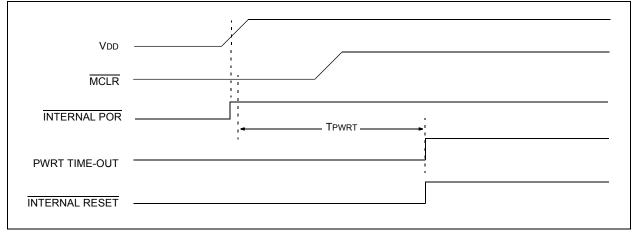
5.6 Power-up Timer (PWRT)

PIC18F87J90 family devices incorporate an on-chip Power-up Timer (PWRT) to help regulate the Power-on Reset process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.

The Power-up Timer (PWRT) of the PIC18F87J90 family devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.


The power-up time delay depends on the INTRC clock and will vary from chip to chip due to temperature and process variation. See DC parameter 33 for details.

5.6.1 TIME-OUT SEQUENCE


If enabled, the PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6 all depict time-out sequences on power-up with the Power-up Timer enabled.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the PWRT will expire. Bringing MCLR high will begin execution immediately (Figure 5-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

FIGURE 5-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

TABLE 6-3:	PIC18F87J90 FAMILY REGISTER FILE SUMMARY

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
TOSU	_	_	_	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	59, 67
TOSH	Top-of-Stack	High Byte (TO	S<15:8>)						0000 0000	59, 67
TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	59, 67
STKPTR	STKFUL	STKUNF	_	Return Stack	Pointer				uu-0 0000	59, 68
PCLATU	_	_	bit 21 ⁽¹⁾	Holding Regi	ster for PC<20):16>			0 0000	59, 67
PCLATH	Holding Regis	ster for PC<15	5:8>						0000 0000	59, 67
PCL	PC Low Byte	(PC<7:0>)							0000 0000	59, 67
TBLPTRU	_	—	bit 21	Program Mer	nory Table Poi	nter Upper By	te (TBLPTR<	20:16>)	00 0000	59, 92
TBLPTRH	Program Mer	nory Table Poi	inter High Byt	e (TBLPTR<1	5:8>)				0000 0000	59, 92
TBLPTRL	Program Mer	nory Table Poi	inter Low Byte	e (TBLPTR<7:	0>)				0000 0000	59, 92
TABLAT	Program Mer	nory Table Lat	ch						0000 0000	59, 92
PRODH	Product Regi	ster High Byte							XXXX XXXX	59, 99
PRODL	Product Regi	ster Low Byte							XXXX XXXX	59, 99
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	59, 103
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	59, 104
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	59, 105
INDF0	Uses content	s of FSR0 to a	address data r	nemory – valu	e of FSR0 not	changed (not	a physical re	gister)	N/A	59, 83
POSTINC0	Uses content	s of FSR0 to a	address data r	nemory – valu	e of FSR0 pos	st-incremented	d (not a physic	al register)	N/A	59, 84
POSTDEC0	Uses content	s of FSR0 to a	ddress data r	nemory – valu	e of FSR0 pos	st-decremente	d (not a physi	cal register)	N/A	59, 84
PREINC0	Uses content	s of FSR0 to a	address data r	memory – valu	e of FSR0 pre	-incremented	(not a physica	al register)	N/A	59, 84
PLUSW0	Uses content value of FSR		address data r	memory – valu	e of FSR0 pre	-incremented	(not a physica	al register) –	N/A	59, 84
FSR0H	—	_	_	_	Indirect Data	Memory Addr	ess Pointer 0	High Byte	xxxx	59, 83
FSR0L	Indirect Data	Memory Addr	ess Pointer 0	Low Byte					xxxx xxxx	59, 83
WREG	Working Regi	ister							xxxx xxxx	59
INDF1	Uses content	s of FSR1 to a	address data r	memory – valu	e of FSR1 not	changed (not	a physical re	gister)	N/A	59, 83
POSTINC1	Uses content	s of FSR1 to a	address data r	memory – valu	e of FSR1 pos	st-incremented	d (not a physic	cal register)	N/A	59, 84
POSTDEC1	Uses content	s of FSR1 to a	address data r	memory – valu	e of FSR1 pos	st-decremente	d (not a physi	cal register)	N/A	59, 84
PREINC1	Uses content	s of FSR1 to a	address data r	memory – valu	e of FSR1 pre	-incremented	(not a physica	al register)	N/A	59, 84
PLUSW1	Uses content value of FSR		address data r	memory – valu	e of FSR1 pre	-incremented	(not a physica	al register) –	N/A	59, 84
FSR1H	—	—	—	—	Indirect Data	Memory Addr	ess Pointer 1	High Byte	xxxx	60, 83
FSR1L	Indirect Data	Memory Addr	ess Pointer 1	Low Byte					XXXX XXXX	60, 83
BSR	—	—	—	—	Bank Select F	Register			0000	60, 72
INDF2	Uses content	s of FSR2 to a	address data r	memory – valu	e of FSR2 not	changed (not	a physical re	gister)	N/A	60, 83
POSTINC2	Uses content	s of FSR2 to a	address data r	memory – valu	e of FSR2 pos	st-incremented	d (not a physic	cal register)	N/A	60, 84
POSTDEC2	Uses content	s of FSR2 to a	address data r	memory – valu	e of FSR2 pos	st-decremente	d (not a physi	cal register)	N/A	60, 84
PREINC2	Uses content	s of FSR2 to a	address data r	memory – valu	e of FSR2 pre	-incremented	(not a physica	al register)	N/A	60, 84
PLUSW2	Uses content value of FSR		address data r	memory – valu	e of FSR2 pre	-incremented	(not a physica	al register) –	N/A	60, 84
FSR2H		_	_	—	Indirect Data	Memory Addr	ess Pointer 2	High Byte	xxxx	60, 83
FSR2L	Indirect Data	Memory Addr	ess Pointer 2	Low Byte					xxxx xxxx	60, 83
STATUS	_	_	_	N	OV	Z	DC	С	x xxxx	60, 81

