Welcome to **E-XFL.COM** #### What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | F ² MC-8FX | | Core Size | 8-Bit | | Speed | 16MHz | | Connectivity | - | | Peripherals | LVD, POR, PWM, WDT | | Number of I/O | 5 | | Program Memory Size | 20KB (20K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 496 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.4V ~ 5.5V | | Data Converters | A/D 2x8/10b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 8-SOIC (0.209", 5.30mm Width) | | Supplier Device Package | 8-SOP | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb95f274kpf-g-sne2 | | | | ### Clock supervisor counter ■ Built-in clock supervisor counter function #### Programmable port input voltage level ■ CMOS input level / hysteresis input level ### **Dual operation Flash memory** ■ The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously. ### Flash memory security function ■ Protects the content of the Flash memory Document Number: 002-07516 Rev. *A Page 2 of 92 | (Continued) | | | | | | | | |-----------------------|--|--|----------------------|-------------------|--------------------|------------------|--| | Part number Parameter | MB95F262H | MB95F263H | MB95F264H | MB95F262K | MB95F263K | MB95F264K | | | Watch prescaler | Eight different time | e intervals can be s | selected. | | | | | | IFIGER MAMORY | mands. It has a flag indi Number of prog Data retention ti | cating the completi
ram/erase cycles: '
me: 20 years | ion of the operatior | n of Embedded Alg | se/erase-suspend/e | rase-resume com- | | | Standby mode | Sleep mode, stop | mode, watch mode | e, time-base timer i | mode | | | | | Package | DIP-24P-M07
LCC-32P-M19
FPT-20P-M09
FPT-20P-M10 | | | | | | | # 7. Pin Description (MB95260H Series, 20 pins) | Pin no. | Pin name | I/O circuit type* | Function | | | | | |---------|-----------------|-------------------|---|--|--|--|--| | 1 | PF0 | В | General-purpose I/O port | | | | | | | X0 | Б | Main clock input oscillation pin | | | | | | 2 - | PF1 | В | General-purpose I/O port | | | | | | 2 | X1 | Б | Main clock I/O oscillation pin | | | | | | 3 | V _{SS} | _ | Power supply pin (GND) | | | | | | 4 | PG2 | С | General-purpose I/O port | | | | | | 4 | X1A | | Subclock I/O oscillation pin | | | | | | 5 - | PG1 | С | General-purpose I/O port | | | | | | 5 | X0A | | Subclock input oscillation pin | | | | | | 6 | V _{CC} | _ | Power supply pin | | | | | | 7 | С | _ | Capacitor connection pin | | | | | | | PF2 | | General-purpose I/O port | | | | | | 8 | RST | A | Reset pin This is a dedicated reset pin in MB95F262H/F263H/F264H. | | | | | | 9 | P62 | D | General-purpose I/O port
High-current pin | | | | | | | TO10 | | 8/16-bit composite timer ch. 1 output pin | | | | | | 10 | P63 | D | General-purpose I/O port
High-current pin | | | | | | | TO11 | | 8/16-bit composite timer ch. 1 output pin | | | | | | 44 | P64 | 5 | General-purpose I/O port | | | | | | 11 - | EC1 | D | 8/16-bit composite timer ch. 1 clock input pin | | | | | | 10 | P00 | E | General-purpose I/O port | | | | | | 12 | AN00 | | A/D converter analog input pin | | | | | | 13 | P01 | E | General-purpose I/O port | | | | | | 13 | AN01 | | A/D converter analog input pin | | | | | | | P02 | | General-purpose I/O port | | | | | | 14 | INT02 | | External interrupt input pin | | | | | | 14 | 14 AN02 | | A/D converter analog input pin | | | | | | | SCK | | LIN-UART clock I/O pin | | | | | | | P03 | | General-purpose I/O port | | | | | | 15 | INT03 | E E | External interrupt input pin | | | | | | | AN03 | | A/D converter analog input pin | | | | | | | SOT | | LIN-UART data output pin | | | | | (Continued) Document Number: 002-07516 Rev. *A Page 17 of 92 # 9. Pin Description (MB95280H Series, 32 pins) | Pin no. | Pin name | I/O circuit type* | Function | | | | | | |---------|----------|-------------------|---|--|--|--|--|--| | 1 | PF1 | В | General-purpose I/O port | | | | | | | ' | X1 | | Main clock I/O oscillation pin | | | | | | | 2 | PF0 | В | General-purpose I/O port | | | | | | | | X0 | | Main clock input oscillation pin | | | | | | | 3 | Vss | _ | Power supply pin (GND) | | | | | | | 4 | PG2 | С | General-purpose I/O port | | | | | | | 4 | X1A | | Subclock I/O oscillation pin | | | | | | | 5 | PG1 | С | General-purpose I/O port | | | | | | | 3 | X0A | | Subclock input oscillation pin | | | | | | | 6 | Vcc | _ | Power supply pin | | | | | | | 7 | С | _ | Capacitor connection pin | | | | | | | | PF2 | | General-purpose I/O port | | | | | | | 8 | RST | A | Reset pin This is a dedicated reset pin in MB95F282H/F283H/F284H. | | | | | | | 9 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 10 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 11 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 12 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 13 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 14 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 15 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 16 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | | | | | 17 | P01 | E | General-purpose I/O port | | | | | | | ., | AN01 | _ | A/D converter analog input pin | | | | | | | | P02 | | General-purpose I/O port | | | | | | | 18 | INT02 | E | External interrupt input pin | | | | | | | | AN02 | _ | A/D converter analog input pin | | | | | | | | SCK | | LIN-UART clock I/O pin | | | | | | | | P03 | | General-purpose I/O port | | | | | | | 19 | INT03 | E E | External interrupt input pin | | | | | | | | AN03 | | A/D converter analog input pin | | | | | | | | SOT | | LIN-UART data output pin | | | | | | | | P04 | | General-purpose I/O port | | | | | | | | INT04 | | External interrupt input pin | | | | | | | 20 | AN04 | F | A/D converter analog input pin | | | | | | | | SIN | | LIN-UART data input pin | | | | | | | | EC0 | | 8/16-bit composite timer ch. 0 clock input pin | | | | | | (Continued) Document Number: 002-07516 Rev. *A Page 20 of 92 | Address | Register abbreviation | Register name | R/W | Initial value | |---|-----------------------|--|-----|-----------------------| | 0F81 _H | WRARL0 | Wild register address setting register (Lower) ch. 0 | R/W | 00000000 _B | | 0F82 _H | WRDR0 | Wild register data setting register ch. 0 | R/W | 00000000 _B | | 0F83 _H | WRARH1 | Wild register address setting register (Upper) ch. 1 | R/W | 00000000 _B | | 0F84 _H | WRARL1 | Wild register address setting register (Lower) ch. 1 | R/W | 00000000 _B | | 0F85 _H | WRDR1 | Wild register data setting register ch. 1 | R/W | 00000000 _B | | 0F86 _H | WRARH2 | Wild register address setting register (Upper) ch. 2 | R/W | 00000000 _B | | 0F87 _H | WRARL2 | Wild register address setting register (Lower) ch. 2 | R/W | 00000000 _B | | 0F88 _H | WRDR2 | Wild register data setting register ch. 2 | R/W | 00000000 _B | | 0F89 _H to
