

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20424-12lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

PSoC [®] Functional Overview	3
PSoC Core	3
CapSense Analog System	3
Additional System Resources	4
Getting Started	4
Application Notes	4
Development Kits	4
Training	4
CYPros Consultants	4
Solutions Library	4
Technical Support	4
Development Tools	5
PSoC Designer Software Subsystems	5
Designing with PSoC Designer	6
Select User Modules	6
Configure User Modules	6
Organize and Connect	6
Generate, Verify, and Debug	6
Pinouts	7
16-pin Part Pinout	7
24-pin Part Pinout	8
28-pin Part Pinout	9
32-pin Part Pinout	10
48-pin OCD Part Pinout	12
Electrical Specifications	14
Absolute Maximum Ratings	14
Operating Temperature	14
DC Electrical Characteristics	15

AC Electrical Characteristics	19
Ordering Information	
Ordering Code Definitions	
Packaging Dimensions	
Thermal Impedances	
Solder Reflow Specifications	
Development Tool Selection	
Software	
Development Kits	
Evaluation Tools	
Device Programmers	
Accessories (Emulation and Programming)	
Acronyms	33
Acronyms Used	
Reference Documents	33
Document Conventions	34
Units of Measure	
Numeric Conventions	
Glossary	34
Document History Page	39
Sales, Solutions, and Legal Information	41
Worldwide Sales and Design Support	41
Products	41
PSoC® Solutions	41
Cypress Developer Community	
Technical Support	41

PSoC[®] Functional Overview

The PSoC family consists of many programmable system-on-chips with on-chip controller devices. These devices are designed to replace multiple traditional MCU based system components with one, low cost single chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture enables the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture for this device family is comprised of three main areas: core, system resources, and CapSense analog system. A common, versatile bus enables connection between I/O and the analog system. Each CY8C20x24 PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and internal main oscillator (IMO) and internal low-speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 12 MHz. The M8C is a 2-MIPS, 8-bit Harvard-architecture microprocessor.

System resources provide additional capability, such as a configurable I^2C slave or SPI master-slave communication interface and various system resets supported by the M8C.

The analog system is composed of the CapSense PSoC block and an internal 1.8-V analog reference. Together, they support capacitive sensing of up to 28 inputs.

CapSense Analog System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

Analog Multiplexer System

The analog mux bus connects to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. The analog multiplexer system in the CY8C20x24 device family is optimized for basic CapSense functionality. It supports sensing of CapSense buttons, proximity sensors, and a single slider. Other multiplexer applications include:

- Capacitive slider interface.
- Chip-wide mux that enables analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the latest signal to noise signal level requirements application notes, which are found in http://www.cypress.com > Design Resources > Application Notes. In general, and unless otherwise noted in the relevant application notes, the minimum signal-to-noise ratio (SNR) requirement for CapSense applications is 5:1.

Figure 1. Analog System Block Diagram

Development Tools

PSoC Designer™ is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for a given application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24-MHz) operation.

Pinouts

This section describes, lists, and illustrates the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC device pins and pinout configurations.

The CY8C20x24 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS} , V_{DD} , and XRES are not capable of Digital I/O.

16-pin Part Pinout

Figure 3. CY8C20224 16-pin PSoC Device

Pin No.	Digital	Analog	Name	Description				
1	I/O	I	P2[5]					
2	I/O	-	P2[1]					
3	I _{ОН}	I	P1[7]	I ² C SCL, SPI SS				
4	I _{ОН}	I	P1[5]	I ² C SDA, SPI MISO				
5	I _{OH}	-	P1[3]	SPI CLK				
6	I _{ОН}	I	P1[1]	CLK ^[1] , I ² C SCL, SPI MOSI				
7	Po	wer	V _{SS}	Ground connection				
8	I _{ОН}	I	P1[0]	DATA ^[1] , I ² C SDA				
9	I _{ОН}	I	P1[2]					
10	I _{ОН}	I	P1[4]	Optional external clock input (EXTCLK)				
11	Input		XRES	Active high external reset with internal pull-down				
12	I/O	-	P0[4]					
13	Po	wer	V_{DD}	Supply voltage				
14	I/O	-	P0[7]					
15	I/O		P0[3]	Integrating input				
16	I/O	I	P0[1]	Integrating input				

