




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                             |
|----------------------------|-----------------------------------------------------------------------------|
| Product Status             | Active                                                                      |
| Core Processor             | M8C                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 12MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI                                                       |
| Peripherals                | LVD, POR, WDT                                                               |
| Number of I/O              | 20                                                                          |
| Program Memory Size        | 8KB (8K x 8)                                                                |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 512 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.4V ~ 5.25V                                                                |
| Data Converters            | -                                                                           |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 24-UFQFN Exposed Pad                                                        |
| Supplier Device Package    | 24-QFN (4x4)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20324-12lqxi |



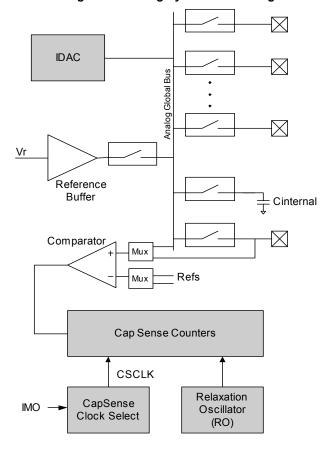
# PSoC® Functional Overview

The PSoC family consists of many programmable system-on-chips with on-chip controller devices. These devices are designed to replace multiple traditional MCU based system components with one, low cost single chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture enables the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture for this device family is comprised of three main areas: core, system resources, and CapSense analog system. A common, versatile bus enables connection between I/O and the analog system. Each CY8C20x24 PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

#### **PSoC Core**

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and internal main oscillator (IMO) and internal low-speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 12 MHz. The M8C is a 2-MIPS, 8-bit Harvard-architecture microprocessor.


System resources provide additional capability, such as a configurable I<sup>2</sup>C slave or SPI master-slave communication interface and various system resets supported by the M8C.

The analog system is composed of the CapSense PSoC block and an internal 1.8-V analog reference. Together, they support capacitive sensing of up to 28 inputs.

#### CapSense Analog System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

Figure 1. Analog System Block Diagram

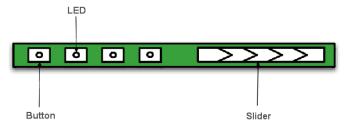


#### Analog Multiplexer System

The analog mux bus connects to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. The analog multiplexer system in the CY8C20x24 device family is optimized for basic CapSense functionality. It supports sensing of CapSense buttons, proximity sensors, and a single slider. Other multiplexer applications include:

- Capacitive slider interface.
- Chip-wide mux that enables analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.


When designing capacitive sensing applications, refer to the latest signal to noise signal level requirements application notes, which are found in <a href="http://www.cypress.com">http://www.cypress.com</a> Design Resources > Application Notes. In general, and unless otherwise noted in the relevant application notes, the minimum signal-to-noise ratio (SNR) requirement for CapSense applications is 5:1.



## Typical Application

Figure 2 illustrates a typical application: CapSense multimedia keys for a notebook computer with a slider, four buttons, and four LEDs.

Figure 2. CapSense Multimedia Button-Board Application



## Additional System Resources

System resources, some of which are previously listed, provide additional capability useful to complete systems. Additional resources include low voltage detection (LVD) and power on reset (POR). Brief statements describing the merits of each system resource follow.

- The I<sup>2</sup>C slave and SPI master-slave module provides 50, 100, or 400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- LVD interrupts signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.8-V reference provides an absolute reference for capacitive sensing.
- The 5 V maximum input, 3 V fixed output, low dropout regulator (LDO) provides regulation for I/Os. A register controlled bypass mode enables the user to disable the LDO.

# **Getting Started**

This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the PSoC® Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

#### **Application Notes**

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

#### **Development Kits**

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

#### Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

#### **CYPros Consultants**

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

#### **Solutions Library**

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

## **Technical Support**

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.



# **Pinouts**

This section describes, lists, and illustrates the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC device pins and pinout configurations.

The CY8C20x24 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However,  $V_{SS}$ ,  $V_{DD}$ , and XRES are not capable of Digital I/O.

# **16-pin Part Pinout**

Figure 3. CY8C20224 16-pin PSoC Device

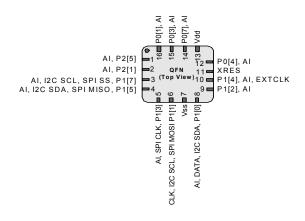



Table 1. 16-pin Part Pinout (COL)

| Pin No. | Digital         | Analog | Name            | Description                                         |
|---------|-----------------|--------|-----------------|-----------------------------------------------------|
| 1       | I/O             | ļ      | P2[5]           |                                                     |
| 2       | I/O             | I      | P2[1]           |                                                     |
| 3       | I <sub>OH</sub> | I      | P1[7]           | I <sup>2</sup> C SCL, SPI SS                        |
| 4       | I <sub>OH</sub> | I      | P1[5]           | I <sup>2</sup> C SDA, SPI MISO                      |
| 5       | I <sub>OH</sub> | ļ      | P1[3]           | SPI CLK                                             |
| 6       | I <sub>OH</sub> | I      | P1[1]           | CLK <sup>[1]</sup> , I <sup>2</sup> C SCL, SPI MOSI |
| 7       | Po              | wer    | V <sub>SS</sub> | Ground connection                                   |
| 8       | I <sub>OH</sub> | I      | P1[0]           | DATA <sup>[1]</sup> , I <sup>2</sup> C SDA          |
| 9       | I <sub>OH</sub> | I      | P1[2]           |                                                     |
| 10      | I <sub>OH</sub> | I      | P1[4]           | Optional external clock input (EXTCLK)              |
| 11      | In              | put    | XRES            | Active high external reset with internal pull-down  |
| 12      | I/O             | I      | P0[4]           |                                                     |
| 13      | Po              | wer    | $V_{DD}$        | Supply voltage                                      |
| 14      | I/O             | I      | P0[7]           |                                                     |
| 15      | I/O             | ı      | P0[3]           | Integrating input                                   |
| 16      | I/O             | İ      | P0[1]           | Integrating input                                   |

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

#### Note

Document Number: 001-41947 Rev. \*N

<sup>1.</sup> These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.