 $\label{eq:Legend: Legend: Legend: u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, do not modify a set of the transformation of transformation of the transformation of t$

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset states shown are for 80-pin devices.

3: Alternate names and definitions for these bits when the MSSP module is operating in I²C[™] Slave mode. See Section 18.4.3.2 "Address Masking" for details.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.4.3 "PLL Frequency Multiplier" for details.

5: RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as '0'.

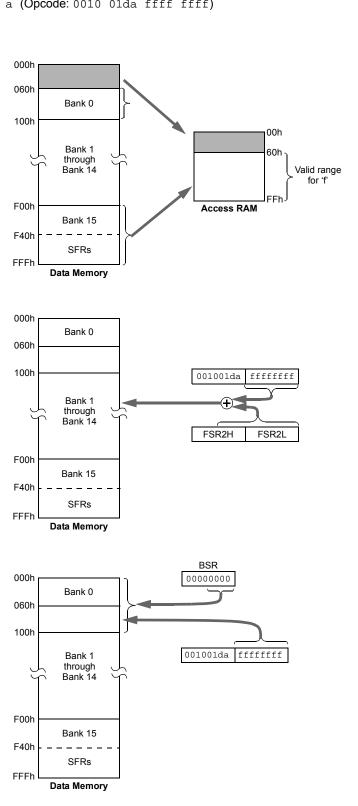
FIGURE 6-9: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When a = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and FFFh. This is the same as locations, F60h to FFFh (Bank 15), of data memory.

Locations below 060h are not available in this addressing mode.


When a = 0 and $f \le 5Fh$:

The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], d where 'k' is the same as 'f'.

When a = 1 (all values of f):

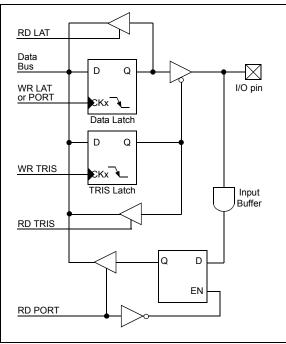
The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

10.0 I/O PORTS

Depending on the device selected and features enabled, there are up to nine ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three memory mapped registers for its operation:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Output Latch register)


Reading the PORT register reads the current status of the pins, whereas writing to the PORT register writes to the Output Latch (LAT) register.

