Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | F ² MC-8FX | | Core Size | 8-Bit | | Speed | 16MHz | | Connectivity | LINbus, SIO, UART/USART | | Peripherals | LVD, POR, PWM, WDT | | Number of I/O | 13 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 240 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.4V ~ 5.5V | | Data Converters | A/D 5x8/10b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 16-SOIC (0.209", 5.30mm Width) | | Supplier Device Package | 16-SOP | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb95f282kpf-g-sne1 | ## 4. Pin Assignment | Pin no. | Pin name | I/O circuit type* | Function | |---------|----------|-------------------|---| | | P03 | | General-purpose I/O port | | 18 | INT03 | E | External interrupt input pin | | 10 | AN03 | | A/D converter analog input pin | | | SOT | | LIN-UART data output pin | | | P04 | | General-purpose I/O port | | | INT04 | | External interrupt input pin | | 19 | AN04 | F | A/D converter analog input pin | | | SIN | | LIN-UART data input pin | | | EC0 | | 8/16-bit composite timer ch. 0 clock input pin | | | P05 | | General-purpose I/O port
High-current pin | | 20 | INT05 | E | External interrupt input pin | | | AN05 | | A/D converter analog input pin | | | TO00 | | 8/16-bit composite timer ch. 0 output pin | | | P06 | | General-purpose I/O port
High-current pin | | 21 | INT06 | G | External interrupt input pin | | | TO01 | | 8/16-bit composite timer ch. 0 output pin | | 22 | P07 | G | General-purpose I/O port | | 22 | INT07 | | External interrupt input pin | | 23 | NC | _ | It is an internally connected pin. Always leave it unconnected. | | | P12 | | General-purpose I/O port | | 24 | EC0 | Н | 8/16-bit composite timer ch. 0 clock input pin | | | DBG | | DBG input pin | ^{*:} For the I/O circuit types, see "11. I/O Circuit Type". # 7. Pin Description (MB95260H Series, 20 pins) | Pin no. | Pin name | I/O circuit type* | Function | |---------|-----------------|-------------------|---| | 1 | PF0 | В | General-purpose I/O port | | | X0 | Б | Main clock input oscillation pin | | 2 - | PF1 | В | General-purpose I/O port | | 2 | X1 | Б | Main clock I/O oscillation pin | | 3 | V _{SS} | _ | Power supply pin (GND) | | 4 | PG2 | С | General-purpose I/O port | | 4 | X1A | | Subclock I/O oscillation pin | | 5 - | PG1 | С | General-purpose I/O port | | 5 | X0A | | Subclock input oscillation pin | | 6 | V _{CC} | _ | Power supply pin | | 7 | С | _ | Capacitor connection pin | | | PF2 | | General-purpose I/O port | | 8 | RST | A | Reset pin This is a dedicated reset pin in MB95F262H/F263H/F264H. | | 9 | P62 | D | General-purpose I/O port
High-current pin | | | TO10 | | 8/16-bit composite timer ch. 1 output pin | | 10 | P63 | D | General-purpose I/O port
High-current pin | | | TO11 | | 8/16-bit composite timer ch. 1 output pin | | 44 | P64 | 5 | General-purpose I/O port | | 11 - | EC1 | D D | 8/16-bit composite timer ch. 1 clock input pin | | 10 | P00 | E | General-purpose I/O port | | 12 | AN00 | | A/D converter analog input pin | | 13 | P01 | E | General-purpose I/O port | | 13 | AN01 | | A/D converter analog input pin | | | P02 | | General-purpose I/O port | | 14 | INT02 | | External interrupt input pin | | 14 | AN02 | | A/D converter analog input pin | | | SCK | | LIN-UART clock I/O pin | | | P03 | | General-purpose I/O port | | 15 | INT03 | E E | External interrupt input pin | | | AN03 | | A/D converter analog input pin | | | SOT | | LIN-UART data output