# 24-pin Part Pinout

Figure 4. CY8C20324 24-pin PSoC Device

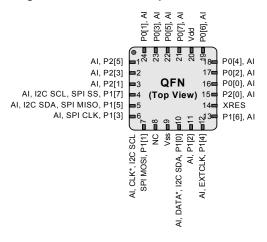



Table 2. 24-pin Part Pinout (QFN [2])

| Pin No. | Digital         | Analog | Name            | Description                                         |  |  |  |
|---------|-----------------|--------|-----------------|-----------------------------------------------------|--|--|--|
| 1       | I/O             | ı      | P2[5]           |                                                     |  |  |  |
| 2       | I/O             | I      | P2[3]           |                                                     |  |  |  |
| 3       | I/O             | I      | P2[1]           |                                                     |  |  |  |
| 4       | I <sub>OH</sub> | I      | P1[7]           | I <sup>2</sup> C SCL, SPI SS                        |  |  |  |
| 5       | I <sub>OH</sub> | I      | P1[5]           | I <sup>2</sup> C SDA, SPI MISO                      |  |  |  |
| 6       | I <sub>OH</sub> | I      | P1[3]           | SPI CLK                                             |  |  |  |
| 7       | I <sub>OH</sub> | I      | P1[1]           | CLK <sup>[3]</sup> , I <sup>2</sup> C SCL, SPI MOSI |  |  |  |
| 8       |                 |        | NC              | No connection                                       |  |  |  |
| 9       | Po              | ower   | V <sub>SS</sub> | Ground connection                                   |  |  |  |
| 10      | I <sub>OH</sub> | I      | P1[0]           | DATA <sup>[3]</sup> , I <sup>2</sup> C SDA          |  |  |  |
| 11      | I <sub>OH</sub> | I      | P1[2]           |                                                     |  |  |  |
| 12      | I <sub>OH</sub> | I      | P1[4]           | Optional external clock input (EXTCLK)              |  |  |  |
| 13      | I <sub>OH</sub> | I      | P1[6]           |                                                     |  |  |  |
| 14      | Ir              | nput   | XRES            | Active high external reset with internal pull-down  |  |  |  |
| 15      | I/O             | I      | P2[0]           |                                                     |  |  |  |
| 16      | I/O             | I      | P0[0]           |                                                     |  |  |  |
| 17      | I/O             | I      | P0[2]           |                                                     |  |  |  |
| 18      | I/O             | I      | P0[4]           |                                                     |  |  |  |
| 19      | I/O             | I      | P0[6]           |                                                     |  |  |  |
| 20      | Po              | ower   | $V_{DD}$        | Supply voltage                                      |  |  |  |
| 21      | I/O             | I      | P0[7]           |                                                     |  |  |  |
| 22      | I/O             | I      | P0[5]           |                                                     |  |  |  |
| 23      | I/O             | I      | P0[3]           | Integrating input                                   |  |  |  |
| 24      | I/O             | I      | P0[1]           | Integrating input                                   |  |  |  |
| CP      |                 |        | Vss             | Center pad is connected to ground                   |  |  |  |

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

#### Notes

- The center pad on the QFN package is connected to ground (V<sub>SS</sub>) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.
   These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.



# 32-pin Part Pinout

Figure 6. CY8C20424 32-pin PSoC Device

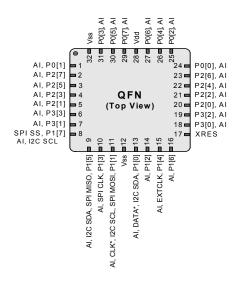



Table 4. 32-pin Part Pinout (QFN [5])

| - · ·   | 2-piii i ait    | •      |                 |                                                     |  |  |  |
|---------|-----------------|--------|-----------------|-----------------------------------------------------|--|--|--|
| Pin No. | Digital         | Analog | Name            | Description                                         |  |  |  |
| 1       | I/O             | I      | P0[1]           | Integrating Input                                   |  |  |  |
| 2       | I/O             | I      | P2[7]           |                                                     |  |  |  |
| 3       | I/O             | Ī      | P2[5]           |                                                     |  |  |  |
| 4       | I/O             | Ī      | P2[3]           |                                                     |  |  |  |
| 5       | I/O             | I      | P2[1]           |                                                     |  |  |  |
| 6       | I/O             | Ī      | P3[3]           |                                                     |  |  |  |
| 7       | I/O             | Ī      | P3[1]           |                                                     |  |  |  |
| 8       | I <sub>OH</sub> | I      | P1[7]           | I <sup>2</sup> C SCL, SPI SS                        |  |  |  |
| 9       | I <sub>OH</sub> | I      | P1[5]           | I <sup>2</sup> C SDA, SPI MISO                      |  |  |  |
| 10      | I <sub>OH</sub> | I      | P1[3]           | SPI CLK                                             |  |  |  |
| 11      | I <sub>OH</sub> | I      | P1[1]           | CLK <sup>[6]</sup> , I <sup>2</sup> C SCL, SPI MOSI |  |  |  |
| 12      | Po              | wer    | V <sub>SS</sub> | Ground connection                                   |  |  |  |
| 13      | I <sub>OH</sub> | I      | P1[0]           | DATA <sup>[6]</sup> , I <sup>2</sup> C SDA          |  |  |  |
| 14      | I <sub>OH</sub> | I      | P1[2]           |                                                     |  |  |  |
| 15      | I <sub>OH</sub> | I      | P1[4]           | Optional external clock input (EXTCLK)              |  |  |  |
| 16      | I <sub>OH</sub> | I      | P1[6]           |                                                     |  |  |  |
| 17      | In              | put    | XRES            | Active high external reset with internal pull-down  |  |  |  |

#### Notes

<sup>5.</sup> The center pad on the QFN package is connected to ground (V<sub>SS</sub>) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.

<sup>6.</sup> These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.



# **DC Electrical Characteristics**

#### DC Chip Level Specifications

Table 8 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$ , 3.0 V to 3.6 V and  $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$ , or 2.4 V to 3.0 V and  $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$ , respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25  $^{\circ}\text{C}$ . These are for design guidance only.

Table 8. DC Chip Level Specifications

| Symbol            | Description                                                                                                                | Min  | Тур | Max  | Units | Notes                                                               |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|------|-----|------|-------|---------------------------------------------------------------------|
| $V_{DD}$          | Supply voltage                                                                                                             | 2.40 | -   | 5.25 | V     |                                                                     |
| I <sub>DD12</sub> | Supply current, IMO = 12 MHz                                                                                               | -    | 1.5 | 2.5  | mA    | Conditions are $V_{DD}$ = 3.0 V,<br>$T_A$ = 25 °C, CPU = 12 MHz.    |
| I <sub>DD6</sub>  | Supply current, IMO = 6 MHz                                                                                                | -    | 1   | 1.5  | mA    | Conditions are $V_{DD}$ = 3.0 V,<br>$T_A$ = 25 °C, CPU = 6 MHz.     |
| I <sub>SB27</sub> | Sleep (Mode) current with POR,<br>LVD, sleep timer, WDT, and<br>internal slow oscillator active. Mid<br>temperature range. | -    | 2.6 | 4    | μА    | $V_{DD}$ = 2.55 V, 0 °C $\leq$ T <sub>A</sub> $\leq$ 40 °C.         |
| I <sub>SB</sub>   | Sleep (Mode) current with POR,<br>LVD, sleep timer, WDT, and<br>internal slow oscillator active.                           | -    | 2.8 | 5    | μА    | $V_{DD} = 3.3 \text{ V}, -40 \text{ °C} \le T_A \le 85 \text{ °C}.$ |