Setting a TRIS bit (= 1) makes the corresponding port pin an input (i.e., puts the corresponding output driver in a high-impedance mode). Clearing a TRIS bit (= 0) makes the corresponding port pin an output (i.e., puts the contents of the corresponding LAT bit on the selected pin).

The Output Latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving. Read-modify-write operations on the LAT register read and write the latched output value for the PORT register.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 10-1.

FIGURE 10-1: GENERIC I/O PORT OPERATION

10.1 I/O Port Pin Capabilities

When developing an application, the capabilities of the port pins must be considered. Outputs on some pins have higher output drive strength than others. Similarly, some pins can tolerate higher than VDD input levels.

10.1.1 INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should be avoided.

Table 10-1 summarizes the input voltage capabilities. Refer to **Section 28.0 "Electrical Characteristics"** for more details.

TABLE 10-1: INPUT VOLTAGE TOLERANCE

PORT or Pin	Tolerated Input	Description
PORTA<7:0>		Only VDD input levels
PORTC<1:0>	Voo	tolerated.
PORTF<7:1>	VUU	
PORTG<3:2>		
PORTB<7:0>		Tolerates input
PORTC<7:2>		levels above VDD,
PORTD<7:0>		useful for most standard logic.
PORTE<7:3>	5.5V	otariaara logio.
PORTG<4,1>		
PORTH<7:0> ⁽¹⁾		
PORTJ<7:0> ⁽¹⁾		

Note 1: Not available on PIC18F6XJ90 devices.

10.1.2 PIN OUTPUT DRIVE

When used as digital I/O, the output pin drive strengths vary for groups of pins intended to meet the needs for a variety of applications. In general, there are three classes of output pins in terms of drive capability.

PORTB and PORTC, as well as PORTA<7:6>, are designed to drive higher current loads, such as LEDs. PORTD, PORTE and PORTJ can also drive LEDs but only those with smaller current requirements. PORTF, PORTG and PORTH, along with PORTA<5:0>, have the lowest drive level but are capable of driving normal digital circuit loads with a high input impedance. Regardless of which port it is located on, all output pins in LCD Segment or Common mode have sufficient output to directly drive a display.

Table 10-2 summarizes the output capabilities of the ports. Refer to the "Absolute Maximum Ratings" in Section 28.0 "Electrical Characteristics" for more details.

10.3 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISB and LATB. All pins on PORTB are digital only and tolerate voltages up to 5.5V.

EXAMPLE 10-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by ; clearing output
67. D. D.		; data latches
CLRF	LATB	; Alternate method ; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn <u>on all</u> the pull-ups. This is performed by clearing bit, RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB<7:4>) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB<7:4>) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Wait one instruction cycle (such as executing a NOP instruction).
- c) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared after one TCY delay.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB<3:2> are multiplexed as CTMU edge inputs.

RB<5:0> are also multiplexed with LCD segment drives, controlled by bits in the LCDSE1 and LCDSE3 registers. I/O port functionality is only available when the LCD segments are disabled.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable. Its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256, in power-of-2 increments, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before re-enabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

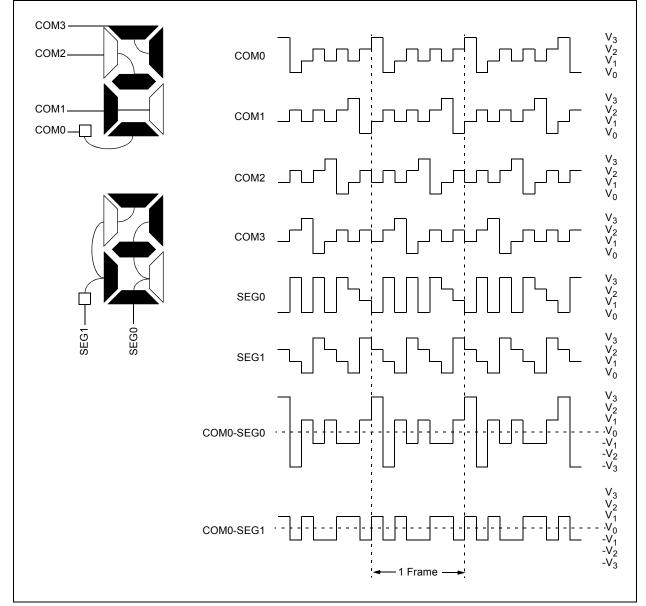

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values
TMR0L	Timer0 Reg	ister Low By	te						on page 60
TMR0H	Timer0 Reg	ister High By	/te						60
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	59
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	60
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	62

 TABLE 11-1:
 REGISTERS ASSOCIATED WITH TIMER0

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Timer0.

