

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	496 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 5x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.209", 5.30mm Width)
Supplier Device Package	16-SOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f283kpf-g-sne1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MB95280H Series

Part number											
	MB95F282H	MB95F283H	MB95F284H	MB95F282K	MB95F283K	MB95F284K					
Parameter											
Туре		Flash memory product									
Clock supervisor											
counter	It supervises the r	pervises the main clock oscillation.									
Flash memory capacity	8 Kbyte 12 Kbyte 20 Kbyte 8 Kbyte 12 Kbyte 20										
RAM capacity	240 bytes	496 bytes	496 bytes	240 bytes	496 bytes	496 bytes					
Power-on reset		•	Y	es							
Low-voltage detection reset		No			Yes						
Reset input		Dedicated		5	Selected by softwar	re					
CPU functions	 Instruction bit le Instruction lengt Data bit length Minimum instruction 	Number of basic instructions: 136Instruction bit length: 8 bitsInstruction length: 1 to 3 bytesData bit length: 1, 8 and 16 bitsMinimum instruction execution time: 61.5 ns (machine clock frequency = 16.25 MHz)Interrupt processing time: 0.6 µs (machine clock frequency = 16.25 MHz)									
General-purpose I/O	I/O ports (Max) : 12 I/O ports (Max) : 13 CMOS I/O : 11 CMOS I/O : 11 N-ch open drain : 1										
Time-base timer	Interval time: 0.25	6 ms to 8.3 s (exte	rnal clock frequen	cy = 4 MHz)							
Hardware/software watchdog timer		n clock at 10 MHz:		e clock of the hardv	vare watchdog time	er.					
Wild register	It can be used to r	eplace three bytes	of data.								
LIN-UART	 It has a full dupl Clock-synchronic 	A wide range of communication speed can be selected by a dedicated reload timer. It has a full duplex double buffer. Clock-synchronized serial data transfer and clock-asynchronized serial data transfer is enabled. The LIN function can be used as a LIN master or a LIN slave.									
8/10-bit A/D	5 channels										
converter	8-bit or 10-bit resc	olution can be seled	cted.								
	1 channel										
8/16-bit composite timer	 It has built-in tim 	ner function, PWC an be selected from	function, PWM fun	els" or a "16-bit time ction and input cap seven types) and e	ture function.						
Extornal	6 channels										
External interrupt			sing edge, falling e ice from standby m	edge, or both edges lodes.	s can be selected.)						
On-chip debug	 1-wire serial cor It supports serial 	ntrol I writing. (asynchro	onous mode)								

Part number Parameter	MB95F282H	MB95F283H	MB95F284H	MB95F282K	MB95F283K	MB95F284K		
Watch prescaler	Eight different time intervals can be selected.							
Flash memory	 It supports automatic programming, Embedded Algorithm, program/erase/erase-suspend/erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of program/erase cycles: 100000 Data retention time: 20 years Flash security feature for protecting the content of the Flash memory 							
Standby mode	Sleep mode, stop	mode, watch mode	e, time-base timer r	node				
Package	LCC-32P-M19 DIP-16P-M06 FPT-16P-M06							

3. Differences among Products and Notes on Product Selection

Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/write. For details of current consumption, see "24. Electrical Characteristics".

Package

For details of information on each package, see "2. Packages and Corresponding Products" and "28. Package Dimension".