#### DC GPIO Specifications

Unless otherwise noted, Table 9 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges:  $4.75\,\text{V}$  to  $5.25\,\text{V}$  and  $-40\,^\circ\text{C} \le T_A \le 85\,^\circ\text{C}$ ,  $3.0\,\text{V}$  to  $3.6\,\text{V}$  and  $-40\,^\circ\text{C} \le T_A \le 85\,^\circ\text{C}$ , or  $2.4\,\text{V}$  to  $3.0\,\text{V}$  and  $-40\,^\circ\text{C} \le T_A \le 85\,^\circ\text{C}$ , respectively. Typical parameters apply to  $5\,\text{V}$ ,  $3.3\,\text{V}$ , and  $2.7\,\text{V}$  at  $25\,^\circ\text{C}$ . These are for design guidance only.

Table 9. 5 V and 3.3 V DC GPIO Specifications

| Symbol            | Description                                                             | Min                   | Тур | Max | Units | Notes                                                                                                                                              |
|-------------------|-------------------------------------------------------------------------|-----------------------|-----|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>PU</sub>   | Pull-up resistor                                                        | 4                     | 5.6 | 8   | kΩ    |                                                                                                                                                    |
| V <sub>OH1</sub>  | High output voltage, port 0, 2, or 3 pins                               | V <sub>DD</sub> – 0.2 | -   | _   | V     | $I_{OH} \le 10 \ \mu\text{A}, \ V_{DD} \ge 3.0 \ \text{V}, \ \text{maximum of} \ 20 \ \text{mA source current in all I/Os}.$                       |
| V <sub>OH2</sub>  | High output voltage, port 0, 2, or 3 pins                               | V <sub>DD</sub> – 0.9 | -   | _   | V     | $I_{OH}$ = 1 mA, $V_{DD} \ge 3.0$ V, maximum of 20 mA source current in all I/Os.                                                                  |
| V <sub>OH3</sub>  | High output voltage,<br>port 1 pins with LDO regulator<br>disabled      | V <sub>DD</sub> – 0.2 | _   | -   | V     | $I_{OH}$ < 10 $\mu$ A, $V_{DD}$ $\geq$ 3.0 V, maximum of 10 mA source current in all I/Os.                                                         |
| V <sub>OH4</sub>  | High output voltage,<br>port 1 pins with LDO regulator<br>disabled      | V <sub>DD</sub> – 0.9 | _   | -   | V     | $I_{OH}$ = 5 mA, $V_{DD} \ge 3.0$ V, maximum of 20 mA source current in all I/Os.                                                                  |
| V <sub>OH5</sub>  | High output voltage,<br>port 1 pins with 3.0 V LDO<br>regulator enabled | 2.7                   | 3.0 | 3.3 | V     | $I_{OH}$ < 10 µA, $V_{DD} \ge 3.1$ V, maximum of 4 I/Os all sourcing 5 mA.                                                                         |
| V <sub>OH6</sub>  | High output voltage,<br>port 1 pins with 3.0 V LDO<br>regulator enabled | 2.2                   | _   | -   | V     | $I_{OH}$ = 5 mA, $V_{DD} \ge 3.1$ V, maximum of 20 mA source current in all I/Os.                                                                  |
| V <sub>OH7</sub>  | High output voltage,<br>port 1 pins with 2.4 V LDO<br>regulator enabled | 2.1                   | 2.4 | 2.7 | V     | $I_{OH}$ < 10 $\mu$ A, $V_{DD}$ $\geq$ 3.0 V, maximum of 20 mA source current in all I/Os.                                                         |
| V <sub>OH8</sub>  | High output voltage,<br>port 1 pins with 2.4 V LDO<br>regulator enabled | 2.0                   | -   | -   | V     | $I_{OH}$ < 200 μA, $V_{DD} \ge$ 3.0 V, maximum of 20 mA source current in all I/Os.                                                                |
| V <sub>OH9</sub>  | High output voltage,<br>port 1 pins with 1.8 V LDO<br>regulator enabled | 1.6                   | 1.8 | 2.0 | V     | $I_{OH}$ < 10 µA, 3.0 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, 0 °C $\leq$ T <sub>A</sub> $\leq$ 85 °C, maximum of 20 mA source current in all I/Os. |
| V <sub>OH10</sub> | High output voltage,<br>port 1 pins with 1.8 V LDO<br>regulator enabled | 1.5                   | _   | -   | V     | $I_{OH}$ < 100 µA, 3.0 V $\leq$ V $_{DD}$ $\leq$ 3.6 V, 0 °C $\leq$ TA $\leq$ 85 °C, maximum of 20 mA source current in all I/Os.                  |



Table 9. 5 V and 3.3 V DC GPIO Specifications (continued)

| Symbol           | Description                                                              | Min | Тур | Max  | Units | Notes                                                                                                                                                                                     |
|------------------|--------------------------------------------------------------------------|-----|-----|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>OL</sub>  | Low output voltage                                                       | -   | _   | 0.75 | V     | $I_{OL}$ = 20 mA, $V_{DD}$ > 3.0V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5]). |
| I <sub>OH2</sub> | High level source current, port 0, 2, or 3 pins                          | 1   | _   | _    | mA    | ${ m V}_{ m OH}$ = ${ m V}_{ m DD}$ – 0.9, for the limitations of the total current and ${ m I}_{ m OH}$ at other ${ m V}_{ m OH}$ levels see the notes for ${ m V}_{ m OH}$ .            |
| I <sub>OH4</sub> | High level source current,<br>port 1 pins with LDO regulator<br>disabled | 5   | _   | _    | mA    | $V_{OH}$ = $V_{DD}$ – 0.9, for the limitations of the total current and $I_{OH}$ at other $V_{OH}$ levels see the notes for $V_{OH}$ .                                                    |
| I <sub>OL</sub>  | Low level sink current                                                   | 20  | -   | -    | mA    | $V_{OH}$ = 0.75 V, see the limitations of the total current in the note for $V_{OL}$ .                                                                                                    |
| V <sub>IL</sub>  | Input low voltage                                                        | _   | -   | 0.8  | V     | $3.0~V \leq V_{DD} \leq 5.25~V$                                                                                                                                                           |
| V <sub>IH</sub>  | Input high voltage                                                       | 2.0 | -   |      | V     | $3.0~V \leq V_{DD} \leq 5.25~V$                                                                                                                                                           |
| V <sub>H</sub>   | Input hysteresis voltage                                                 | =   | 140 | -    | mV    |                                                                                                                                                                                           |
| I <sub>IL</sub>  | Input leakage (absolute value)                                           | _   | 1   | -    | nΑ    | Gross tested to 1 µA                                                                                                                                                                      |
| C <sub>IN</sub>  | Capacitive load on pins as input                                         | 0.5 | 1.7 | 5    | pF    | Package and pin dependent temperature = 25 °C                                                                                                                                             |
| C <sub>OUT</sub> | Capacitive load on pins as output                                        | 0.5 | 1.7 | 5    | pF    | Package and pin dependent temperature = 25 °C                                                                                                                                             |