Note 1: RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as '0'.

18.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 18-19). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

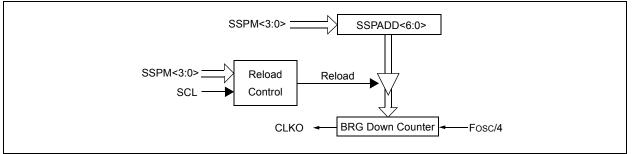

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 18-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

18.4.7.1 Baud Rate Generation in Power-Managed Modes

When the device is operating in one of the power-managed modes, the clock source to the BRG may change frequency, or even stop, depending on the mode and clock source selected. Switching to a Run or Idle mode from either the secondary clock or internal oscillator is likely to change the clock rate to the BRG. In Sleep mode, the BRG will not be clocked at all.

FIGURE 18-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 18-3: I²C[™] CLOCK RATE w/BRG

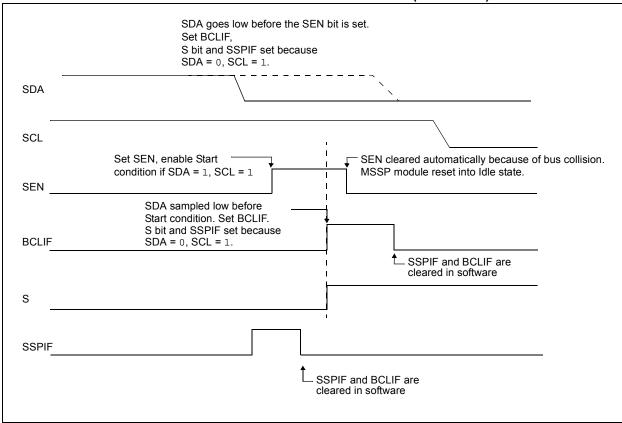
Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
10 MHz	20 MHz	18h	400 kHz
10 MHz	20 MHz	1Fh	312.5 kHz
10 MHz	20 MHz	63h	100 kHz
4 MHz	8 MHz	09h	400 kHz
4 MHz	8 MHz	0Ch	308 kHz
4 MHz	8 MHz	27h	100 kHz
1 MHz	2 MHz	02h	333 kHz
1 MHz	2 MHz	09h	100 kHz
1 MHz	2 MHz	00h	1 MHz

18.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 18-28).
- b) SCL is sampled low before SDA is asserted low (Figure 18-29).

During a Start condition, both the SDA and the SCL pins are monitored.

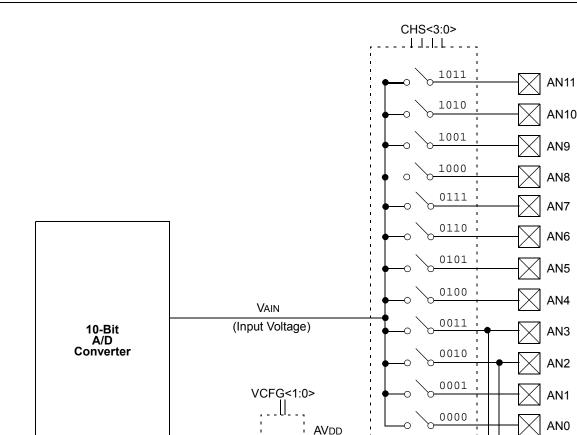

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted;
- the BCLIF flag is set; and
- the MSSP module is reset to its Idle state (Figure 18-28).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 18-30). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to 0. If the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.