Operating voltage

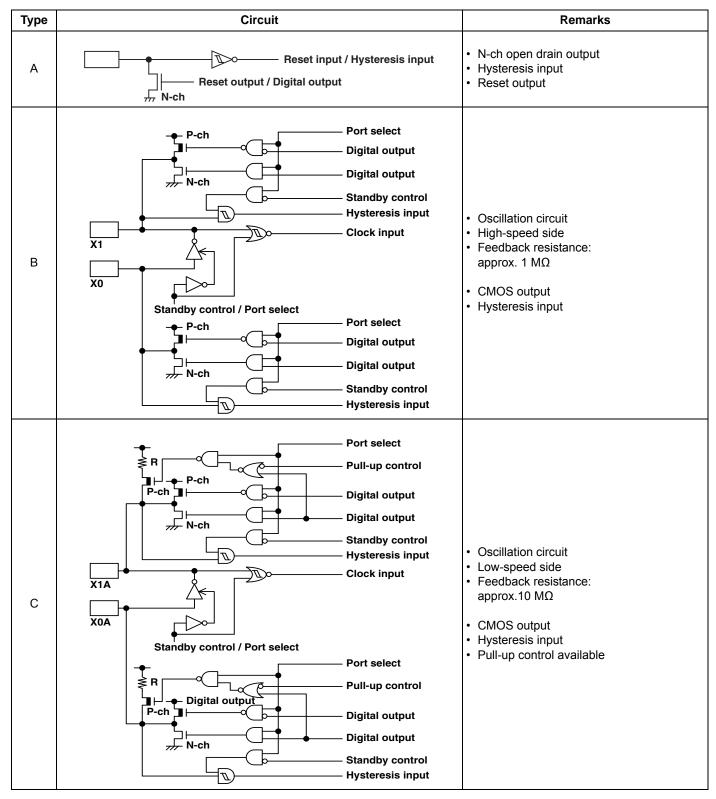
The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of the operating voltage, see "24. Electrical Characteristics".

On-chip debug function

The on-chip debug function requires that V_{CC} , V_{SS} and 1 serial-wire be connected to an evaluation tool. In addition, if the Flash memory data has to be updated, the PF2/RST pin must also be connected to the same evaluation tool.

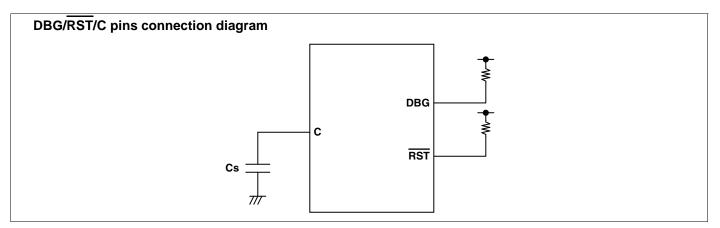
Pin no.	Pin name	I/O circuit type*	Function
	P05		General-purpose I/O port High-current pin
21	INT05	E	External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
	P06	_	General-purpose I/O port High-current pin
22	INT06	G	External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
	P12		General-purpose I/O port
23		EC0 H 8/16-bit composite	8/16-bit composite timer ch. 0 clock input pin
			DBG input pin
24	P07	6	General-purpose I/O port
24 -	INT07	G	External interrupt input pin
25	NC	_	It is an internally connected pin. Always leave it unconnected.
26	NC	_	It is an internally connected pin. Always leave it unconnected.
27	NC	_	It is an internally connected pin. Always leave it unconnected.
28	NC	_	It is an internally connected pin. Always leave it unconnected.
29	NC	—	It is an internally connected pin. Always leave it unconnected.
30	NC	_	It is an internally connected pin. Always leave it unconnected.
31	NC	_	It is an internally connected pin. Always leave it unconnected.
32	NC	_	It is an internally connected pin. Always leave it unconnected.

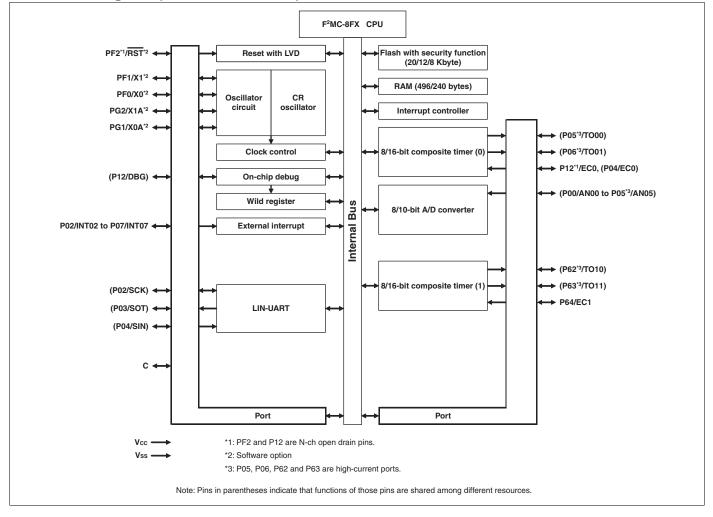
*: For the I/O circuit types, see "11. I/O Circuit Type".