Table 10. 2.7 V DC GPIO Specifications

| Symbol            | Description                                                        | Min                   | Тур | Max  | Units | Notes                                                                                                                                                                                                   |
|-------------------|--------------------------------------------------------------------|-----------------------|-----|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>PU</sub>   | Pull-up resistor                                                   | 4                     | 5.6 | 8    | kΩ    |                                                                                                                                                                                                         |
| V <sub>OH1</sub>  | High output voltage,<br>port 1 pins with LDO regulator<br>disabled | V <sub>DD</sub> – 0.2 | -   | _    | V     | I <sub>OH</sub> < 10 μA, maximum of 10 mA source current in all I/Os.                                                                                                                                   |
| V <sub>OH2</sub>  | High output voltage,<br>port 1 pins with LDO regulator<br>disabled | V <sub>DD</sub> – 0.5 | -   | _    | V     | I <sub>OH</sub> = 2 mA, maximum of 10 mA source current in all I/Os.                                                                                                                                    |
| V <sub>OL</sub>   | Low output voltage                                                 |                       | -   | 0.75 | V     | I <sub>OL</sub> = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5]).                         |
| I <sub>OH2</sub>  | High level source current, port 1 pins with LDO regulator disabled | 2                     | -   | _    | mA    | $V_{OH}$ = $V_{DD}$ – 0.5, for the limitations of the total current and $I_{OH}$ at other $V_{OH}$ levels see the notes for $V_{OH}$ .                                                                  |
| I <sub>OL</sub>   | Low level sink current                                             | 10                    | _   | -    | mA    | $V_{OH}$ = 0.75 V, see the limitations of the total current in the note for $V_{OL}$ .                                                                                                                  |
| V <sub>OLP1</sub> | Low output voltage port 1 pins                                     | -                     | -   | 0.4  | V     | IOL = 5 mA, maximum of 50 mA sink current on even port pins (for example, P0[2] and P3[4]) and 50 mA sink current on odd port pins (for example, P0[3] and P2[5]). 2.4 $V \le V_{DD} \le 3.0 \text{ V}$ |
| V <sub>IL</sub>   | Input low voltage                                                  | _                     | -   | 0.75 | V     | $2.4 \text{ V} \le \text{V}_{DD} \le 3.0 \text{ V}$                                                                                                                                                     |
| V <sub>IH1</sub>  | Input high voltage                                                 | 1.4                   | _   | -    | V     | $2.4~V \leq V_{DD} \leq 2.7~V$                                                                                                                                                                          |
| V <sub>IH2</sub>  | Input high voltage                                                 | 1.6                   | -   | _    | V     | $2.7 \text{ V} \leq \text{V}_{DD} \leq 3.0 \text{ V}$                                                                                                                                                   |
| $V_{H}$           | Input hysteresis voltage                                           | -                     | 60  | _    | mV    |                                                                                                                                                                                                         |
| I <sub>IL</sub>   | Input leakage (absolute value)                                     | _                     | 1   | _    | nA    | Gross tested to 1 μA                                                                                                                                                                                    |



## DC Programming Specifications

Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$ , 3.0 V to 3.6 V and  $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$ , or 2.4 V to 3.0 V and  $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$ , respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

**Table 14. DC Programming Specifications** 

| Symbol                | Description                                                                           | Min                   | Тур | Max                    | Units | Notes                                                                                  |
|-----------------------|---------------------------------------------------------------------------------------|-----------------------|-----|------------------------|-------|----------------------------------------------------------------------------------------|
| V <sub>DDP</sub>      | V <sub>DD</sub> for programming and erase                                             | 4.5                   | 5   | 5.5                    | V     | This specification applies to the functional requirements of external programmer tools |
| V <sub>DDLV</sub>     | Low V <sub>DD</sub> for verify                                                        | 2.4                   | 2.5 | 2.6                    | V     | This specification applies to the functional requirements of external programmer tools |
| V <sub>DDHV</sub>     | High V <sub>DD</sub> for verify                                                       | 5.1                   | 5.2 | 5.3                    | V     | This specification applies to the functional requirements of external programmer tools |
| V <sub>DDIWRITE</sub> | Supply voltage for flash write operation                                              | 2.7                   | _   | 5.25                   | V     | This specification applies to this device when it is executing internal flash writes   |
| I <sub>DDP</sub>      | Supply current during programming or verify                                           | -                     | 5   | 25                     | mA    |                                                                                        |
| V <sub>ILP</sub>      | Input low voltage during programming or verify                                        | -                     | _   | 0.8                    | V     |                                                                                        |
| V <sub>IHP</sub>      | Input high voltage during programming or verify                                       | 2.2                   | -   | _                      | V     |                                                                                        |
| I <sub>ILP</sub>      | Input current when applying Vilp to P1[0] or P1[1] during programming or verify       | -                     | _   | 0.2                    | mA    | Driving internal pull-down resistor.                                                   |
| I <sub>IHP</sub>      | Input current when applying Vihp<br>to P1[0] or P1[1] during<br>programming or verify | -                     | _   | 1.5                    | mA    | Driving internal pull-down resistor.                                                   |
| V <sub>OLV</sub>      | Output low voltage during programming or verify                                       | -                     | _   | V <sub>SS</sub> + 0.75 | V     |                                                                                        |
| V <sub>OHV</sub>      | Output high voltage during programming or verify                                      | V <sub>DD</sub> – 1.0 | _   | V <sub>DD</sub>        | V     |                                                                                        |
| Flash <sub>ENPB</sub> | Flash endurance (per block) <sup>[12]</sup>                                           | 50,000                | -   | -                      | _     | Erase/write cycles per block.                                                          |
| Flash <sub>ENT</sub>  | Flash endurance (total) <sup>[13]</sup>                                               | 1,800,000             | _   | _                      | -     | Erase/write cycles.                                                                    |
| Flash <sub>DR</sub>   | Flash data retention                                                                  | 10                    | -   | -                      | Years |                                                                                        |

## DC I<sup>2</sup>C Specifications

Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$ , 3.0~V to 3.6~V and  $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$ , or 2.4~V to 3.0~V and  $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$ , respectively. Typical parameters apply to 5~V, 3.3~V, or 2.7~V at  $25~^\circ\text{C}$ . These are for design guidance only.