pin | (Continued) Document Number: 002-07516 Rev. *A Page 17 of 92 ## 11. I/O Circuit Type ### 12. Notes on Device Handling #### Preventing latch-ups When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "24.1 Absolute Maximum Ratings" of "24. Electrical Characteristics" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur. When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed. ### Stabilizing supply voltage Supply voltage must be stabilized. A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the V_{CC} power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{CC} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{CC} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply. #### Notes on using the external clock When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode. #### 13. Pin Connection #### Treatment of unused pins If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected. #### Power supply pins To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{CC} pin and the V_{SS} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{CC} pin and the V_{SS} pin with low impedance. It is also advisable to connect a ceramic capacitor of approximately 0.1 μF as a bypass capacitor between the V_{CC} pin and the V_{SS} pin at a location close to this device. #### DBG pin Connect the DBG pin directly to an external pull-up resistor. To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board. The DBG pin should not stay at "L" level after power-on until the reset output is released. #### RST pin Connect the RST pin directly to an external pull-up resistor. To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the \overline{RST} pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board. The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit of the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit of the SYSC register. ### C pin Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S . For the connection to a smoothing capacitor C_S , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board. ## 14. Block Diagram (MB95260H Series) ## 15. Block Diagram (MB95270H Series) # 22. Interrupt Source Table (MB95270H Series) | | | Vector tak | ole address | D '' | Priority order of | | |--|--------------------------------|-------------------|-------------------|--|---|--| | Interrupt source | Interrupt
request
number | Upper | Lower | Bit name of
interrupt level
setting register | interrupt sources of
the same level
(occurring
simultaneously) | | | External interrupt ch. 4 | IRQ00 | FFFA _H | FFFB _H | L00 [1:0] | High | | | _ | IRQ01 | FFF8 _H | FFF9 _H | L01 [1:0] |]g | | | _ | IRQ02 | FFF6 _H | FFF7 _H | L02 [1:0] | ↑ | | | External interrupt ch. 6 | 111002 | TTTOH | '''''H | L02 [1.0] | | | | _ | IRQ03 | FFF4 _H | FFF5 _H | L03 [1:0] | | | | - | | | оп | 200 [0] | <u> </u> | | | _ | IRQ04 | FFF2 _H | FFF3 _H | L04 [1:0] | | | | 8/16-bit composite timer ch. 0 (Lower) | IRQ05 | FFF0 _H | FFF1 _H | L05 [1:0] | | | | 8/16-bit composite timer ch. 0 (Upper) | IRQ06 | FFEE _H | FFEF _H | L06 [1:0] | | | | _ | IRQ07 | FFEC _H | FFED _H | L07 [1:0] | | | | _ | IRQ08 | FFEA _H | FFEB _H | L08 [1:0] | | | | _ | IRQ09 | FFE8 _H | FFE9 _H | L09 [1:0] | | | | _ | IRQ10 | FFE6 _H | FFE7 _H | L10 [1:0] | | | | _ | IRQ11 | FFE4 _H | FFE5 _H | L11 [1:0] | | | | _ | IRQ12 | FFE2 _H | FFE3 _H | L12 [1:0] | _ | | | _ | IRQ13 | FFE0 _H | FFE1 _H | L13 [1:0] | | | | _ | IRQ14 | FFDE _H | FFDF _H | L14 [1:0] | | | | _ | IRQ15 | FFDC _H | FFDD _H | L15 [1:0] | | | | _ | IRQ16 | FFDA _H | FFDB _H | L16 [1:0] | | | | _ | IRQ17 | FFD8 _H | FFD9 _H | L17 [1:0] | | | | 8/10-bit A/D converter | IRQ18 | FFD6 _H | FFD7 _H | L18 [1:0] | | | | Time-base timer | IRQ19 | FFD4 _H | FFD5 _H | L19 [1:0] | | | | Watch prescaler | IRQ20 | FFD2 _H | FFD3 _H | L20 [1:0] | | | | _ | IRQ21 | FFD0 _H | FFD1 _H | L21 [1:0] | 1 ↓ | | | _ | IRQ22 | FFCE _H | FFCF _H | L22 [1:0] | ▼ | | | Flash memory | IRQ23 | FFCC _H | FFCD _H | L23 [1:0] | Low | | Document Number: 002-07516 Rev. *A Page 45 of 92 ### 24.3 DC Characteristics $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Barranatan | 0 | Din nome | Condition | Value | | | 11!1 | Domonko | |--|-------------------|--|--|-----------------------|-----|-----------------------|------|--| | Parameter | Symbol | Pin name | Condition | Min | Тур | Max | Unit | Remarks | | | V _{IHI} | P04 | *1 | 0.7 V _{CC} | _ | V _{CC} + 0.3 | ٧ | When CMOS input
level (hysteresis input)
is selected | | "H" level input
voltage | V _{IHS} | P00 to P07, P12,
P62 to P64,
PF0, PF1,
PG1, PG2 | *1 | 0.8 V _{CC} | | V _{CC} + 0.3 | ٧ | Hysteresis input | | | V_{IHM} | PF2 | _ | 0.7 V _{CC} | _ | V _{CC} + 0.3 | ٧ | Hysteresis input | | | V _{IL} | P04 | *1 | V _{SS} - 0.3 | _ | 0.3 V _{CC} | ٧ | When CMOS input
level (hysteresis input)
is selected | | "L" level input
voltage | V _{ILS} | P00 to P07, P12,
P62 to P64,
PF0, PF1,
PG1, PG2 | *1 | V _{SS} - 0.3 | _ | 0.2 V _{CC} | V | Hysteresis input | | | V_{ILM} | PF2 | _ | V _{SS} - 0.3 | _ | 0.3 V _{CC} | V | Hysteresis input | | Open-drain output application voltage | V_D | PF2, P12 | _ | V _{SS} - 0.3 | _ | V _{SS} + 5.5 | V | | | "H" level output voltage | V _{OH1} | Output pins other
than P05, P06,
P12, P62, P63,
PF2*2 | I _{OH} = -4 mA | V _{CC} - 0.5 | _ | _ | ٧ | | | | V _{OH2} | P05, P06, P62,
P63 ^{*2} | I _{OH} = -8 mA | V _{CC} - 0.5 | _ | _ | ٧ | | | "L" level output | V _{OL1} | Output pins other than P05, P06, P62, P63*2 | I _{OL} = 4 mA | _ | _ | 0.4 | ٧ | | | voltage | V _{OL2} | P05, P06, P62,
P63 ^{*2} | I _{OL} = 12 mA | _ | _ | 0.4 | ٧ | | | Input leak
current (Hi-Z
output leak
current) | I _{LI} | All input pins | 0.0 V < V _I < V _{CC} | - 5 | _ | + 5 | μΑ | When pull-up resistance is disabled | | Pull-up
resistance | R _{PULL} | P00 to P07, PG1,
PG2*3*4 | V _I = 0 V | 25 | 50 | 100 | kΩ | When pull-up resistance is enabled | | Input capacitance | C _{IN} | Other than V _{CC} and V _{SS} | f = 1 MHz | | 5 | 15 | pF | | $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Donomotor | Symbol | Pin name | Condition | | Value | | Unit | Damarka | |------------------------|------------------------------------|--|---|-----|-------|------|------|---| | Parameter | rarameter Symbol | | Condition | Min | Тур | Max | Unit | Remarks | | | | | V _{CC} = 5.5 V
F _{CH} = 32 MHz | _ | 13 | 17 | mA | Except during Flash
memory
programming and
erasing | | | I _{CC} | | F _{MP} = 16 MHz
Main clock mode
(divided by 2) | _ | 33.5 | 39.5 | mA | During Flash memory programming and erasing | | | | | | _ | 15 | 21 | mA | At A/D conversion | | | Iccs | | V_{CC} = 5.5 V
F_{CH} = 32 MHz
F_{MP} = 16 MHz
Main sleep mode
(divided by 2) | _ | 5.5 | 9 | mA | | | Power supply current*4 | I _{CCL} | V _{CC}
(External clock
operation) | V_{CC} = 5.5 V
F_{CL} = 32 kHz
F_{MPL} = 16 kHz
Subclock mode
(divided by 2)
T_A = +25°C | _ | 65 | 153 | μА | | | | Iccls | | V_{CC} = 5.5 V
F_{CL} = 32 kHz