FIGURE 18-28: BUS COLLISION DURING START CONDITION (SDA ONLY)

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/VREF+ and RA2/AN2/VREF- pins.

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's Internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of

FIGURE 21-1: A/D BLOCK DIAGRAM^(1,2)

the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset. These registers will contain unknown data after a Power-on Reset.

The block diagram of the A/D module is shown in Figure 21-1.

Note 1: Channels, AN15 through AN12, are not available on PIC18F6XJ90 devices.2: I/O pins have diode protection to VDD and Vss.

O

 \cap

0

AVss

VREF+

VREF-

Reference

Voltage

L

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
DG2POL	EDG25ELT	EDG25ELU	EDGIPOL	EDGISELI	EDGISELU	EDG25TAT	
							bit 0
Legend:							
R = Readable	bit	W = Writable	hit	II = I Inimplem	nented bit, read	l as 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
					area		10111
bit 7	EDG2POI : F	dge 2 Polarity	Select bit				
		rogrammed for		le response			
		rogrammed for					
bit 6-5	EDG2SEL<1:	: 0>: Edge 2 So	urce Select bit	s			
	11 = CTEDG	1 pin					
	10 = CTEDG						
		pecial Event Tr pecial Event Tr					
bit 4		dge 1 Polarity					
bit 4		rogrammed for		le response			
	• .	rogrammed for					
bit 3-2	EDG1SEL<1:	:0>: Edge 1 So	urce Select bit	S			
	11 = CTEDG	1 pin					
	10 = CTEDG						
		pecial Event Tr pecial Event Tr					
bit 1		Edge 2 Status b					
bit i		vent has occur					
	U U	vent has not or					
bit 0	EDG1STAT: E	Edge 1 Status b	oit				
		vent has occur					
	0 = Edge 1 e	vent has not or	curred				

REGISTER 24-2: CTMUCONL: CTMU CONTROL LOW REGISTER

25.6 Program Verification and Code Protection

For all devices in the PIC18F87J90 family of devices, the on-chip program memory space is treated as a single block. Code protection for this block is controlled by one Configuration bit, CP0. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

25.6.1 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against untoward changes or reads in two ways. The primary protection is the write-once feature of the Configuration bits which prevents reconfiguration once the bit has been programmed during a power cycle. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell-level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the CP0 bit set, the source data for device configuration is also protected as a consequence.

25.7 In-Circuit Serial Programming

PIC18F87J90 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 25-4 shows which resources are required by the background debugger.

TABLE 25-4: DEBUGGER RESOURCES

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

BTFSC	Bit Test File	, Skip if Clear		BTFSS		Bit Test File	, Skip if Set	
Syntax:	BTFSC f, b	{,a}		Syntax:		BTFSS f, b {	,a}	
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$			Operand	ls:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Operation:	skip if (f)	= 0		Operatio	n:	skip if (f)	= 1	
Status Affected:	None			Status A	ffected:	None		
Encoding:	1011	bbba ff	ff ffff	Encodin	g:	1010	bbba ffi	ff ffff
Description:	instruction is the next inst current instru and a NOP is	gister 'f' is '0', t skipped. If bit ruction fetched uction executio executed instruction.	'b' is '0', then during the in is discarded ead, making	Descript	ion:	instruction is the next instruction current instruction and a NOP is	gister 'f' is '1', t skipped. If bit uction fetched iction execution executed inste cle instruction.	'b' is '1', then during the n is discarded
		e Access Banł BSR is used to	k is selected. If a select the				e Access Bank BSR is used to	
	is enabled, t Indexed Lite whenever f ≤ Section 26.2 Bit-Oriented	d the extended his instruction ral Offset Addr 95 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for d	essing mode ented and in Indexed			set is enable Indexed Liter whenever f ≤ Section 26.2 Bit-Oriented	d the extended d, this instruction ral Offset Addro 95 (5Fh). See 2.3 "Byte-Orient I Instructions of Mode" for de	on operates in essing mode nted and in Indexed
Words:	1			Words:		1		
Cycles:	•	cles if skip and 2-word instruc		Cycles:			vcles if skip and a 2-word instru	
Q Cycle Activity:				Q Cycle	e Activity:			
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Decode	Read	Process	No		Decode	Read	Process	No
lf skip:	register 'f'	Data	operation	lf skip:		register 'f'	Data	operation
li skip. Q1	Q2	Q3	Q4	li skip.	Q1	Q2	Q3	Q4
No	No	No	No		No	No	No	No
operation	operation	operation	operation	C	peration	operation	operation	operation
If skip and followe	,			lf skip a		by 2-word inst		
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
No operation	No operation	No operation	No operation		No peration	No operation	No operation	No operation
No	No	No	No		No	No	No	No
operation	operation	operation	operation	c	peration	operation	operation	operation
Example:	HERE BI FALSE : TRUE :	IFSC FLAG	;, l, O	<u>Example</u>	<u>::</u>	HERE BI FALSE : TRUE :	FSS FLAG	, 1, 0
Before Instruc PC After Instructio If FLAG< PC	= add on :1> = 0;	ress (HERE)			ore Instruct PC er Instructio If FLAG< PC	= add n 1> = 0;	ress (HERE)	
If FLAG< PC		ress (False)		If FLAG< PC	1> = 1;	ress (TRUE)	