Table 15. DC I<sup>2</sup>C Specifications<sup>[14]</sup>

| Symbol             | Description      | Min                   | Тур | Max                    | Units | Notes                                                 |
|--------------------|------------------|-----------------------|-----|------------------------|-------|-------------------------------------------------------|
| $V_{ILI2C}$        | Input low level  | _                     | _   | 0.3 × V <sub>DD</sub>  | V     | $2.4~V \leq V_{DD} \leq 3.6~V$                        |
|                    |                  | _                     | _   | 0.25 × V <sub>DD</sub> | V     | $4.75 \text{ V} \le \text{V}_{DD} \le 5.25 \text{ V}$ |
| V <sub>IHI2C</sub> | Input high level | 0.7 × V <sub>DD</sub> | -   | _                      | V     | $2.4 \text{ V} \le \text{V}_{DD} \le 5.25 \text{ V}$  |

#### Notes

<sup>12.</sup> The 50,000 cycle flash endurance per block will only be guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V and 4.75 V to 5.25 V.

<sup>13.</sup> A maximum of 36 × 50,000 block endurance cycles is allowed. This is balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and that no single block ever sees more than 50,000 cycles).

<sup>14.</sup> All GPIO meet the DC GPIO  $V_{IL}$  and  $V_{IH}$  specifications found in the DC GPIO Specifications sections. The I<sup>2</sup>C GPIO pins also meet the above specs.



# **AC Electrical Characteristics**

# AC Chip Level Specifications

Table 16 and Table 17 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$ , 3.0 V to 3.6 V and  $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$ , or 2.4 V to 3.0 V and  $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$  respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25  $^\circ\text{C}$ . These are for design guidance only.

Table 16. 5 V and 3.3 V AC Chip-Level Specifications

| Symbol                               | Description                                                          | Min  | Тур | Max  | Units | Notes                                                                                                                                                                    |
|--------------------------------------|----------------------------------------------------------------------|------|-----|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>CPU1</sub>                    | CPU frequency (3.3 V nominal)                                        | 0.75 | -   | 12.6 | MHz   | 12 MHz only for SLIMO Mode = 0                                                                                                                                           |
| F <sub>32K1</sub>                    | ILO frequency                                                        | 15   | 32  | 64   | kHz   |                                                                                                                                                                          |
| F <sub>32K_U</sub>                   | ILO untrimmed frequency                                              | 5    | _   | 100  | kHz   | After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing. |
| F <sub>IMO12</sub>                   | IMO stability for 12 MHz<br>(Commercial temperature) <sup>[15]</sup> | 11.4 | 12  | 12.6 | MHz   | Trimmed for 3.3 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 0.                                                                          |
| F <sub>IMO6</sub>                    | IMO stability for 6 MHz<br>(Commercial temperature)                  | 5.5  | 6.0 | 6.5  | MHz   | Trimmed for 3.3 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 1.                                                                          |
| DC <sub>IMO</sub>                    | Duty cycle of IMO                                                    | 40   | 50  | 60   | %     |                                                                                                                                                                          |
| DC <sub>ILO</sub>                    | ILO duty cycle                                                       | 20   | 50  | 80   | %     |                                                                                                                                                                          |
| t <sub>RAMP</sub>                    | Supply ramp time                                                     | 0    | -   | _    | μs    |                                                                                                                                                                          |
| t <sub>XRST</sub>                    | External reset pulse width                                           | 10   | -   | _    | μs    |                                                                                                                                                                          |
| t <sub>POWERUP</sub>                 | Time from end of POR to CPU executing code                           | -    | 16  | 100  | ms    | Power up from 0 V. See the System<br>Resets section of the PSoC Technical<br>Reference Manual.                                                                           |
| t <sub>jit_IMO</sub> <sup>[16]</sup> | 12 MHz IMO cycle-to-cycle jitter (RMS)                               | -    | 200 | 1600 | ps    |                                                                                                                                                                          |
|                                      | 12 MHz IMO long term N cycle-to-cycle jitter (RMS)                   | -    | 600 | 1400 | ps    | N = 32                                                                                                                                                                   |
|                                      | 12 MHz IMO period jitter (RMS)                                       | _    | 100 | 900  | ps    |                                                                                                                                                                          |

Notes
15.0 °C to 70 °C ambient, V<sub>DD</sub> = 3.3 V.
16. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products - AN5054 for more information.



Table 17. 2.7 V AC Chip Level Specifications

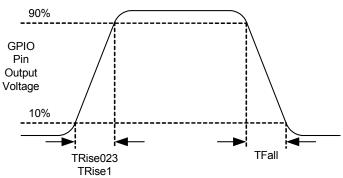
| Symbol                               | Description                                                          | Min  | Тур | Max  | Units | Notes                                                                                                                                                                    |
|--------------------------------------|----------------------------------------------------------------------|------|-----|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>CPU1A</sub>                   | CPU frequency (2.7 V nominal)                                        | 0.75 | -   | 3.25 | MHz   | 2.4 V < V <sub>DD</sub> < 3.0 V.                                                                                                                                         |
| F <sub>CPU1B</sub>                   | CPU frequency (2.7 V minimum)                                        | 0.75 | -   | 6.3  | MHz   | 2.7 V < V <sub>DD</sub> < 3.0 V.                                                                                                                                         |
| F <sub>32K1</sub>                    | ILO frequency                                                        | 8    | 32  | 96   | kHz   |                                                                                                                                                                          |
| F <sub>32K_U</sub>                   | ILO untrimmed frequency                                              | 5    | -   | -    | kHz   | After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing. |
| F <sub>IMO12</sub>                   | IMO stability for 12 MHz<br>(Commercial temperature) <sup>[17]</sup> | 11.0 | 12  | 12.9 | MHz   | Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 0.                                                                          |
| F <sub>IMO6</sub>                    | IMO stability for 6 MHz<br>(Commercial temperature)                  | 5.5  | 6.0 | 6.5  | MHz   | Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 1.                                                                          |
| DC <sub>IMO</sub>                    | Duty cycle of IMO                                                    | 40   | 50  | 60   | %     |                                                                                                                                                                          |
| DC <sub>ILO</sub>                    | ILO duty cycle                                                       | 20   | 50  | 80   | %     |                                                                                                                                                                          |
| t <sub>RAMP</sub>                    | Supply ramp time                                                     | 0    | -   | _    | μs    |                                                                                                                                                                          |
| t <sub>XRST</sub>                    | External reset pulse width                                           | 10   | -   | _    | μs    |                                                                                                                                                                          |
| t <sub>POWERUP</sub>                 |                                                                      | -    | 16  | 100  | ms    | Power-up from 0 V. See the System<br>Resets section of the PSoC Technical<br>Reference Manual.                                                                           |
| t <sub>jit_IMO</sub> <sup>[18]</sup> | 12 MHz IMO cycle-to-cycle jitter (RMS)                               | -    | 500 | 900  | ps    |                                                                                                                                                                          |
|                                      | 12 MHz IMO long term N cycle-to-cycle jitter (RMS)                   | _    | 800 | 1400 | ps    | N = 32                                                                                                                                                                   |
|                                      | 12 MHz IMO period jitter (RMS)                                       |      | 300 | 500  | ps    |                                                                                                                                                                          |