0F91 _H | _ | (Disabled) | _ | _ | | 0F92 _H | T01CR0 | 8/16-bit composite timer 01 status control register 0 ch. 0 | R/W | 00000000 _B | | 0F93 _H | T00CR0 | 8/16-bit composite timer 00 status control register 0 ch. 0 | R/W | 00000000 _B | | 0F94 _H | T01DR | 8/16-bit composite timer 01 data register ch. 0 | R/W | 00000000 _B | | 0F95 _H | T00DR | 8/16-bit composite timer 00 data register ch. 0 | R/W | 00000000 _B | | 0F96 _H | TMCR0 | 8/16-bit composite timer 00/01 timer mode control register ch. 0 | R/W | 00000000 _B | | 0F97 _H | T11CR0 | 8/16-bit composite timer 11 status control register 0 ch. 1 | R/W | 00000000 _B | | 0F98 _H | T10CR0 | 8/16-bit composite timer 10 status control register 0 ch. 1 | R/W | 00000000 _B | | 0F99 _H | T11DR | 8/16-bit composite timer 11 data register ch. 1 | R/W | 00000000 _B | | 0F9A _H | T10DR | 8/16-bit composite timer 10 data register ch. 1 | R/W | 00000000 _B | | 0F9B _H | TMCR1 | 8/16-bit composite timer 10/11 timer mode control register ch. 1 | R/W | 00000000 _B | | 0F9C _H to
0FBB _H | _ | (Disabled) | _ | _ | | 0FBC _H | BGR1 | LIN-UART baud rate generator register 1 | R/W | 00000000 _B | | 0FBD _H | BGR0 | LIN-UART baud rate generator register 0 | R/W | 00000000 _B | | 0FBE _H to
0FC2 _H | _ | (Disabled) | _ | _ | | 0FC3 _H | AIDRL | A/D input disable register (Lower) | R/W | 00000000 _B | | 0FC4 _H to
0FE3 _H | _ | (Disabled) | | _ | | 0FE4 _H | CRTH | Main CR clock trimming register (Upper) | R/W | 1XXXXXXX _B | | 0FE5 _H | CRTL | Main CR clock trimming register (Lower) | R/W | 000XXXXX _B | | Address | Register abbreviation | Register name | R/W | Initial value | |---|-----------------------|---|-----|-----------------------| | 004A _H | EIC20 | External interrupt circuit control register ch. 4/ch. 5 | R/W | 00000000 _B | | 004B _H | EIC30 | External interrupt circuit control register ch. 6/ch. 7 | R/W | 00000000 _B | | 004C _H to
004F _H | _ | (Disabled) | _ | _ | | 0050 _H | SCR | LIN-UART serial control register | R/W | 00000000 _B | | 0051 _H | SMR | LIN-UART serial mode register | R/W | 00000000 _B | | 0052 _H | SSR | LIN-UART serial status register | R/W | 00001000 _B | | 0053 _H | RDR/TDR | LIN-UART receive/transmit data register | R/W | 00000000 _B | | 0054 _H | ESCR | LIN-UART extended status control register | R/W | 00000100 _B | | 0055 _H | ECCR | LIN-UART extended communication control register | R/W | 000000XX _B | | 0056 _H to
006B _H | _ | (Disabled) | _ | _ | | 006C _H | ADC1 | 8/10-bit A/D converter control register 1 | R/W | 00000000 _B | | 006D _H | ADC2 | 8/10-bit A/D converter control register 2 | R/W | 00000000 _B | | 006E _H | ADDH | 8/10-bit A/D converter data register upper | R/W | 00000000 _B | | 006F _H | ADDL | 8/10-bit A/D converter data register lower | R/W | 00000000 _B | | 0070 _H | _ | (Disabled) | | _ | | 0071 _H | FSR2 | Flash memory status register 2 | R/W | 00000000 _B | | 0072 _H | FSR | Flash memory status register | R/W | 000X0000 _B | | 0073 _H | SWRE0 | Flash memory sector write control register 0 | R/W | 00000000 _B | | 0074 _H | FSR3 | Flash memory status register 3 | R | 0000XXXX _B | | 0075 _H | _ | (Disabled) | _ | _ | | 0076 _H | WREN | Wild register address compare enable register | R/W | 00000000 _B | | 0077 _H | WROR | Wild register data test setting register | R/W | 00000000 _B | | 0078 _H | _ | Mirror of register bank pointer (RP) and direct bank pointer (DP) | _ | _ | | 0079 _H | ILR0 | Interrupt level setting register 0 | | 11111111 _B | | 007A _H | ILR1 | Interrupt level setting register 1 | | 11111111 _B | | 007B _H | ILR2 | Interrupt level setting register 2 | | 11111111 _B | | 007C _H | ILR3 | Interrupt level setting register 3 | R/W | 11111111 _B | | 007D _H | ILR4 | Interrupt level setting register 4 | R/W | 11111111 _B | | 007E _H | ILR5 | Interrupt level setting register 5 | R/W | 11111111 _B | | 007F _H | _ | (Disabled) | | _ | # 22. Interrupt Source Table (MB95270H Series) | | | Vector tak | ole address | D '' | Priority order of | |--|--------------------------------|-------------------|-------------------|--|---| | Interrupt source | Interrupt
request
number | Upper | Lower | Bit name of
interrupt level
setting register | interrupt sources of
the same level
(occurring
simultaneously) | | External interrupt ch. 4 | IRQ00 | FFFA _H | FFFB _H | L00 [1:0] | High | | _ | IRQ01 | FFF8 _H | FFF9 _H | L01 [1:0] |]g | | _ | IRQ02 | FFF6 _H | FFF7 _H | L02 [1:0] | ↑ | | External interrupt ch. 6 | 111002 | TTTOH | '''''H | L02 [1.0] | | | _ | IRQ03 | FFF4 _H | FFF5 _H | L03 [1:0] | | | - | | | оп | 200 [0] | <u> </u> | | _ | IRQ04 | FFF2 _H | FFF3 _H | L04 [1:0] | | | 8/16-bit composite timer ch. 0 (Lower) | IRQ05 | FFF0 _H | FFF1 _H | L05 [1:0] | | | 8/16-bit composite timer ch. 0 (Upper) | IRQ06 | FFEE _H | FFEF _H | L06 [1:0] | | | _ | IRQ07 | FFEC _H | FFED _H | L07 [1:0] | | | _ | IRQ08 | FFEA _H | FFEB _H | L08 [1:0] | | | _ | IRQ09 | FFE8 _H | FFE9 _H | L09 [1:0] | | | _ | IRQ10 | FFE6 _H | FFE7 _H | L10 [1:0] | | | _ | IRQ11 | FFE4 _H | FFE5 _H | L11 [1:0] | | | _ | IRQ12 | FFE2 _H | FFE3 _H | L12 [1:0] | _ | | _ | IRQ13 | FFE0 _H | FFE1 _H | L13 [1:0] | | | _ | IRQ14 | FFDE _H | FFDF _H | L14 [1:0] | | | _ | IRQ15 | FFDC _H | FFDD _H | L15 [1:0] | | | _ | IRQ16 | FFDA _H | FFDB _H | L16 [1:0] | | | _ | IRQ17 | FFD8 _H | FFD9 _H | L17 [1:0] | | | 8/10-bit A/D converter | IRQ18 | FFD6 _H | FFD7 _H | L18 [1:0] | | | Time-base timer | IRQ19 | FFD4 _H | FFD5 _H | L19 [1:0] | | | Watch prescaler | IRQ20 | FFD2 _H | FFD3 _H | L20 [1:0] | | | _ | IRQ21 | FFD0 _H | FFD1 _H | L21 [1:0] | 1 ↓ | | _ | IRQ22 | FFCE _H | FFCF _H | L22 [1:0] | ▼ | | Flash memory | IRQ23 | FFCC _H | FFCD _H | L23 [1:0] | Low | Document Number: 002-07516 Rev. *A Page 45 of 92 ## 24. Electrical Characteristics ## 24.1 Absolute Maximum Ratings | Davamatar | Cumbal | Rating | | 11 | Domosko | | |--|------------------------|-----------------------|---------------------|------|---|--| | Parameter | Symbol | Min | Max | Unit | Remarks | | | Power supply voltage*1 | V _{CC} | V _{SS} - 0.3 | V _{SS} + 6 | V | | | | Input voltage*1 | VI | V _{SS} - 0.3 | V _{SS} + 6 | V | *2 | | | Output voltage*1 | Vo | V _{SS} - 0.3 | V _{SS} + 6 | V | *2 | | | Maximum clamp current | I _{CLAMP} | - 2 | + 2 | mA | Applicable to specific pins*3 | | | Total maximum clamp