Table 1. 16-pin Part Pinout (COL)

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

Note

1. These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.

28-pin Part Pinout

Figure 5. CY8C20524 28-pin PSoC Device

Table 3. 28-pin Part Pinout (SSOP)

Pin No.	Digital	Analog	Name	Description			
1	I/O	I	P0[7]				
2	I/O	I	P0[5]				
3	I/O	I	P0[3]	Integrating input			
4	I/O	I	P0[1]	Integrating input			
5	I/O	I	P2[7]				
6	I/O	I	P2[5]				
7	I/O	I	P2[3]				
8	I/O	I	P2[1]				
9	Po	wer	V _{SS}	Ground connection			
10	I _{ОН}	I	P1[7]	I ² C SCL, SPI SS			
11	I _{OH}	I	P1[5]	I ² C SDA, SPI MISO			
12	I _{OH}	I	P1[3]	SPI CLK			
13	I _{OH}	I	P1[1]	CLK ^[4] , I ² C SCL, SPL MOSI			
14	Po	Power V _{SS}		Ground connection			
15	I _{ОН}	I	P1[0]	Data ^[4] , I ² C SDA			
16	I _{OH} I		P1[2]				
17	I _{OH}	I	P1[4]	Optional external clock input (EXTCLK)			
18	I _{OH}	I	P1[6]				
19	In	put	XRES	Active high external reset with internal pull-down			
20	I/O	I	P2[0]				
21	I/O	I	P2[2]				
22	I/O	- 1	P2[4]				
23	I/O	I	P2[6]				
24	I/O	I	P0[0]				
25	I/O	I	P0[2]				
26	I/O	I	P0[4]				
27	I/O	I	P0[6]				
28	Po	wer	V _{DD}	Supply voltage			

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

Note

4. These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.

32-pin Part Pinout

Figure 6. CY8C20424 32-pin PSoC Device

Table 4. 32-pin Part Pinout (QFN^[5])

Pin No.	Digital	Analog	Name	Description				
1	I/O	I	P0[1]	Integrating Input				
2	I/O	I	P2[7]					
3	I/O	I	P2[5]					
4	I/O	I	P2[3]					
5	I/O	I	P2[1]					
6	I/O	I	P3[3]					
7	I/O	I	P3[1]					
8	I _{ОН}	I	P1[7]	I ² C SCL, SPI SS				
9	I _{ОН}	I	P1[5]	I ² C SDA, SPI MISO				
10	I _{OH}	I	P1[3]	SPI CLK				
11	I _{ОН}	I	P1[1]	CLK ^[6] , I ² C SCL, SPI MOSI				
12	2 Power V _{SS}		V _{SS}	Ground connection				
13	I _{OH}	I	P1[0]	DATA ^[6] , I ² C SDA				
14	I _{OH}	I	P1[2]					
15	I _{OH}		P1[4]	Optional external clock input (EXTCLK)				
16	I _{OH}	I	P1[6]					
17	In	put	XRES	Active high external reset with internal pull-down				

Notes

- 5. The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.
- 6. These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.

Pin No.	Digital	Analog	Name	Description
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P2[0]	
21	I/O	I	P2[2]	
22	I/O	I	P2[4]	
23	I/O	I	P2[6]	
24	I/O	I	P0[0]	
25	I/O	I	P0[2]	
26	I/O	I	P0[4]	
27	I/O	I	P0[6]	
28	Po	wer	V _{DD}	Supply voltage
29	I/O	I	P0[7]	
30	I/O	I	P0[5]	
31	I/O		P0[3]	Integrating input
32	Power V _{SS}		V _{SS}	Ground connection
CP	Po	wer	V _{SS}	Center pad is connected to ground

Table 4. 32-pin Part Pinout (QFN^[5]) (continued)

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

48-pin OCD Part Pinout

The 48-pin QFN part table and pin diagram is for the CY8C20024 On-Chip Debug (OCD) PSoC device. This part is only used for in-circuit debugging. It is NOT available for production.