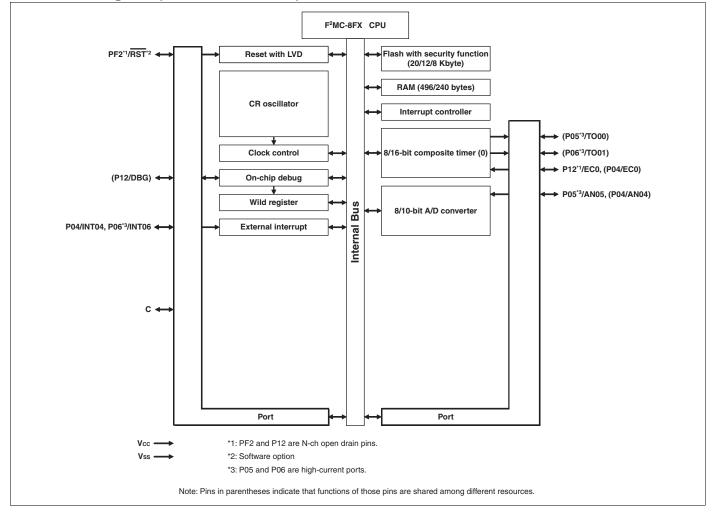
Pin no.	Pin name	I/O circuit type*	Function
	P05		General-purpose I/O port High-current pin
13	INT05	E	External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 clock input pin
	P06		General-purpose I/O port High-current pin
14	INT06	G	External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 clock input pin
15	P07	6	General-purpose I/O port
15 —	INT07	G	External interrupt input pin
	P12		General-purpose I/O port
16	EC0	н	8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin

*: For the I/O circuit types, see "11. I/O Circuit Type".


11. I/O Circuit Type


C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S . For the connection to a smoothing capacitor C_S , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.



14. Block Diagram (MB95260H Series)

15. Block Diagram (MB95270H Series)

18. I/O Map (MB95260H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000 _H	PDR0	Port 0 data register	R/W	00000000 _B
0001 _H	DDR0	Port 0 direction register	R/W	00000000 _B
0002 _H	PDR1	Port 1 data register	R/W	00000000 _B
0003 _H	DDR1	Port 1 direction register	R/W	00000000 _B
0004 _H	—	(Disabled)	—	—
0005 _H	WATR	Oscillation stabilization wait time setting register	R/W	11111111 _B
0006 _H	—	(Disabled)	—	—
0007 _H	SYCC	System clock control register	R/W	0000X011 _B
0008 _H	STBC	Standby control register	R/W	00000XXX _B
0009 _H	RSRR	Reset source register	R/W	000XXXXX _B
000A _H	TBTC	Time-base timer control register	R/W	00000000 _B
000B _H	WPCR	Watch prescaler control register	R/W	00000000 _B
000C _H	WDTC	Watchdog timer control register	R/W	00XX0000 _B
000D _H	SYCC2	System clock control register 2	R/W	XX100011 _B
000E _H to 0015 _H	_	(Disabled)		_
0016 _H	PDR6	Port 6 data register	R/W	00000000 _B
0017 _H	DDR6	Port 6 direction register	R/W	00000000 _B
0018 _H to 0027 _H	—	(Disabled)	—	_
0028 _H	PDRF	Port F data register	R/W	00000000 _B
0029 _H	DDRF	Port F direction register	R/W	00000000 _B
002A _H	PDRG	Port G data register	R/W	00000000 _B
002B _H	DDRG	Port G direction register	R/W	00000000 _B
002C _H	PUL0	Port 0 pull-up register	R/W	00000000 _B
002D _H to 0034 _H	—	(Disabled)	—	_
0035 _H	PULG	Port G pull-up register	R/W	00000000 _B
0036 _H	T01CR1	8/16-bit composite timer 01 status control register 1 ch. 0	R/W	00000000 _B
0037 _H	T00CR1	8/16-bit composite timer 00 status control register 1 ch. 0	R/W	00000000 _B
0038 _H	T11CR1	8/16-bit composite timer 11 status control register 1 ch. 1		00000000 _B
0039 _H	T10CR1	8/16-bit composite timer 10 status control register 1 ch. 1	R/W	00000000 _B
003A _H to 0048 _H	_	(Disabled)		_
0049 _H	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	00000000 _B