current | ΣΙΙ _{CLAMP} Ι | _ | 20 | mA | Applicable to specific pins*3 | | | "L" level maximum output | I _{OL1} | | 15 | mA | Other than P05, P06, P62 and P63*4 | | | current | I _{OL2} | _ | 15 | IIIA | P05, P06, P62 and P63 ^{*4} | | | "L" level average current | I _{OLAV1} | | 4 | - mA | Other than P05, P06, P62 and P63*4 Average output current= operating current × operating ratio (1 pin) | | | L level average current | I _{OLAV2} | _ | 12 | IIIA | P05, P06, P62 and P63 ^{*4} Average output current= operating current × operating ratio (1 pin) | | | "L" level total maximum output current | Σl _{OL} | _ | 100 | mA | | | | "L" level total average output current | ΣI _{OLAV} | _ | 50 | mA | Total average output current= operating current × operating ratio (Total number of pins) | | | "H" level maximum output | I _{OH1} | | - 15 | | Other than P05, P06, P62 and P63*4 | | | current | I _{OH2} | - | - 15 | mA | P05, P06, P62 and P63*4 | | | "Ll" lovel everage current | I _{OHAV1} | | - 4 | | Other than P05, P06, P62 and P63*4 Average output current= operating current × operating ratio (1 pin) | | | "H" level average current | I _{OHAV2} | _ | - 8 | - mA | P05, P06, P62 and P63 ^{*4} Average output current= operating current × operating ratio (1 pin) | | | "H" level total maximum output current | Σl _{OH} | _ | - 100 | mA | | | | "H" level total average output current | ΣΙ _{ΟΗΑV} | _ | - 50 | mA | Total average output current= operating current ´ operating ratio (Total number of pins) | | | Power consumption | Pd | _ | 320 | mW | | | | Operating temperature | T _A | - 40 | + 85 | °C | | | | Storage temperature | Tstg | - 55 | + 150 | °C | | | ### 24.2 Recommended Operating Conditions $(V_{SS} = 0.0 V)$ | Parameter | Symbol | Va | Value | | Remarks | | | | |---------------------|-----------------|---------|-------------------|------|-------------------------------|---------------------------------|--|--| | raiametei | Syllibol | Min | Max | Unit | One Remarks | | | | | | | 2.4*1*2 | 5.5* ¹ | | In normal operation | Other than on-chip debug mode | | | | Power supply | \ \/ | 2.3 | 5.5 | V | Hold condition in stop mode | - Other than on-chip debug mode | | | | voltage | V _{CC} | 2.9 | 5.5 | ľ | In normal operation | On ohin dahug mada | | | | | | 2.3 | 5.5 | | Hold condition in stop mode | On-chip debug mode | | | | Smoothing capacitor | C _S | 0.022 | 1 | μF | *3 | | | | | Operating | т | -40 | + 85 | °C | Other than on-chip debug mode | | | | | temperature | T _A | + 5 | + 35 | | On-chip debug mode | | | | - *1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range. - *2: The value is 2.88 V when the low-voltage detection reset is used. - st3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V $_{ m CC}$ pin must have a capacitance larger than C_S. For the connection to a smoothing capacitor C_S, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board. WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Donomotor | Cumbal | Pin name | Condition | | Value | | Unit | Damarka | |------------------------|--------------------|--|---|-----|-------|------|------|---| | Parameter | Symbol | riii iiaille | Condition | Min | Тур | Max | Unit | Remarks | | | | | V _{CC} = 5.5 V
F _{CH} = 32 MHz | _ | 13 | 17 | mA | Except during Flash
memory
programming and
erasing | | | I _{CC} | | F _{MP} = 16 MHz
Main clock mode
(divided by 2) | _ | 33.5 | 39.5 | mA | During Flash memory programming and erasing | | | | | | _ | 15 | 21 | mA | At A/D conversion | | | Iccs | | V_{CC} = 5.5 V
F_{CH} = 32 MHz
F_{MP} = 16 MHz
Main sleep mode
(divided by 2) | _ | 5.5 | 9 | mA | | | Power supply current*4 | I _{CCL} | V _{CC}
(External clock
operation) | V_{CC} = 5.5 V
F_{CL} = 32 kHz
F_{MPL} = 16 kHz
Subclock mode
(divided by 2)