Pin No.	Digital	Analog	Name	Description				
1			NC	No connection				
2	I/O	I	P0[1]	Integrating Input				
3	I/O	I	P2[7]					
4	I/O	I	P2[5]					
5	I/O	I	P2[3]					
6	I/O	I	P2[1]					
7	I/O	I	P3[3]					
8	I/O	I	P3[1]					
9	I _{OH}	I	P1[7]	I ² C SCL, SPI SS				
10	I _{OH}	I	P1[5]	I ² C SDA, SPI MISO				
11			NC	No connection				
12			NC	No connection				
13			NC	C No connection				
14			NC	No connection				
15	I _{OH}	I	P1[3]	SPICLK				
16	I _{OH}	I	P1[1]	CLK ^[8] , I ² C SCL, SPI MOSI				
17	Po	wer	Vss	Ground connection				
18			CCLK	OCD CPU clock output				
19			HCLK	OCD high speed clock output				
20	I _{OH}	I	P1[0]	DATA ^[8] , I ² C SDA				

Table 5. 48-pin OCD Part Pinout (QFN^[7])

Notes

7. The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.

8. These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.

Pin No.	Digital	Analog	Name	Description			
21	I _{OH}	I	P1[2]				
22			NC	No connection			
23			NC	No connection			
24			NC	No connection			
25	I _{OH}	I	P1[4]	Optional external clock input (EXTCLK)			
26	I _{OH}	I	P1[6]				
27	In	put	XRES	Active high external reset with internal pull-down			
28	I/O	I	P3[0]				
29	I/O	I	P3[2]				
30	I/O	I	P2[0]				
31	I/O	I	P2[2]				
32	I/O	I	P2[4]				
33	I/O	I	P2[6]				
34	I/O	I	P0[0]				
35	I/O	I	P0[2]				
36	I/O	I	P0[4]				
37		•	NC	No connection			
38			NC	No connection			
39			NC	No connection			
40	I/O	I	P0[6]				
41	Po	wer	V _{DD}	Supply voltage			
42			OCDO	OCD odd data output			
43			OCDE	OCD even data I/O			
44	I/O	I	P0[7]				
45	I/O	I	P0[5]				
46	I/O	I	P0[3]	Integrating input			
47	Po	wer	V _{SS}	Ground connection			
48			NC	No connection			
CP	Po	wer	V _{SS}	Center pad is connected to ground			

Table 5. 48-pin OCD Part Pinout (QFN ^[7]) (continued)

A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC devices. For the latest electrical specifications, visit the web at http://www.cypress.com/psoc.

Specifications are valid for –40 $^\circ C \le T_A \le 85$ $^\circ C$ and $T_J \le 100$ $^\circ C$ as specified, except where noted.

Refer to Table 16 on page 19 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.

Figure 8. Voltage versus CPU Frequency and IMO Frequency Trim Options

Absolute Maximum Ratings

Table 6. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduces data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrades reliability.
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	-	V	Human Body Model ESD.
LU	Latch-up current	-	-	200	mA	

Operating Temperature

Table 7. Operating Temperature

Symbol	Description	Min	Тур	Мах	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
Тյ	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Table 31 on page 30. The user must limit the power consumption to comply with this requirement.

Table 10. 2.7 V DC GPIO Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
C _{IN}	Capacitive load on pins as input	0.5	1.7	5	pF	Package and pin dependent temperature = 25 °C
C _{OUT}	Capacitive load on pins as output	0.5	1.7	5	pF	Package and pin dependent temperature = 25 °C

DC Analog Mux Bus Specifications

Table 11 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 $^{\circ}C \leq T_A \leq 85 \,^{\circ}C$, 3.0 V to 3.6 V and –40 $^{\circ}C \leq T_A \leq 85 \,^{\circ}C$, or 2.4 V to 3.0 V and –40 $^{\circ}C \leq T_A \leq 85 \,^{\circ}C$, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 $^{\circ}C$. These are for design guidance only.