Syntax:BZnOperands: $-128 \le n \le 127$ Operation:if Zero bit is '1', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding: 1110 0000 nnnnDescription:If the Zero bit is '1', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will ha incremented to fetch the next instruction, the new address will be PC + 2 + 2 n. This instruction is then two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:Q1Q1Q2Q3Q4NoNoNoNoNoNoNoQ1Q2Q3Q4	n ave
Operation:if Zero bit is '1', (PC) + 2 + 2n \rightarrow PCStatus Affected:NoneEncoding:1110 0000 nnnn nnnDescription:If the Zero bit is '1', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have 	n ave
$\begin{array}{c c} (PC) + 2 + 2n \rightarrow PC \\ \hline \\ \mbox{Status Affected:} None \\ \hline \\ \mbox{Encoding:} & \hline 1110 & 0000 & nnnn & nnn \\ \hline \\ \mbox{Encoding:} & \hline 1110 & 0000 & nnnn & nnn \\ \hline \\ \mbox{Description:} & \mbox{If the Zero bit is '1', then the program will branch.} \\ \hline \\ \mbox{The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then two-cycle instruction. \\ \hline \\ \mbox{Words:} & 1 \\ \hline \\ \mbox{Cycles:} & 1(2) \\ \hline \\ \mbox{Q Cycle Activity:} \\ \mbox{If Jump:} \\ \hline \\ \hline \\ \hline \\ \mbox{No} & No & No \\ \hline \\ \hline \\ \mbox{No} & No & No \\ \hline \\ \mbox{operation operation operation} \\ \hline \\ \mbox{Jerminal operation operation} \\ \hline \\ \mbox{Jerminal operation operation} \\ \hline \\ \mbox{Jerminal operation operation} \\ \hline \end{array} $	n ave
Encoding: 1110 0000 nnnn nnn Description: If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will ha incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' No No No No No No No No If No Jump: Unite No Operation Operation	n ave
Description: If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' No No No No No No No No If No Jump: Uncertain operation Operation Operation	n ave
will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then two-cycle instruction.Words:1Cycles:1(2)Q Cycle Activity: If Jump:1Q1Q2Q3Q4Q4DecodeRead literal 'n'ProcessWrite to 'n'NoNoNooperationoperationIf No Jump:Image: Coloration	ave
$\begin{array}{c c} \mbox{added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then two-cycle instruction. \\ \hline \mbox{Words:} 1 \\ \hline \mbox{Cycles:} 1(2) \\ \hline \mbox{Q Cycle Activity:} \\ \mbox{If Jump:} \\ \hline \hline \mbox{Q1} & \mbox{Q2} & \mbox{Q3} & \mbox{Q4} \\ \hline \hline \mbox{Decode} & \mbox{Read literal} & \mbox{Process} & \mbox{Write to} \\ \hline \mbox{Decode} & \mbox{Read literal} & \mbox{Process} & \mbox{Write to} \\ \hline \mbox{No} & \mbox{No} & \mbox{No} & \mbox{No} \\ \hline \mbox{Decode literal} & \mbox{operation} & op$	
Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' Data PC No No No No operation operation operation If No Jump:	
Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' Data PC No No No No operation operation operation If No Jump:	
If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to 'n' Data PC No No No No operation operation operation If No Jump:	
Decode Read literal 'n' Process Data Write to PC No No No No operation operation operation operation If No Jump: Units Units Units	
'n' Data PC No No No No operation operation operation operation If No Jump: Vinter State Vinter State Vinter State	
No No No No operation operation operation operation	
operation operation operation operation	
If No Jump:	h
	<u> </u>
Decode Read literal Process No	
'n' Data operation	ı
Example: HERE BZ Jump	
Before Instruction	
PC = address (HERE)	
After Instruction If Zero = 1;	
PC = address (Jump)	
If Zero = 0; PC = address (HERE + 2)	