Address	Register abbreviation	Register name	R/W	Initial value
0F81 _H	WRARL0	Wild register address setting register (Lower) ch. 0		00000000 _B
0F82 _H	WRDR0	Wild register data setting register ch. 0	R/W	00000000 _B
0F83 _H	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	00000000 _B
0F84 _H	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	00000000 _B
0F85 _H	WRDR1	Wild register data setting register ch. 1	R/W	00000000 _B
0F86 _H	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	00000000 _B
0F87 _H	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	00000000 _B
0F88 _H	WRDR2	Wild register data setting register ch. 2	R/W	00000000 _B
0F89 _H to 0F91 _H	—	(Disabled)	—	_
0F92 _H	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	00000000 _B
0F93 _H	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	00000000 _B
0F94 _H	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	00000000 _B
0F95 _H	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000 _B
0F96 _H	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000 _B
0F97 _H	T11CR0	8/16-bit composite timer 11 status control register 0 ch. 1	R/W	00000000 _B
0F98 _H	T10CR0	8/16-bit composite timer 10 status control register 0 ch. 1	R/W	00000000 _B
0F99 _H	T11DR	8/16-bit composite timer 11 data register ch. 1	R/W	00000000 _B
0F9A _H	T10DR	8/16-bit composite timer 10 data register ch. 1	R/W	00000000 _B
0F9B _H	TMCR1	8/16-bit composite timer 10/11 timer mode control register ch. 1	R/W	00000000 _B
0F9C _H to 0FBB _H	—	(Disabled)	—	—
0FBC _H	BGR1	LIN-UART baud rate generator register 1	R/W	00000000 _B
0FBD _H	BGR0	LIN-UART baud rate generator register 0	R/W	00000000 _B
0FBE _H to 0FC2 _H	_	(Disabled)	—	_
0FC3 _H	AIDRL	A/D input disable register (Lower)	R/W	00000000 _B
0FC4 _H to 0FE3 _H	_	(Disabled)	-	_
0FE4 _H	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXX _B
0FE5 _H	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXX _B