Table 11. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	-	-	400 800	Ω Ω	$\begin{array}{l} Vdd \geq 2.7 \ V \\ 2.4 \ V \leq Vdd \leq 2.7 \ V \end{array}$

DC Low Power Comparator Specifications

Table 12 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C. These are for design guidance only.

Table 12. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} – 1.0	V	
I _{SLPC}	LPC supply current	-	10	40	μA	
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	

DC POR and LVD Specifications

Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 13. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
VPPOR0 VPPOR1 VPPOR2	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b		2.36 2.60 2.82	2.40 2.65 2.95	V V V	V _{DD} is greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog.
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	V _{DD} value for LVD trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.39 2.54 2.75 2.85 2.96 - - 4.52	2.45 2.71 2.92 3.02 3.13 - 4.73	2.51 ^[9] 2.78 ^[10] 2.99 ^[11] 3.09 3.20 - - 4.83	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

Notes

9. Always greater than 50 mV above V_{PPOR} (PORLEV = 00) for falling supply.

10. Always greater than 50 mV above V_{PPOR} (PORLEV = 01) for falling supply. 11. Always greater than 50 mV above V_{PPOR} (PORLEV = 10) for falling supply.

DC Programming Specifications

Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 14. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V_{DD} for verify	2.4	2.5	2.6	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	2.7	_	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying Vilp to P1[0] or P1[1] during programming or verify	-	_	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying Vihp to P1[0] or P1[1] during programming or verify	-	_	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	-	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[12]	50,000	-	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[13]	1,800,000	_	-	_	Erase/write cycles.
Flash _{DR}	Flash data retention	10	-	-	Years	

DC I²C Specifications

Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 15. DC I²C Specifications^[14]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	_	$0.3 \times V_{DD}$	V	$2.4~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	_	_	V	$2.4~V \leq V_{DD} \leq 5.25~V$

Notes

13. A maximum of 36 × 50,000 block endurance cycles is allowed. This is balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and that no single block ever sees more than 50,000 cycles).

14. All GPIO meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I^2 C GPIO pins also meet the above specs.

^{12.} The 50,000 cycle flash endurance per block will only be guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V and 4.75 V to 5.25 V.

AC GPIO Specifications

Table 18 and Table 19 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 18. 5 V and 3.3 V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	6	MHz	Normal strong mode, Port 1.
t _{Rise023}	Rise time, strong mode, Cload = 50 pF, ports 0, 2, 3	15	-	80	ns	V _{DD} = 3.0 V to 3.6 V and 4.75 V to 5.25 V, 10% to 90%
t _{Rise1}	Rise time, strong mode, Cload = 50 pF, port 1	10	-	50	ns	V _{DD} = 3.0 V to 3.6 V, 10% to 90%
t _{Fall}	Fall time, strong mode, Cload = 50 pF, all ports	10	-	50	ns	V _{DD} = 3.0 V to 3.6 V and 4.75 V to 5.25 V, 10% to 90%

Table 19. 2.7 V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	1.5	MHz	Normal Strong Mode, Port 1.
t _{Rise023}	Rise time, strong mode, Cload = 50 pF, ports 0, 2, 3	15	-	100	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
t _{Rise1}	Rise time, strong mode, Cload = 50 pF, port 1	10	-	70	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
t _{Fall}	Fall time, strong mode, Cload = 50 pF, all ports	10	-	70	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%

Figure 9. GPIO Timing Diagram

AC Comparator Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

 Table 20. AC Comparator Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
t _{COMP}	Comparator response time, 50 mV overdrive	-	-	100 200	ns ns	V _{DD} ≥ 3.0 V 2.4 V < V _{CC} < 3.0 V

Table 24. 2.7 V AC External Clock Specifications (continued)

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{OSCEXT2B}	Frequency with CPU clock divide by 2 or greater (2.7 V minimum)	1.5	_	12.6	MHz	$2.7 V < V_{DD} < 3.0 V$. If the frequency of the external clock is greater than 3 MHz, the CPU clock divider is set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
-	High period with CPU clock divide by 1	160	-	5300	ns	
-	Low period with CPU clock divide by 1	160	-	_	ns	
-	Power-up IMO to switch	150	_	-	μs	