Syntax:	CALL k {,s}					
Operands:	0 ≤ k ≤ 1048575 s ∈ [0,1]					
Operation:	$k \rightarrow PC<20$ if s = 1 (W) \rightarrow WS (STATUS)	$(PC) + 4 \rightarrow TOS,$ $x \rightarrow PC<20:1>;$ f s = 1				
Status Affected:	None					
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ k kkł		kkkk kkkk	
	(PC+ 4) is p If 's' = 1, th registers ar respective	e W, STA re also pu	ATUS ushed	and I into	BSR	
	STATUSS a update occ is loaded in	and BSR urs. Ther ito PC<2	S. If 's n, the 2 0:1>.	s' = 0 20-bi	, no t value	
Words:	STATUSS a update occ	and BSR urs. Ther ito PC<2	S. If 's n, the 2 0:1>.	s' = 0 20-bi	, no t value	
Words: Cycles:	STATUSS a update occ is loaded in two-cycle ir	and BSR urs. Ther ito PC<2	S. If 's n, the 2 0:1>.	s' = 0 20-bi	, no t value	
	STATUSS a update occ is loaded in two-cycle in 2	and BSR urs. Ther ito PC<2	S. If 's n, the 2 0:1>.	s' = 0 20-bi	, no t value	
Cycles:	STATUSS a update occ is loaded in two-cycle in 2	and BSR urs. Ther ito PC<2	S. If 's n, the 2 0:1>. 0 n.	s' = 0 20-bi	, no t value	
Cycles: Q Cycle Activity:	STATUSS a update occ is loaded ir two-cycle ir 2 2	and BSR urs. Ther nto PC<2 nstructior	S. If 's n, the 2 0:1>. 1 n. 3 C to	S' = 0 20-bi CALI CALI	, no t value ∟ is a	
Cycles: Q Cycle Activity: Q1	STATUSS a update occ is loaded ir two-cycle ir 2 2 Q2 Read literal	and BSR urs. Ther nto PC<2 nstruction Q3 Push P	S. If 's n, the 2 0:1>. n. 3 C to k	Rea 'k'<	Q4 Q4 Ad litera <19:8> te to P No	
Cycles: Q Cycle Activity: Q1 Decode No	STATUSS a update occ is loaded in two-cycle in 2 2 Q2 Read literal 'k'<7:0>, No	and BSR urs. Ther nto PC<2 nstruction Q3 Push P stac No	S. If 's n, the 2 0:1>. 0:1>. 1 C to k	Rea 'k'<	Q4 ad litera <19:8> te to P No eratior	
Cycles: Q Cycle Activity: Q1 Decode No operation	STATUSS a update occ is loaded in two-cycle in 2 2 2 Read literal 'k'<7:0>, No operation HERE	and BSR urs. Ther nto PC<2 nstruction Q3 Push P stac No operat	S. If 's n, the 2 0:1>. 0:1>. 1 C to k	Rea 'k'- 'op	Q4 ad litera <19:8> te to P No eratior	
Cycles: Q Cycle Activity: Q1 Decode No operation Example:	STATUSS a update occ is loaded in two-cycle in 2 2 2 Q2 Read literal 'k'<7:0>, No operation HERE tion = address	and BSR urs. Ther no PC<2 nstruction Q3 Push P stac No operat	S. If 's n, the 2 0:1> 0:1> n. C to k tion	Rea 'k'- 'op	Q4 ad litera <19:8> te to P No eratior	