F_{MPL} = 16 kHz
Subsleep mode
(divided by 2)
T_A = +25°C | _ | 10 | 84 | μА | | | | Ісст | | V_{CC} = 5.5 V
F_{CL} = 32 kHz
Watch mode
Main stop mode
T_A = +25°C | _ | 5 | 30 | μΑ | | | | I _{CCMCR} | V | V_{CC} = 5.5 V
F_{CRH} = 10 MHz
F_{MP} = 10 MHz
Main CR clock mode | _ | 8.6 | _ | mA | | | | I _{CCSCR} V _{CC} | V _{CC} = 5.5 V
Sub-CR clock mode
(divided by 2)
T _A = +25°C | _ | 110 | 410 | μА | | | ### 24.4.5 Peripheral Input Timing | $(V_{CC} = 5.0)$ | V±10%, \ | $V_{SS} = 0.0$ | $V, T_{\Delta} =$ | -40°C to | + 85°C) | |------------------|----------|----------------|-------------------|----------|---------| | | | | | | | | Parameter | Symbol | Pin name | Val | Unit | | |----------------------------------|-------------------|-----------------------------------|------------------------|------|-------| | Farameter | Symbol | riii liaille | Min | Max | Oilit | | Peripheral input "H" pulse width | t _{ILIH} | INT02 to INT07*2,*3, EC0*2, EC1*4 | 2 t _{MCLK} *1 | _ | ns | | Peripheral input "L" pulse width | t _{IHIL} | TINTOZ TO TINTOT - , EGO , EGT | 2 t _{MCLK} *1 | _ | ns | - *1: See "24.4.2. Source Clock / Machine Clock" for $t_{\mbox{\scriptsize MCLK}}$ - *2: INT04, INT06 and EC0 are available in all products. - *3: INT02, INT03, INT05 and INT07 are only available on MB95F262H/F262K/F263H/F263K/F264H/F264K/F282H/F282K/F283H /F283K/F284H/F284K. - *4: EC1 is only available on MB95F262H/F262K/F263H/F263K/F264H/F264K. 24.4.6 LIN-UART Timing (only available on MB95F262H/F262K/F263H/F263K/F264H/F264K/F282H/F282K/F283H/F283K/F284H /F284K) Sampling is executed at the rising edge of the sampling clock*1, and $serial\ clock\ delay\ is\ disabled*2$. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 0) $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Parameter | Cumbal | Pin name | Condition | Va | Unit | | | |---|--------------------|----------|---------------------------------------|---|-----------------------------|------|--| | Parameter | Symbol | Pin name | Condition | Min | Max | Unit | | | Serial clock cycle time | t _{SCYC} | SCK | | 5 t _{MCLK} *3 | _ | ns | | | $SCK \downarrow \to SOT$ delay time | t _{SLOVI} | SCK, SOT | Internal clock operation output pin: | - 95 | + 95 | ns | | | $Valid\;SIN\toSCK\;\!\!\uparrow$ | t _{IVSHI} | SCK, SIN | $C_L = 80 \text{ pF} + 1 \text{ TTL}$ | t _{MCLK} *3 + 190 | _ | ns | | | $SCK \uparrow \to valid \; SIN \; hold \; time$ | t _{SHIXI} | SCK, SIN | | 0 | _ | ns | | | Serial clock "L" pulse width | t _{SLSH} | SCK | | 3 t _{MCLK} *3 - t _R | _ | ns | | | Serial clock "H" pulse width | t _{SHSL} | SCK | | t _{MCLK} *3 + 95 | _ | ns | | | $SCK \downarrow \to SOT$ delay time | t _{SLOVE} | SCK, SOT | External clock | _ | 2 t _{MCLK} *3 + 95 | ns | | | Valid SIN → SCK ↑ | t _{IVSHE} | SCK, SIN | operation output pin: | 190 | _ | ns | | | SCK ↑→ valid SIN hold time | t _{SHIXE} | SCK, SIN | $C_L = 80 pF + 1 TTL$ | t _{MCLK} *3 + 95 | _ | ns | | | SCK fall time | t _F | SCK | | _ | 10 | ns | | | SCK rise time | t _R | SCK | | _ | 10 | ns | | ^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. Document Number: 002-07516 Rev. *A Page 61 of 92 ^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock. ^{*3:} See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}. Sampling is executed at the falling edge of the sampling clock*1, and $serial\ clock\ delay\ is\ disabled*2$. (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 0) $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ | Parameter | Symbol | Pin name | Condition | Va | Unit | | |---|--------------------|----------|---------------------------------------|---|-----------------------------|------| | Farameter | Symbol | Fin name | Condition | Min | Max | Unit | | Serial clock cycle time | t _{SCYC} | SCK | | 5 t _{MCLK} *3 | _ | ns | | SCK ↑→ SOT delay time | t _{SHOVI} | SCK, SOT | Internal clock operation output pin: | - 95 | + 95 | ns | | $Valid\;SIN\toSCK\;\!