AC Programming Specifications

Table 25 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data set up time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (Block)	-	10	-	ms	
t _{WRITE}	Flash block write time	-	40	-	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	-	_	45	ns	3.6 < V _{DD}
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \le V_{DD} \le 3.6$
t _{DSCLK2}	Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \le V_{DD} \le 3.0$
t _{ERASEALL}	Flash erase time (Bulk)	-	20	-	ms	Erase all blocks and protection fields at once
t _{PROGRAM_HOT}	Flash block erase + Flash block write time	-	-	100	ms	$0 \ ^{\circ}C \le Tj \le 100 \ ^{\circ}C$
t _{PROGRAM_} COLD	Flash block erase + Flash block write time	-	-	200	ms	$-40 \ ^{\circ}C \leq Tj \leq 0 \ ^{\circ}C$

Table 25. AC Programming Specifications

AC I²C Specifications

Table 26 and Table 27 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table OC	10	Chavesteristics		120 004	and 001	Dine fe	
Table 26.	AC	Characteristics	or the	I-C SDA	and SCL	PINS TO	⊺ V _{DD} ≥ 3.0 V

Symbol	Description	Standa	rd Mode	Fast	Mode	Unite	Notos
Symbol	Description	Min	Max	Min	Max	Units	NOLES
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz	
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	time (repeated) START 4.0 – 0.6 – lition. After this period, the clock pulse is generated.		μs			
t _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μs	
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μs	
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μs	
t _{HDDATI2C}	Data hold time	0	-	0	-	μs	
t _{SUDATI2C}	Data setup time	250	-	100 ^[19]	-	ns	
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μs	
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μs	
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter	-	-	0	50	ns	

Table 27. 2.7 V AC Characteristics of the I²C SDA and SCL Pins (Fast Mode not supported)

Symbol	Description	Standard Mode		Fast Mode		Unite	Notes
Symbol	Description	Min Max		Min	Min Max		
F _{SCLI2C}	SCL clock frequency	0	100	-	-	kHz	
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	-	_	μs	
t _{LOWI2C}	LOW period of the SCL clock	4.7	-	-	-	μs	
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	-	-	μs	
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	-	-	μs	
t _{HDDATI2C}	Data hold time	0	-	-	-	μs	
t _{SUDATI2C}	Data setup time	250	-	-	-	ns	
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	-	-	μs	
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	-	-	μs	
t _{SPI2C}	PI2C Pulse width of spikes are suppressed by the input filter.		-	-	-	ns	

Note 19. A Fast Mode I^2C bus device is used in a Standard Mode I^2C bus system but the requirement $T_{SUDAT} \ge 250$ ns is met. This automatically is the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trmax + $T_{SUDAT} = 1000 + 250 = 1250$ ns (according to the Standard Mode I^2C bus specification) before the SCL line is released.

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 33. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part Number	Pin Package	Flex-Pod Kit ^[22]	Foot Kit ^[23]	Prototyping Module	Adapter [24]
CY8C20224-12LKXI	16-pin COL	Not available	Not available	CY3210-20X34	-
CY8C20324-12LQXI	24-pin QFN	CY3250-20334QFN	CY3250-24QFN-FK	CY3210-20X34	AS-24-28-01ML-6
CY8C20524-12PVXI	28-pin SSOP	CY3250-20534	CY3250-28SSOP-FK	CY3210-20X34	-

Third Party Tools

Several tools are specially designed by the following third party vendors to accompany PSoC devices during development and production. Specific details of each of these tools are found at http://www.cypress.com under DESIGN RESOURCES >> Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on emulating the circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer application note AN2323 "Build a PSoC Emulator into Your Board".

Notes

- 23. Foot kit includes surface mount feet that is soldered to the target PCB.
- 24. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters is found at http://www.emulation.com.

^{22.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

Acronyms

Acronyms Used

Table 34 lists the acronyms that are used in this document.