Notes
17.0 °C to 70 °C ambient, V<sub>DD</sub> = 3.3 V.
18. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products - AN5054 for more information.



# AC GPIO Specifications

Table 18 and Table 19 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25V and  $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$ , 3.0 V to 3.6 V and  $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$ , or 2.4 V to 3.0 V and  $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$  respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25  $^{\circ}\text{C}$ . These are for design guidance only.


Table 18. 5 V and 3.3 V AC GPIO Specifications

| Symbol               | Description                                                | Min | Тур | Max | Units | Notes                                                             |
|----------------------|------------------------------------------------------------|-----|-----|-----|-------|-------------------------------------------------------------------|
| F <sub>GPIO</sub>    | GPIO operating frequency                                   | 0   | _   | 6   | MHz   | Normal strong mode, Port 1.                                       |
| t <sub>Rise023</sub> | Rise time, strong mode,<br>Cload = 50 pF,<br>ports 0, 2, 3 | 15  | -   | 80  | ns    | V <sub>DD</sub> = 3.0 V to 3.6 V and 4.75 V to 5.25 V, 10% to 90% |
| t <sub>Rise1</sub>   | Rise time, strong mode,<br>Cload = 50 pF,<br>port 1        |     | _   | 50  | ns    | V <sub>DD</sub> = 3.0 V to 3.6 V, 10% to 90%                      |
| t <sub>Fall</sub>    | Fall time, strong mode,<br>Cload = 50 pF,<br>all ports     | 10  | -   | 50  | ns    | V <sub>DD</sub> = 3.0 V to 3.6 V and 4.75 V to 5.25 V, 10% to 90% |

Table 19. 2.7 V AC GPIO Specifications

| Symbol               | Description                                                | Min | Тур | Max | Units | Notes                                        |
|----------------------|------------------------------------------------------------|-----|-----|-----|-------|----------------------------------------------|
| F <sub>GPIO</sub>    | GPIO operating frequency                                   | 0   | -   | 1.5 | MHz   | Normal Strong Mode, Port 1.                  |
| t <sub>Rise023</sub> | Rise time, strong mode,<br>Cload = 50 pF,<br>ports 0, 2, 3 | 15  | _   | 100 | ns    | V <sub>DD</sub> = 2.4 V to 3.0 V, 10% to 90% |
| t <sub>Rise1</sub>   | Rise time, strong mode,<br>Cload = 50 pF,<br>port 1        | 10  | _   | 70  | ns    | V <sub>DD</sub> = 2.4 V to 3.0 V, 10% to 90% |
| t <sub>Fall</sub>    | Fall time, strong mode,<br>Cload = 50 pF,<br>all ports     | 10  | _   | 70  | ns    | V <sub>DD</sub> = 2.4 V to 3.0 V, 10% to 90% |

Figure 9. GPIO Timing Diagram



## AC Comparator Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40 \text{ °C} \le T_A \le 85 \text{ °C}$ , 3.0 V to 3.6 V and  $-40 \text{ °C} \le T_A \le 85 \text{ °C}$ , or 2.4 V to 3.0 V and  $-40 \text{ °C} \le T_A \le 85 \text{ °C}$ , respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

**Table 20. AC Comparator Specifications** 

| Symbol            | Description                               | Min | Тур | Max        | Units    | Notes                                                  |
|-------------------|-------------------------------------------|-----|-----|------------|----------|--------------------------------------------------------|
| t <sub>COMP</sub> | Comparator response time, 50 mV overdrive | -   | _   | 100<br>200 | ns<br>ns | $V_{DD} \ge 3.0 \text{ V}$<br>2.4 V < $V_{CC}$ < 3.0 V |

Document Number: 001-41947 Rev. \*N Page 21 of 41



Table 24. 2.7 V AC External Clock Specifications (continued)

| Symbol                | Description                                                     | Min | Тур | Max  | Units | Notes                                                                                                                                                                                                                                                             |
|-----------------------|-----------------------------------------------------------------|-----|-----|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>OSCEXT2B</sub> | Frequency with CPU clock divide by 2 or greater (2.7 V minimum) | 1.5 | _   | 12.6 | MHz   | $2.7\mathrm{V} < \mathrm{V}_{DD} < 3.0\mathrm{V}$ . If the frequency of the external clock is greater than 3 MHz, the CPU clock divider is set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met. |
| _                     | High period with CPU clock divide by 1                          | 160 | _   | 5300 | ns    |                                                                                                                                                                                                                                                                   |
| _                     | Low period with CPU clock divide by 1                           | 160 | -   | -    | ns    |                                                                                                                                                                                                                                                                   |
| _                     | Power-up IMO to switch                                          | 150 | -   | _    | μs    |                                                                                                                                                                                                                                                                   |

# AC Programming Specifications

Table 25 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$ , 3.0 V to 3.6 V and  $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$ , or 2.4 V to 3.0 V and  $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$  respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