\downarrow$ | t _{IVSLI} | SCK, SIN | $C_L = 80 \text{ pF} + 1 \text{ TTL}$ | t _{MCLK} *3 + 190 | _ | ns | | $SCK \downarrow \to valid \; SIN \; hold \; time$ | t _{SLIXI} | SCK, SIN | _ | 0 | _ | ns | | Serial clock "H" pulse width | t _{SHSL} | SCK | | 3 t _{MCLK} *3 - t _R | _ | ns | | Serial clock "L" pulse width | t _{SLSH} | SCK | | t _{MCLK} *3 + 95 | _ | ns | | $SCK \uparrow \to SOT \ delay \ time$ | t _{SHOVE} | SCK, SOT | External clock | _ | 2 t _{MCLK} *3 + 95 | ns | | $Valid\;SIN\toSCK\!\!\downarrow$ | t _{IVSLE} | SCK, SIN | operation output pin: | 190 | _ | ns | | $SCK \downarrow \to valid \; SIN \; hold \; time$ | t _{SLIXE} | SCK, SIN | $C_L = 80 \text{ pF} + 1 \text{ TTL}$ | t _{MCLK} *3 + 95 | _ | ns | | SCK fall time | t _F | SCK | | _ | 10 | ns | | SCK rise time | t _R | SCK | | _ | 10 | ns | ^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. Document Number: 002-07516 Rev. *A ^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock. ^{*3:} See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}. ## Input voltage # 27. Ordering Information | Part Number | Package | |-----------------------|----------------------| | MB95F262HWQN-G-SNE1 | | | MB95F262HWQN-G-SNERE1 | | | MB95F262KWQN-G-SNE1 | | | MB95F262KWQN-G-SNERE1 | | | MB95F263HWQN-G-SNE1 | | | MB95F263HWQN-G-SNERE1 | 32-pin plastic QFN | | MB95F263KWQN-G-SNE1 | (LCC-32P-M19) | | MB95F263KWQN-G-SNERE1 | | | MB95F264HWQN-G-SNE1 | | | MB95F264HWQN-G-SNERE1 | | | MB95F264KWQN-G-SNE1 | | | MB95F264KWQN-G-SNERE1 | | | MB95F262HP-G-SH-SNE2 | | | MB95F262KP-G-SH-SNE2 | | | MB95F263HP-G-SH-SNE2 | 24-pin plastic SDIP | | MB95F263KP-G-SH-SNE2 | (DIP-24P-M07) | | MB95F264HP-G-SH-SNE2 | | | MB95F264KP-G-SH-SNE2 | | | MB95F262HPF-G-SNE2 | | | MB95F262KPF-G-SNE2 | | | MB95F263HPF-G-SNE2 | 20-pin plastic SOP | | MB95F263KPF-G-SNE2 | (FPT-20P-M09) | | MB95F264HPF-G-SNE2 | | | MB95F264KPF-G-SNE2 | | | MB95F262HPFT-G-SNE2 | | | MB95F262KPFT-G-SNE2 | | | MB95F263HPFT-G-SNE2 | 20-pin plastic TSSOP | | MB95F263KPFT-G-SNE2 | (FPT-20P-M10) | | MB95F264HPFT-G-SNE2 | , , | | MB95F264KPFT-G-SNE2 | | | MB95F282HWQN-G-SNE1 | | | MB95F282HWQN-G-SNERE1 | | | MB95F282KWQN-G-SNE1 | | | MB95F282KWQN-G-SNERE1 | | | MB95F283HWQN-G-SNE1 | | | MB95F283HWQN-G-SNERE1 | 32-pin plastic QFN | | MB95F283KWQN-G-SNE1 | (LCC-32P-M19) | | MB95F283KWQN-G-SNERE1 | , | | MB95F284HWQN-G-SNE1 | | | MB95F284HWQN-G-SNERE1 | | | MB95F284KWQN-G-SNE1 | | | MB95F284KWQN-G-SNERE1 | | | MB95F282HPH-G-SNE2 | | | MB95F282KPH-G-SNE2 | | | MB95F283HPH-G-SNE2 | 16-pin plastic DIP | | MB95F283KPH-G-SNE2 | (DIP-16P-M06) | | MB95F284HPH-G-SNE2 | <u>'</u> | | MB95F284KPH-G-SNE2 | | | 16-pin plastic SOP | Lead pitch | 1.27 mm | |--------------------|--------------------------------|------------------------| | | Package width × package length | 5.3 × 10.15 mm | | | Lead shape | Gullwing | | | Sealing method | Plastic mold | | | Mounting height | 2.25 mm MAX | | | Weight | 0.20 g | | (FPT-16P-M06) | Code
(Reference) | P-SOP16-5.3×10.15-1.27 |