Table 34. Acronyms Used in this Datasheet

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	OCD	on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PGA	programmable gain amplifier
CPU	central processing unit	POR	power on reset
EEPROM	electrically erasable programmable read-only memory	PPOR	precision power on reset
GPIO	general purpose I/O	PSoC®	Programmable System-on-Chip
ICE	in-circuit emulator	PWM	pulse width modulator
IDAC	current DAC	QFN	quad flat no leads
IDE	integrated development environment	SLIMO	slow IMO
ILO	internal low speed oscillator	SPI™	serial peripheral interface
IMO	internal main oscillator	SRAM	static random access memory
I/O	input/output	SROM	supervisory read only memory
ISSP	in-system serial programming	SSOP	shrink small-outline package
LCD	liquid crystal display	USB	universal serial bus
LDO		WDT	watchdog timer
LED	light-emitting diode	WLCSP	wafer level chip scale package
LVD	low voltage detect	XRES	external reset
MCU	microcontroller unit		•

Reference Documents

PSoC[®] CY8C20x34 and PSoC[®] CY8C20x24 Technical Reference Manual (TRM) – 001-13033

Design Aids – Reading and Writing $PSoC^{(8)}$ Flash – AN2015 (001-40459)

Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.

Document Conventions

Units of Measure

Table 35 lists the units of measures.

Table 35. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	ms	millisecond
pF	picofarad	ns	nanosecond
kHz	kilohertz	ps	picosecond
MHz	megahertz	μV	microvolts
kΩ	kilohm	mV	millivolts
Ω	ohm	V	volts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	%	percent
μs	microsecond		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	 A systematic deviation of a value from a reference value. The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

Glossary (continued)

modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
Phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
Power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is a type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.

Document History Page

Document Document	Document Title: CY8C20224/CY8C20324/CY8C20424/CY8C20524, CapSense [®] PSoC [®] Programmable System-on-Chip™ Document Number: 001-41947				
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	1734104	YHW / AESA	See ECN	New parts and document (Revision **).	
*A	2542938	RLRM / AESA	07/28/2008	Corrected Ordering Information format. Updated package diagram 001-13937 to Rev *B. Updated to new template.	
*B	2610469	SNV / PYRS	11/20/08	Updated $V_{OH5},V_{OH7},\text{and}V_{OH9}$ specifications.	
*C	2634376	DRSW	01/12/09	Changed status from Preliminary to Final. Removed the part number CY3250-20234QFN from the 'CY8C20224-12LKXI' flex-pod kit Changed title from CapSense™ Multimedia PSoC [®] Mixed-Signal Array to CapSense™ Multimedia PSoC [®] Programmable System-on-Chip™ Added -12 to the CY8C20524 parts in the Ordering Information table Updated 'Development Tools' and 'Designing with PSoC Designer' sections on pages 4 and 5 Updated 'Development Tools Selection' section on page 30 Changed 16-Pin from QFN to COL	
*D	2693024	DPT / PYRS	04/16/2009	Added devices CY8C20424-12LQXI and CY8C20424-12LQXIT in the Ordering Information table Added 32-Pin Sawn QFN package diagram	
*E	2717566	DRSW / AESA	06/11/2009	Updated AC Chip-Level, and AC Programming Specifications as follows: Modified FIMO6 (page 19), TWRITE specifications (page 22) Added IOH & IOL (page 16), Flash endurance note (page 18), DCILO (page 19), F32K_U (page 19), TPOWERUP (page 19), TERASEALL (page 22), TPROGRAM_HOT (page 22), and TPROGRAM_COLD (page 22) specifications Added AC SPI Master and Slave Specifications	
*F	2899195	CFW / ISW	03/26/2010	Updated Ordering Information. Updated Package Diagrams.	
*G	3037121	CFW	09/24/2010	Updated title to read AC Comparator Specifications and also updated table caption to read "AC Comparator Specifications" in the same section. Minor edits. Updated to new template.	
*H	3049675	ВТК	10/06/2010	Removed AC analog mux bus specifications. Updated Development Tools and Designing with PSoC Designer sections.	
*	3072668	NJF	10/27/10	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changed were made to I ² C Timing Diagram. Updated for clearer understanding. Updated to new template.	
*J	3112469	ARVM	12/16/10	Updated Ordering Information: Updated part numbers.	
*K	3182773	MATT	03/01/11	No technical updates. Completing Sunset Review.	