**Table 25. AC Programming Specifications** 

| Symbol                    | Description                                | Min | Тур | Max | Units | Notes                                                         |
|---------------------------|--------------------------------------------|-----|-----|-----|-------|---------------------------------------------------------------|
| t <sub>RSCLK</sub>        | Rise time of SCLK                          | 1   | _   | 20  | ns    |                                                               |
| t <sub>FSCLK</sub>        | Fall time of SCLK                          | 1   | _   | 20  | ns    |                                                               |
| t <sub>SSCLK</sub>        | Data set up time to falling edge of SCLK   | 40  | _   | _   | ns    |                                                               |
| t <sub>HSCLK</sub>        | Data hold time from falling edge of SCLK   | 40  | _   | _   | ns    |                                                               |
| F <sub>SCLK</sub>         | Frequency of SCLK                          | 0   | _   | 8   | MHz   |                                                               |
| t <sub>ERASEB</sub>       | Flash erase time (Block)                   | -   | 10  | _   | ms    |                                                               |
| t <sub>WRITE</sub>        | Flash block write time                     | _   | 40  | -   | ms    |                                                               |
| t <sub>DSCLK</sub>        | Data out delay from falling edge of SCLK   | _   | _   | 45  | ns    | 3.6 < V <sub>DD</sub>                                         |
| t <sub>DSCLK3</sub>       | Data out delay from falling edge of SCLK   | _   | -   | 50  | ns    | $3.0 \le V_{DD} \le 3.6$                                      |
| t <sub>DSCLK2</sub>       | Data out delay from falling edge of SCLK   | _   | -   | 70  | ns    | $2.4 \le V_{DD} \le 3.0$                                      |
| t <sub>ERASEALL</sub>     | Flash erase time (Bulk)                    | _   | 20  | _   | ms    | Erase all blocks and protection fields at once                |
| t <sub>PROGRAM_HOT</sub>  | Flash block erase + Flash block write time | _   | _   | 100 | ms    | 0 °C ≤ Tj ≤ 100 °C                                            |
| t <sub>PROGRAM_COLD</sub> | Flash block erase + Flash block write time | _   | _   | 200 | ms    | $-40  ^{\circ}\text{C} \le \text{Tj} \le 0  ^{\circ}\text{C}$ |



# **Ordering Information**

Table 30 lists the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC devices key package features and ordering codes.

Table 30. PSoC Device Key Features and Ordering Information

| Package                                           | Ordering Code     | Flash<br>(Bytes) | SRAM<br>(Bytes) | Maximum<br>Number of<br>Buttons | Maximum<br>Number of<br>Sliders | Maximum<br>Number of<br>LEDs | Configurable<br>LED Behavior<br>(Fade, Strobe) | Proximity<br>Sensing |
|---------------------------------------------------|-------------------|------------------|-----------------|---------------------------------|---------------------------------|------------------------------|------------------------------------------------|----------------------|
| 16-pin (3 × 3 mm 0.60 Max)<br>COL                 | CY8C20224-12LKXI  | 8 K              | 512             | 10                              | 1                               | 13                           | Yes                                            | Yes                  |
| 16-pin (3 × 3 mm 0.60 Max)<br>COL (Tape and Reel) | CY8C20224-12LKXIT | 8 K              | 512             | 10                              | 1                               | 13                           | Yes                                            | Yes                  |
| 24-pin (4 × 4 mm 0.60 Max)<br>QFN                 | CY8C20324-12LQXI  | 8 K              | 512             | 17                              | 1                               | 20                           | Yes                                            | Yes                  |
| 24-pin (4 × 4 mm 0.60 Max)<br>QFN (Tape and Reel) | CY8C20324-12LQXIT | 8 K              | 512             | 17                              | 1                               | 20                           | Yes                                            | Yes                  |
| 28-pin (210-Mil) SSOP                             | CY8C20524-12PVXI  | 8 K              | 512             | 21                              | 1                               | 24                           | Yes                                            | Yes                  |
| 28-pin (210-Mil) SSOP<br>(Tape and Reel)          | CY8C20524-12PVXIT | 8 K              | 512             | 21                              | 1                               | 24                           | Yes                                            | Yes                  |
| 32-pin (5 × 5 mm 0.60 Max)<br>QFN (Sawn)          | CY8C20424-12LQXI  | 8 K              | 512             | 25                              | 1                               | 28                           | Yes                                            | Yes                  |
| 32-pin (5 × 5 mm 0.60 Max)<br>QFN (Sawn)          | CY8C20424-12LQXIT | 8 K              | 512             | 25                              | 1                               | 28                           | Yes                                            | Yes                  |

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

# **Ordering Code Definitions**

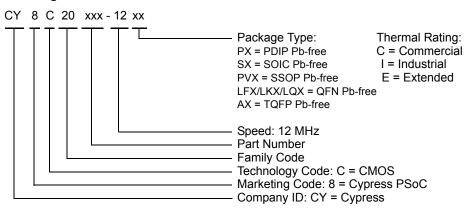
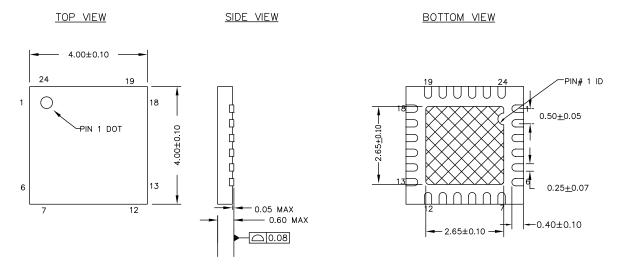
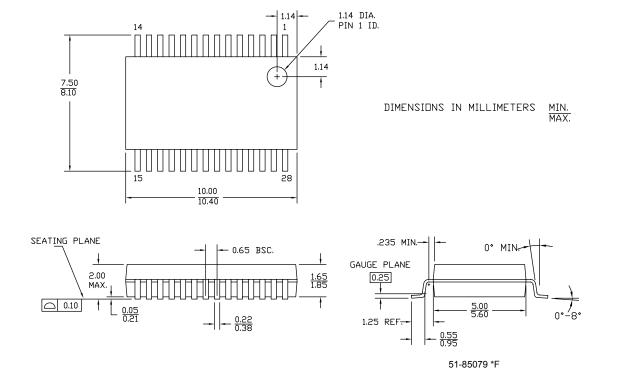






Figure 12. 24-pin QFN (4 × 4 × 0.55 mm) 2.65 × 2.65 E-Pad (Sawn) Package Outline, 001-13937



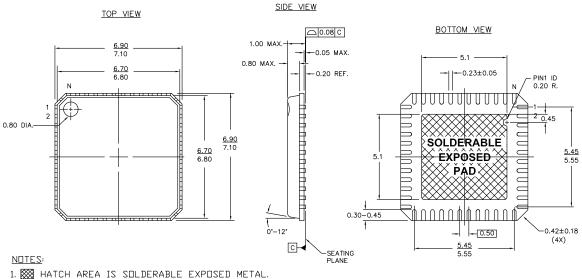

# NOTES:

- 1. HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT:  $29 \pm 3 \text{ mg}$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13937 \*F