T_A = +25°C | _ | 65 | 153 | μА | | | | Iccls | | V_{CC} = 5.5 V
F_{CL} = 32 kHz
F_{MPL} = 16 kHz
Subsleep mode
(divided by 2)
T_A = +25°C | _ | 10 | 84 | μА | | | | Ісст | | V_{CC} = 5.5 V
F_{CL} = 32 kHz
Watch mode
Main stop mode
T_A = +25°C | _ | 5 | 30 | μΑ | | | | I _{CCMCR} | V | V_{CC} = 5.5 V F_{CRH} = 10 MHz F_{MP} = 10 MHz Main CR clock mode | | 8.6 | _ | mA | | | | Iccscr | V _{CC} | V _{CC} = 5.5 V
Sub-CR clock mode
(divided by 2)
T _A = +25°C | _ | 110 | 410 | μА | | #### 24.4.2 Source Clock / Machine Clock $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Danamatan. | 0 | Pin | Value | | | Unit | Ddes | |-------------------------------------|-------------------|------|--------|--------|------------|------|--| | Parameter | Symbol | name | Min | Тур | Max Office | | Remarks | | | | | 61.5 | _ | 2000 | ns | When the main external clock is used Min: F _{CH} = 32.5 MHz, divided by 2 Max: F _{CH} = 1 MHz, divided by 2 | | Source clock cycle time*1 | t _{SCLK} | _ | 100 | _ | 1000 | ns | When the main CR clock is used Min: F _{CRH} = 10 MHz Max: F _{CRH} = 1 MHz | | | | | _ | 61 | | μs | When the sub-oscillation clock is used F_{CL} = 32.768 kHz, divided by 2 | | | | | _ | 20 | | μs | When the sub CR clock is used F _{CRL} = 100 kHz, divided by 2 | | | F _{SP} | | 0.5 | _ | 16.25 | MHz | When the main oscillation clock is used | | Source clock | SP | | 1 | _ | 10 | MHz | When the main CR clock is used | | frequency | | _ | _ | 16.384 | _ | kHz | When the sub-oscillation clock is used | | | F _{SPL} | | _ | 50 | _ | kHz | When the sub-CR clock is used F _{CRL} = 100 kHz, divided by 2 | | | | | 61.5 | _ | 32000 | ns | When the main oscillation clock is used Min: F_{SP} = 16.25 MHz, no division Max: F_{SP} = 0.5 MHz, divided by 16 | | Machine clock cycle time*2 (minimum | | | 100 | _ | 16000 | ns | When the main CR clock is used Min: F _{SP} = 10 MHz Max: F _{SP} = 1 MHz, divided by 16 | | instruction
execution time) | t _{MCLK} | | 61 | _ | 976.5 | μs | When the sub-oscillation clock is used Min: F _{SPL} = 16.384 kHz, no division Max: F _{SPL} = 16.384 kHz, divided by 16 | | | | | 20 | _ | 320 | μs | When the sub-CR clock is used Min: F _{SPL} = 50 kHz, no division Max: F _{SPL} = 50 kHz, divided by 16 | | | Е | | 0.031 | _ | 16.25 | MHz | When the main oscillation clock is used | | Machine clock | F _{MP} | | 0.0625 | _ | 10 | MHz | When the main CR clock is used | | frequency | |] — | 1.024 | _ | 16.384 | kHz | When the sub-oscillation clock is used | | почистоу | F _{MPL} | | 3.125 | _ | 50 | kHz | When the sub-CR clock is used F _{CRL} = 100 kHz | ^{*1:} This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits (SYCC: DIV1 and DIV0). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio select bits (SYCC: DIV1 and DIV0). In addition, a source clock can be selected from the following. - Main clock divided by 2 - Main CR clock - Subclock divided by 2 - Sub-CR clock divided by 2 - Source clock (no division) - · Source clock divided by 4 - Source clock divided by 8 - Source clock divided by 16 ^{*2:} This is the operating clock of the microcontroller. A machine clock can be selected from the following. #### 24.4.3 External Reset | Parameter | Symbol | Value | | | Remarks | | |---------------------------|-------------------|--|-----|------|---|--| | | Syllibol | Min | Max | Unit | ivemark2 | | | RST "L" level pulse width | | 2 t _{MCLK} *1 | _ | ns | In normal operation | | | | t _{RSTL} | Oscillation time of the oscillator* ² + 100 | _ | | In stop mode, subclock mode, sub-sleep mode, watch mode, and power-on | | | | | 100 | _ | μs | In time-base timer mode | | - *1: See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}. - *2 : The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of μs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several μs and several ms. Page 65 of 92 Sampling is executed at the rising edge of the sampling clock*1, and $serial\ clock\ delay\ is\ enabled*2$. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 1) | $(V_{CC} = 5.0 V \pm 10\%,$ | $V_{CC} = 0.0 \text{ V. } T_A$ | $= -40^{\circ}$ C to | + 85°C) | |-----------------------------|--------------------------------|-----------------------|---------| | (V()() = 0.0 V ± 10 /0, | VSS - 0.0 V, 1A | - - 0 0 10 | . 00 0, | | Parameter | Symbol | Pin name | Condition | Val | Unit | | | |---|--------------------|----------|--------------------------------|----------------------------|------------------------|-------|--| | Parameter | Symbol | rin name | Condition | Min | Max | Oiiit | | | Serial clock cycle time | t _{SCYC} | SCK | | 5 t _{MCLK} *3 | _ | ns | | | SCK ↑→ SOT delay time | t _{SHOVI} | SCK, SOT | Internal clock | - 95 | + 95 | ns | | | $Valid\;SIN\toSCK\;\!\downarrow$ | t _{IVSLI} | SCK, SIN | operation output pin: | t _{MCLK} *3 + 190 | _ | ns | | | $SCK \downarrow \to valid \; SIN \; hold \; time$ | t _{SLIXI} | SCK, SIN | C _L = 80 pF + 1 TTL | 0 | _ | ns | | | $SOT \to SCK \downarrow delay\ time$ | t _{SOVLI} | SCK, SOT | | _ | 4 t _{MCLK} *3 | ns | | ^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. ^{*3:} See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}. Document Number: 002-07516 Rev. *A ^{*2:} The serial clock delay function is a function that delays the output signal of the serial clock for half clock. ### 24.4.7 Low-voltage Detection $(V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Parameter | Symbol | Value | | Unit | Remarks | | | |---|-------------------|-------|-----|------|---------|---|--| | Parameter | Syllibol | Min | Тур | Max | Offic | Kellidiks | | | Release voltage | V _{DL+} | 2.52 | 2.7 | 2.88 | V | At power supply rise | | | Detection voltage | V _{DL} - | 2.42 | 2.6 | 2.78 | V | At power supply fall | | | Hysteresis width | V _{HYS} | 70 | 100 | _ | mV | | | | Power supply start voltage | V _{off} | _ | _ | 2.3 | V | | | | Power supply end voltage | V _{on} | 4.9 | _ | _ | V | | | | Power supply voltage change time (at power supply rise) | t _r | 3000 | _ | _ | μs | Slope of power supply that the reset release signal generates within the rating (V _{DL+}) | | | Power supply voltage change time (at power supply fall) | t _f | 300 | _ | _ | μs | Slope of power supply that the reset detection signal generates within the rating (V _{DL} -) | | | Reset release delay time | t _{d1} | _ | _ | 300 | μs | | | | Reset detection delay time | t _{d2} | _ | _ | 20 | μs | | | ### 24.5 A/D Converter ### 24.5.1 A/D Converter Electrical Characteristics $(V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Parameter | Symbol | Value | | | | Remarks | |-------------------------------|------------------|---------------------------|---------------------------|---------------------------|------|--| | Parameter | Symbol | Min Typ | | Max | Unit | Remarks | | Resolution | | _ | _ | 10 | bit | | | Total error | | - 3 | _ | + 3 | LSB | | | Linearity error | | - 2.5 | _ | + 2.5 | LSB | | | Differential linear error | | - 1.9 | _ | + 1.9 | LSB | | | Zero transition voltage | V _{OT} | V _{SS} - 1.5 LSB | V _{SS} + 0.5 LSB | V _{SS} + 2.5 LSB | V | | | Full-scale transition voltage | V _{FST} | V _{CC} - 4.5 LSB | V _{CC} - 2 LSB | V _{CC} + 0.5 LSB | ٧ | | | Compare time | | 0.9 | _ | 16500 | μs | $4.