24. Electrical Characteristics

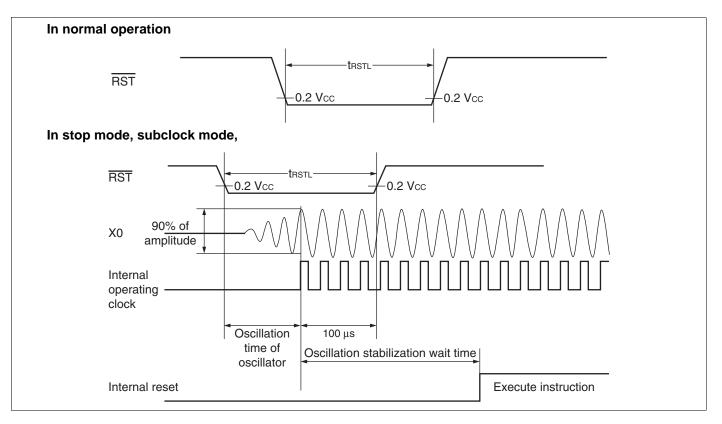
24.1 Absolute Maximum Ratings

Devenuetor	Cumhal	Rating		11	Demorika		
Parameter	Symbol	Min	Max	Unit	Remarks		
Power supply voltage*1	V _{CC}	V _{SS} - 0.3	V _{SS} + 6	V			
Input voltage*1	VI	V _{SS} - 0.3	V _{SS} + 6	V	*2		
Output voltage*1	Vo	V _{SS} - 0.3	V _{SS} + 6	V	*2		
Maximum clamp current	I _{CLAMP}	- 2	+ 2	mA	Applicable to specific pins ^{*3}		
Total maximum clamp current	ΣII _{CLAMP} I	_	20	mA	Applicable to specific pins ^{*3}		
"L" level maximum output	I _{OL1}		15	mA	Other than P05, P06, P62 and P63 ^{*4}		
current	I _{OL2}		15	mA	P05, P06, P62 and P63 ^{*4}		
"L" level average current	I _{OLAV1}		4	mA	Other than P05, P06, P62 and P63 ^{*4} Average output current= operating current × operating ratio (1 pin)		
	I _{OLAV2}		12	mA	P05, P06, P62 and P63 ^{*4} Average output current= operating current × operating ratio (1 pin)		
"L" level total maximum output current	ΣI _{OL}	_	100	mA			
"L" level total average output current	ΣI _{OLAV}	_	50	mA	Total average output current= operating current × operating ratio (Total number of pins)		
"H" level maximum output	I _{OH1}		- 15		Other than P05, P06, P62 and P63 ^{*4}		
current	I _{OH2}		- 15	mA	P05, P06, P62 and P63 ^{*4}		
"H" lovel everage eurrent	I _{OHAV1}		- 4		Other than P05, P06, P62 and P63 ^{*4} Average output current= operating current × operating ratio (1 pin)		
"H" level average current	I _{OHAV2}	I _{OHAV2}		mA	P05, P06, P62 and P63 ^{*4} Average output current= operating current × operating ratio (1 pin)		
"H" level total maximum output current	Σl _{OH}	_	- 100	mA			
"H" level total average output current	ΣΙ _{ΟΗΑΥ}	_	- 50	mA	Total average output current= operating current ´ operating ratio (Total number of pins)		
Power consumption	Pd	—	320	mW			
Operating temperature	T _A	- 40	+ 85	°C			
Storage temperature	Tstg	- 55	+ 150	°C			

24.3 DC Characteristics

				(*0	Value		; 0.0	$V, T_A = -40 C (0 + 85 C)$	
Parameter	Symbol	Pin name	Condition				Unit	Remarks	
	V _{IHI}	P04	*1	Min 0.7 V _{CC}	Тур —	Max V _{CC} + 0.3	V	When CMOS input level (hysteresis input) is selected	
"H" level input voltage	V _{IHS}	P00 to P07, P12, P62 to P64, PF0, PF1, PG1, PG2	*1	0.8 V _{CC}	_	V _{CC} + 0.3	V	Hysteresis input	
	V _{IHM}	PF2	—	0.7 V _{CC}		V _{CC} + 0.3	V	Hysteresis input	
	V _{IL}	P04	*1	V _{SS} - 0.3	_	0.3 V _{CC}	V	When CMOS input level (hysteresis input) is selected	
"L" level input voltage	V _{ILS}	P00 to P07, P12, P62 to P64, PF0, PF1, PG1, PG2	*1	V _{SS} - 0.3	_	0.2 V _{CC}	V	Hysteresis input	
	V _{ILM}	PF2		V _{SS} - 0.3	_	0.3 V _{CC}	V	Hysteresis input	
Open-drain output application voltage	V _D	PF2, P12	_	V _{SS} - 0.3		V _{SS} + 5.5	V		
"H" level output voltage	V _{OH1}	Output pins other than P05, P06, P12, P62, P63, PF2 ^{*2}	I _{OH} = -4 mA	V _{CC} - 0.5	_		V		
	V _{OH2}	P05, P06, P62, P63 ^{*2}	I _{OH} = - 8 mA	V _{CC} - 0.5	_	_	V		
"L" level output	V _{OL1}	Output pins other than P05, P06, P62, P63 ^{*2}	I _{OL} = 4 mA	_	_	0.4	V		
voltage	V _{OL2}	P05, P06, P62, P63 ^{*2}	I _{OL} = 12 mA	_		0.4	V		
Input leak current (Hi-Z output leak current)	ILI	All input pins	0.0 V < V _I < V _{CC}	- 5	_	+ 5	μA	When pull-up resistance is disabled	
Pull-up resistance	R _{PULL}	P00 to P07, PG1, PG2 ^{*3*4}	V _I = 0 V	25	50	100	kΩ	When pull-up resistance is enabled	
Input capacitance	C _{IN}	Other than V_{CC} and V_{SS}	f = 1 MHz	_	5	15	pF		