Figure 13. 28-pin SSOP (210 Mils) Package Outline, 51-85079




001-48913 \*D

001-12919 \*D



Figure 14. 32-pin QFN (5 × 5 × 0.55 mm) 1.3 × 2.7 E-Pad (Sawn Type) Package Outline, 001-48913 **BOTTOM VIEW TOP VIEW** SIDE VIEW 5.0 ±0.10 PIN 1 ID  $\overline{U}\overline{U}\overline{U}\overline{U}\overline{U}\overline{U}$ 0.5 ±0.05 PIN 1 DOT 0.25 ±0.05 0.05 MAX 0.40 ±0.10 0.60 MAX 1.299 \_\_\_\_\_O.05 C NOTES: 1. ZZZZ HATCH AREA IS SOLDERABLE EXPOSED PAD 2. BASED ON REF JEDEC # MO-248

Figure 15. 48-pin QFN (7 × 7 × 1.0 mm) 5.1 × 5.1 E-Pad (Subcon Punch Type Package) Package Outline, 001-12919



- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.13g

3. PACKAGE WEIGHT: 38mg ± 4 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

|   | PART # | DESCRIPTION |
|---|--------|-------------|
|   | LF48A  | STANDARD    |
| [ | LY48A  | LEAD FREE   |

Important For information on the preferred dimensions for mounting the QFN packages, see the following application note at http://www.amkor.com/products/notes papers/MLFAppNote.pdf.

It is important to note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.



# **Document Conventions**

#### **Units of Measure**

Table 35 lists the units of measures.

#### Table 35. Units of Measure

| Symbol | Unit of Measure | Symbol | Unit of Measure |
|--------|-----------------|--------|-----------------|
| °C     | degree Celsius  | ms     | millisecond     |
| pF     | picofarad       | ns     | nanosecond      |
| kHz    | kilohertz       | ps     | picosecond      |
| MHz    | megahertz       | μV     | microvolts      |
| kΩ     | kilohm          | mV     | millivolts      |
| Ω      | ohm             | V      | volts           |
| μΑ     | microampere     | W      | watt            |
| mA     | milliampere     | mm     | millimeter      |
| nA     | nanoampere      | %      | percent         |
| μs     | microsecond     |        |                 |

#### **Numeric Conventions**

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

# Glossary

active high

- 1. A logic signal having its asserted state as the logic 1 state.
- 2. A logic signal having the logic 1 state as the higher voltage of the two states.

analog blocks

The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.

analog-to-digital (ADC)

A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.

Application programming interface (API)

A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.

asynchronous

A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.

Bandgap reference

A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.

bandwidth

- 1. The frequency range of a message or information processing system measured in hertz.
- 2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

bias

- 1. A systematic deviation of a value from a reference value.
- 2. The amount by which the average of a set of values departs from a reference value.
- The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.



# Glossary (continued)

modulator A device that imposes a signal on a carrier.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current, or data.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the

digits of the binary data either always even (even parity) or always odd (odd parity).

Phase-locked loop (PLL)

An electronic circuit that controls an **oscillator** so that it maintains a constant phase angle relative to a reference

signal.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their

physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between

schematic and PCB design (both being computer generated files) and may also involve pin names.

port A group of pins, usually eight.

Power on reset (POR)

et A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is a type of

hardware reset.

PSoC<sup>®</sup> Cypress Semiconductor's PSoC<sup>®</sup> is a registered trademark and Programmable System-on-Chip™ is a trademark

of Cypress.

PSoC Designer™ The software for Cypress' Programmable System-on-Chip technology.

pulse width modulator (PWM)

An output in the form of duty cycle which varies as a function of the applied measurand

RAM An acronym for random access memory. A data-storage device from which data can be read out and new data

can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot

be written in.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or

channel.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one value to another.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.

slave device A device that allows another device to control the timing for data exchanges between two devices. Or when

devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master

device.



# Glossary (continued)

SRAM An acronym for static random access memory. A memory device where you can store and retrieve data at a high

rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged

until it is explicitly altered or until power is removed from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate

circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code,

operating from Flash.

stop bit A signal following a character or block that prepares the receiving device to receive the next character or block.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.

2. A system whose operation is synchronized by a clock signal.

tri-state A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any

value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit,

allowing another output to drive the same net.

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower

level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming

Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal

program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during

the initialization phase of the program.

 $V_{DD}$  A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.

V<sub>SS</sub> A name for a power net meaning "voltage source." The most negative power supply signal.

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.



# **Document History Page** (continued)

|          | Title: CY8C<br>Number: 00 |                    | C20324/CY8C2       | 0424/CY8C20524, CapSense <sup>®</sup> PSoC <sup>®</sup> Programmable System-on-Chip™                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|---------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revision | ECN                       | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *L       | 3638597                   | BVI                | 06/06/2012         | Updated Getting Started: Updated Application Notes: Updated Development Kits: Updated Development Kits: Updated description. Updated Training: Updated description. Updated CYPros Consultants: Updated description. Updated Solutions Library: Updated description. Updated Solutions Library: Updated description. Updated Technical Support: Updated description. Updated Table 28: Renamed "tout HIGH" as "tout_H" in "Symbol" column. Updated Table 29: Removed tsclk parameter and its details. Added Fsclk parameter and its details. Updated Packaging Dimensions: spec 001-09116 – Changed revision from *E to *F. spec 001-13937 – Changed revision from *D to *E. spec 001-12919 – Changed revision from *B to *C. Updated Solder Reflow Specifications: Updated Table 32: Replaced "Time at Maximum Temperature" with "Time at Maximum Peak Temperature" in column heading and updated details in that column. Updated Development Tool Selection: Updated PSoC Designer: Updated Reference Documents: Removed spec 001-17397 and spec 001-14503 from the list as these spec are obsolete. |
| *M       | 4311264                   | VAIR               | 03/19/2014         | Updated Designing with PSoC Designer: Updated Configure User Modules: Updated description (Replaced references of PWM User Module with EzI2C User Module). Updated Packaging Dimensions: spec 001-09116 – Changed revision from *F to *J. spec 001-13937 – Changed revision from *D to *E. spec 001-48913 – Changed revision from *B to *D. spec 001-12919 – Changed revision from *C to *D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *N       | 5625819                   | DCHE               | 02/09/2017         | Updated Packaging Dimensions: spec 001-13937 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



# Sales, Solutions, and Legal Information

# **Worldwide Sales and Design Support**

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/wireless

## **Products**

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

ARM® Cortex® Microcontrollers

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

Microcontrollers

Wireless Connectivity

PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

# PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

# **Cypress Developer Community**

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

# **Technical Support**

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-41947 Rev. \*N

Revised February 9, 2017

Page 41 of 41