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}$ | | Compare time | _ | 1.8 | _ | 16500 | μs | 4.0 V ≤ V _{CC} < 4.5 V | | Sampling time | | 0.6 | _ | ∞ | μs | $4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{ V}$, with external impedance $< 5.4 \text{ k}\Omega$ | | Sampling time | _ | 1.2 | _ | ∞ | μs | $4.0 \text{ V} \le \text{V}_{CC} < 4.5 \text{ V}$, with external impedance < $2.4 \text{ k}\Omega$ | | Analog input current | I _{AIN} | - 0.3 | _ | + 0.3 | μΑ | | | Analog input voltage | V _{AIN} | V _{SS} | _ | V _{CC} | V | | Document Number: 002-07516 Rev. *A Page 68 of 92 # 27. Ordering Information | Part Number | Package | |-----------------------|----------------------| | MB95F262HWQN-G-SNE1 | | | MB95F262HWQN-G-SNERE1 | | | MB95F262KWQN-G-SNE1 | | | MB95F262KWQN-G-SNERE1 | | | MB95F263HWQN-G-SNE1 | | | MB95F263HWQN-G-SNERE1 | 32-pin plastic QFN | | MB95F263KWQN-G-SNE1 | (LCC-32P-M19) | | MB95F263KWQN-G-SNERE1 | | | MB95F264HWQN-G-SNE1 | | | MB95F264HWQN-G-SNERE1 | | | MB95F264KWQN-G-SNE1 | | | MB95F264KWQN-G-SNERE1 | | | MB95F262HP-G-SH-SNE2 | | | MB95F262KP-G-SH-SNE2 | | | MB95F263HP-G-SH-SNE2 | 24-pin plastic SDIP | | MB95F263KP-G-SH-SNE2 | (DIP-24P-M07) | | MB95F264HP-G-SH-SNE2 | | | MB95F264KP-G-SH-SNE2 | | | MB95F262HPF-G-SNE2 | | | MB95F262KPF-G-SNE2 | | | MB95F263HPF-G-SNE2 | 20-pin plastic SOP | | MB95F263KPF-G-SNE2 | (FPT-20P-M09) | | MB95F264HPF-G-SNE2 | , , | | MB95F264KPF-G-SNE2 | | | MB95F262HPFT-G-SNE2 | | | MB95F262KPFT-G-SNE2 | | | MB95F263HPFT-G-SNE2 | 20-pin plastic TSSOP | | MB95F263KPFT-G-SNE2 | (FPT-20P-M10) | | MB95F264HPFT-G-SNE2 | , | | MB95F264KPFT-G-SNE2 | | | MB95F282HWQN-G-SNE1 | | | MB95F282HWQN-G-SNERE1 | | | MB95F282KWQN-G-SNE1 | | | MB95F282KWQN-G-SNERE1 | | | MB95F283HWQN-G-SNE1 | | | MB95F283HWQN-G-SNERE1 | 32-pin plastic QFN | | MB95F283KWQN-G-SNE1 | (LCC-32P-M19) | | MB95F283KWQN-G-SNERE1 | , | | MB95F284HWQN-G-SNE1 | | | MB95F284HWQN-G-SNERE1 | | | MB95F284KWQN-G-SNE1 | | | MB95F284KWQN-G-SNERE1 | | | MB95F282HPH-G-SNE2 | | | MB95F282KPH-G-SNE2 | | | MB95F283HPH-G-SNE2 | 16-pin plastic DIP | | MB95F283KPH-G-SNE2 | (DIP-16P-M06) | | MB95F284HPH-G-SNE2 | | | MB95F284KPH-G-SNE2 | | | 16-pin plastic DIP | Lead pitch | 2.54 mm | |--------------------|----------------|--------------| | | Sealing method | Plastic mold | | | | | | | | | | | | | | | | | | (DIP-16P-M06) | | | ## Sales, Solutions, and Legal Information #### Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. cypress.com/usb cypress.com/wireless #### **Products** **USB Controllers** Wireless/RF ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch ### PSoC® Solutions cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP #### **Cypress Developer Community** Community | Forums | Blogs | Video | Training # Technical Support cypress.com/support © Cypress Semiconductor Corporation 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-07516 Rev. *A Revised April 4, 2016 Page 92 of 92