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J90 Family (Industrial) (Continued)

PIC18F87J90 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Dovico		Max	Units	Conditions		
	Supply Current (IDD) ^(2,3)						
	All devices	5	14.2	μA	-40°C	$V_{DD} = 2.0V,$ VDDCORE = 2.0V ⁽⁴⁾	
		5.5	14.2	μA	+25°C		
		10	19.0	μA	+85°C	VBBOOKE 2.0V	
	All devices	6.8	16.5	μA	-40°C		Fosc = 31 kHz
		7.6	16.5	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	(RC_RUN mode,
		14	22.4	μA	+85°C		internal oscillator source
	All devices	37	84	μA	-40°C		
		51	84	μA	+25°C	VDD = 3.3V ⁽⁵⁾	
		72	108	μA	+85°C		
	All devices	0.43	0.82	mA	-40°C	N/ 0.01/	Fosc = 1 MHz (RC_RUN mode, internal oscillator source
		0.47	0.82	mA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V(4)$	
		0.52	0.95	mA	+85°C		
	All devices	0.52	0.98	mA	-40°C		
		0.57	0.98	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	
		0.63	1.10	mA	+85°C	VBBOOKE 2.0V	
	All devices	0.59	0.96	mA	-40°C		
		0.65	0.96	mA	+25°C	VDD = 3.3V ⁽⁵⁾	
		0.72	1.18	mA	+85°C		
	All devices	0.88	1.45	mA	-40°C	N/ 0.01/	Fosc = 4 MHz (RC_RUN mode, internal oscillator source
		1	1.45	mA	+25°C	$VDD = 2.0V,$ $VDDCORE = 2.0V^{(4)}$	
		1.1	1.58	mA	+85°C		
	All devices	1.2	1.72	mA	-40°C		
		1.3	1.72	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	
		1.4	1.85	mA	+85°C	- VDDCORE - 2.3V()	
	All devices	1.3	2.87	mA	-40°C		
		1.4	2.87	mA	+25°C	VDD = 3.3V ⁽⁵⁾	
		1.5	2.96	mA	+85°C	1	

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

28.2 DC Characteristics: Power-Down and Supply Current PIC18F87J90 Family (Industrial) (Continued)

	7J90 Family strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param Device		Тур	Max	Units	Conditions		
	Supply Current (IDD) Cont.	(2,3)					
	All devices	0.17	0.35	mA	-40°C		
		0.18	0.35	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V ⁽⁴⁾	
		0.20	0.42	mA	+85°C	VDDOORE 2.0V	
	All devices	0.29	0.52	mA	-40°C		Fosc = 1 MHz
		0.31	0.52	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	(PRI_RUN mode, EC oscillator)
		0.34	0.61	mA	+85°C	VDDOORE 2.0V	
	All devices	0.59	1.1	mA	-40°C		
		0.44	0.85	mA	+25°C	VDD = 3.3V ⁽⁵⁾	
		0.42	0.85	mA	+85°C		
	All devices	0.70	1.25	mA	-40°C		Fosc = 4 MHz (PRI_RUN mode, EC oscillator)
		0.75	1.25	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V ⁽⁴⁾	
		0.79	1.36	mA	+85°C	VDDOORE 2.0V	
	All devices	1.10	1.7	mA	-40°C		
		1.10	1.7	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	
		1.12	1.82	mA	+85°C		
	All devices	1.55	1.95	mA	-40°C		
		1.47	1.89	mA	+25°C	VDD = 3.3V ⁽⁵⁾	
		1.54	1.92	mA	+85°C]	
	All devices	9.9	14.8	mA	-40°C	$\lambda = 0.5 \lambda$	Fosc = 48 MHz (PRI RUN mode,
		9.5	14.8	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	
		10.1	15.2	mA	+85°C		
	All devices	13.3	23.2	mA	-40°C		EC oscillator)
		12.2	22.7	mA	+25°C	VDD = 3.3V ⁽⁵⁾	
		12.1	22.7	mA	+85°C		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

28.5 AC (Timing) Characteristics

28.5.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		