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$


24.4.3 External Reset

(V _{CC} = 5.0 V±10%,	$V_{00} = 0.0 \text{ V} \text{ T}_{0}$	= -40°C to	+ 85°C)
$(v_{CC} - 5.0 v \pm 10 \%)$, v _{SS} – 0.0 v, i _A	$= -40 \ C \ 10$	$\pm 00 \text{ C}$

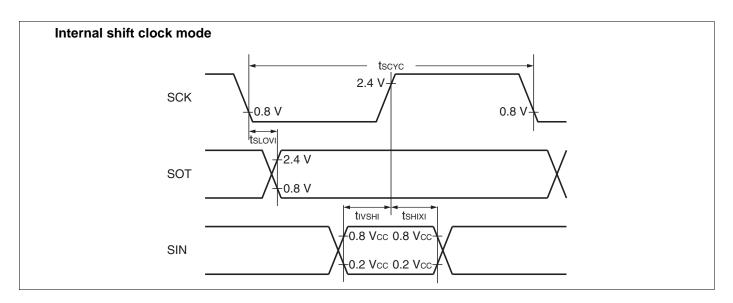
Parameter	Symbol	Value			Remarks	
	Symbol	Min	Max	Unit	nemarks	
RST "L" level pulse width	t _{rstl}	2 t _{MCLK} *1	—	ns	In normal operation	
		Oscillation time of the oscillator* 2 + 100	_	μs	In stop mode, subclock mode, sub-sleep mode, watch mode, and power-on	
		100	_	μs	In time-base timer mode	

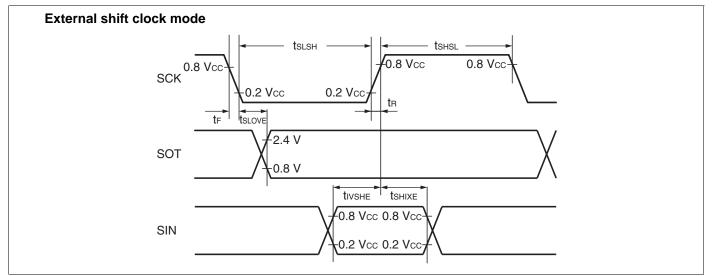
*1 : See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}.

*2 : The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of µs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several µs and several ms.

24.4.6 LIN-UART Timing (only available on MB95F262H/F262K/F263H/F263K/F264H/F264K/F282H/F282K/F283H/F283K/F284H /F284K)

Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is disabled^{*2}. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 0)

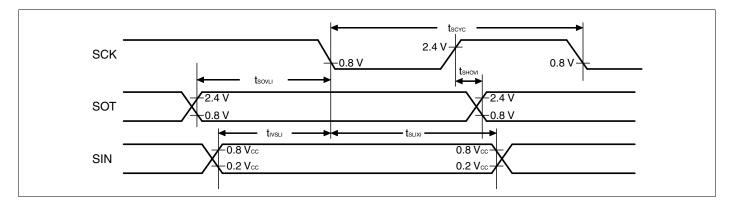

		,	(V _{CC} = 5.0 V±10%, AV	$V_{\rm SS}$ = $V_{\rm SS}$ = 0.0 \	/, T _A = -40°C to +	+ 85°C)
Parameter	Symbol		Condition	Va	11	
Farameter	Symbol	Pin name	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} * ³	—	ns
$SCK \mathop{\downarrow} \rightarrow SOT \text{ delay time}$	t _{SLOVI}	SCK, SOT	Internal clock	- 95	+ 95	ns
$Valid\;SIN\toSCK\uparrow$	t _{IVSHI}	SCK, SIN	operation output pin: C ₁ = 80 pF + 1 TTL	t _{MCLK} * ³ + 190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXI}	SCK, SIN		0	—	ns
Serial clock "L" pulse width	t _{SLSH}	SCK		3 t _{MCLK} * ³ - t _R	—	ns
Serial clock "H" pulse width	t _{SHSL}	SCK		t _{MCLK} * ³ + 95	—	ns
$SCK \mathop{\downarrow} \rightarrow SOT \text{ delay time}$	t _{SLOVE}	SCK, SOT	External clock		2 t _{MCLK} * ³ + 95	ns
$Valid\;SIN\toSCK\uparrow$	t _{IVSHE}	SCK, SIN	operation output pin:	190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXE}	SCK, SIN	C _L = 80 pF + 1 TTL	t _{MCLK} * ³ + 95	—	ns
SCK fall time	t _F	SCK		—	10	ns
SCK rise time	t _R	SCK			10	ns


*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

*3: See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}.

Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is enabled^{*2}. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 1)

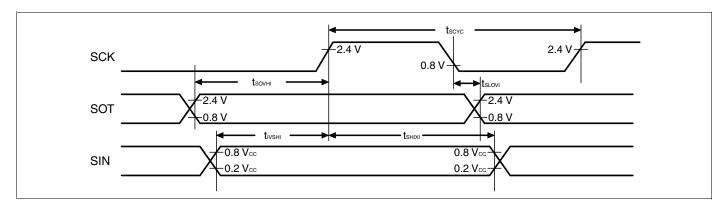

(V _{CC} = 5.0 V±10%	, V_{SS} = 0.0 V, T_A = -40°C to	+ 85°C)
------------------------------	--------------------------------------	---------

Parameter	Symbol	Pin name	Condition	Value		Unit
	Symbol			Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK	Internal clock operation output pin: C _L = 80 pF + 1 TTL	5 t _{MCLK} * ³	_	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCK, SOT		- 95	+ 95	ns
$Valid\;SIN\toSCK\downarrow$	t _{IVSLI}	SCK, SIN		t _{MCLK} * ³ + 190	_	ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	t _{SLIXI}	SCK, SIN		0	_	ns
$\text{SOT} \rightarrow \text{SCK} \downarrow \text{delay time}$	t _{SOVLI}	SCK, SOT		—	4 t _{MCLK} * ³	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}.

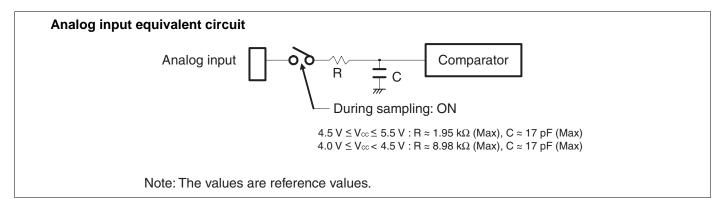

Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is enabled^{*2}. (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 1)

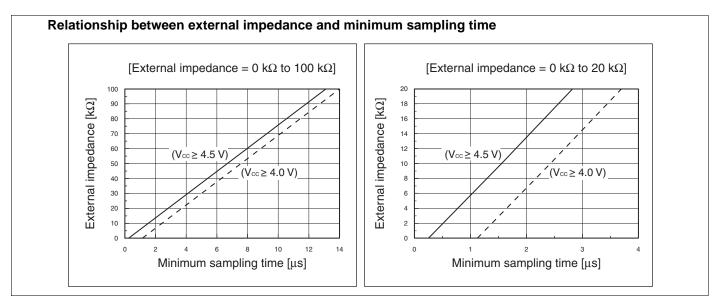
Parameter	Cumhal	Diaman	Pin name Condition	Value		11
	Symbol	Pin name		Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK	Internal clock operating output pin: C _L = 80 pF + 1 TTL	5 t _{MCLK} * ³	—	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCK, SOT		- 95	+ 95	ns
$\textsf{Valid SIN} \rightarrow \textsf{SCK} \uparrow$	t _{IVSHI}	SCK, SIN		t _{MCLK} * ³ + 190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXI}	SCK, SIN		0	—	ns
$\text{SOT} \to \text{SCK} \uparrow \text{delay time}$	t _{SOVHI}	SCK, SOT		—	4 t _{MCLK} * ³	ns

*1:There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See "24.4.2. Source Clock / Machine Clock" for t_{MCLK}.





24.5.2 Notes on Using the A/D Converter

External impedance of analog input and its sampling time

The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 μ F to the analog input pin.

A/D conversion error

As |V_{CC}-V_{SS}| decreases, the A/D conversion error increases proportionately.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hardby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system control and evice or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.