

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20524-12pvxit

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules". User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, an EzI2Cs User Module configures the I²C block in PSoC. Using these parameters, you can establish the slave address and I²C speed. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module data sheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals

Pinouts

This section describes, lists, and illustrates the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC device pins and pinout configurations.

The CY8C20x24 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS} , V_{DD} , and XRES are not capable of Digital I/O.

16-pin Part Pinout

Figure 3. CY8C20224 16-pin PSoC Device

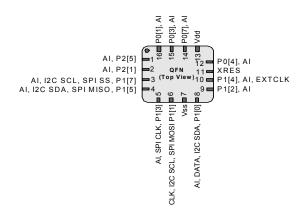


Table 1. 16-pin Part Pinout (COL)

Pin No.	Digital	Analog	Name	Description				
1	I/O	ļ	P2[5]					
2	I/O	I	P2[1]					
3	I _{OH}	I	P1[7]	I ² C SCL, SPI SS				
4	I _{OH}	I	P1[5]	I ² C SDA, SPI MISO				
5	I _{OH}	ļ	P1[3]	SPI CLK				
6	I _{OH}	I	P1[1]	CLK ^[1] , I ² C SCL, SPI MOSI				
7	Po	wer	V _{SS}	Ground connection				
8	I _{OH}	I	P1[0]	DATA ^[1] , I ² C SDA				
9	I _{OH}	I	P1[2]					
10	I _{OH}	I	P1[4]	Optional external clock input (EXTCLK)				
11	In	put	XRES	Active high external reset with internal pull-down				
12	I/O	I	P0[4]					
13	Po	wer	V_{DD}	Supply voltage				
14	I/O	I	P0[7]					
15	I/O	ı	P0[3]	Integrating input				
16	I/O	ĺ	P0[1]	Integrating input				

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

Note

Document Number: 001-41947 Rev. *N

^{1.} These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.

32-pin Part Pinout

Figure 6. CY8C20424 32-pin PSoC Device

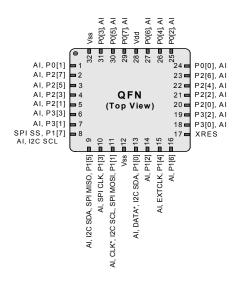


Table 4. 32-pin Part Pinout (QFN [5])

- · ·	2-piii i ait	•							
Pin No.	Digital	Analog	Name	Description					
1	I/O	I	P0[1]	Integrating Input					
2	I/O	I	P2[7]						
3	I/O	Ī	P2[5]						
4	I/O	Ī	P2[3]						
5	I/O	I	P2[1]						
6	I/O	Ī	P3[3]						
7	I/O	Ī	P3[1]						
8	I _{OH}	I	P1[7]	I ² C SCL, SPI SS					
9	I _{OH}	I	P1[5]	I ² C SDA, SPI MISO					
10	I _{OH}	I	P1[3]	SPI CLK					
11	I _{OH}	I	P1[1]	CLK ^[6] , I ² C SCL, SPI MOSI					
12	Po	wer	V _{SS}	Ground connection					
13	I _{OH}	I	P1[0]	DATA ^[6] , I ² C SDA					
14	I _{OH}	I	P1[2]						
15	I _{OH}	I	P1[4]	Optional external clock input (EXTCLK)					
16	I _{OH}	I	P1[6]						
17	In	put	XRES	Active high external reset with internal pull-down					

Notes

^{5.} The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.

^{6.} These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.

48-pin OCD Part Pinout

The 48-pin QFN part table and pin diagram is for the CY8C20024 On-Chip Debug (OCD) PSoC device. This part is only used for in-circuit debugging. It is NOT available for production.

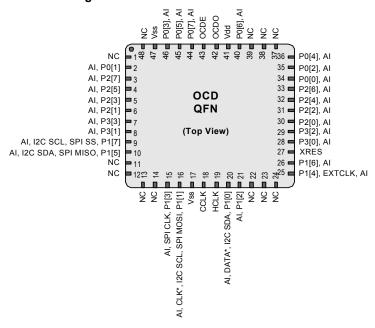


Figure 7. CY8C20024 OCD PSoC Device

Table 5. 48-pin OCD Part Pinout (QFN [7])

Pin No.	Digital	Analog	Name	Description			
1			NC	No connection			
2	I/O	I	P0[1]	Integrating Input			
3	I/O	I	P2[7]				
4	I/O	I	P2[5]				
5	I/O	I	P2[3]				
6	I/O	I	P2[1]				
7	I/O	I	P3[3]				
8	I/O	I	P3[1]				
9	I _{OH}	I	P1[7]	I ² C SCL, SPI SS			
10	I _{OH}	I	P1[5]	I ² C SDA, SPI MISO			
11			NC	No connection			
12			NC	No connection			
13			NC	No connection			
14			NC	No connection			
15	I _{OH}	I	P1[3]	SPI CLK			
16	I _{OH}	I	P1[1]	CLK ^[8] , I ² C SCL, SPI MOSI			
17	Po	wer	Vss	Ground connection			
18			CCLK	OCD CPU clock output			
19			HCLK	OCD high speed clock output			
20	I _{OH}	I	P1[0]	DATA ^[8] , I ² C SDA			

Notes

^{7.} The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.

^{8.} These are the ISSP pins, that are not high Z at POR (Power on reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.

DC Electrical Characteristics

DC Chip Level Specifications

Table 8 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 $^{\circ}\text{C}$. These are for design guidance only.

Table 8. DC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V_{DD}	Supply voltage	2.40	-	5.25	V	
I _{DD12}	Supply current, IMO = 12 MHz	-	1.5	2.5	mA	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 12 MHz.
I _{DD6}	Supply current, IMO = 6 MHz	-	1	1.5	mA	Conditions are V_{DD} = 3.0 V, T_A = 25 °C, CPU = 6 MHz.
I _{SB27}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and internal slow oscillator active. Mid temperature range.	-	2.6	4	μА	V_{DD} = 2.55 V, 0 °C \leq T _A \leq 40 °C.
I _{SB}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and internal slow oscillator active.	-	2.8	5	μА	$V_{DD} = 3.3 \text{ V}, -40 \text{ °C} \le T_A \le 85 \text{ °C}.$

DC GPIO Specifications

Unless otherwise noted, Table 9 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: $4.75\,\text{V}$ to $5.25\,\text{V}$ and $-40\,^\circ\text{C} \le T_A \le 85\,^\circ\text{C}$, $3.0\,\text{V}$ to $3.6\,\text{V}$ and $-40\,^\circ\text{C} \le T_A \le 85\,^\circ\text{C}$, or $2.4\,\text{V}$ to $3.0\,\text{V}$ and $-40\,^\circ\text{C} \le T_A \le 85\,^\circ\text{C}$, respectively. Typical parameters apply to $5\,\text{V}$, $3.3\,\text{V}$, and $2.7\,\text{V}$ at $25\,^\circ\text{C}$. These are for design guidance only.

Table 9. 5 V and 3.3 V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
V _{OH1}	High output voltage, port 0, 2, or 3 pins	V _{DD} – 0.2	-	_	V	$I_{OH} \le 10 \ \mu\text{A}, \ V_{DD} \ge 3.0 \ \text{V}, \ \text{maximum of} \ 20 \ \text{mA source current in all I/Os}.$
V _{OH2}	High output voltage, port 0, 2, or 3 pins	V _{DD} – 0.9	-	_	V	I_{OH} = 1 mA, $V_{DD} \ge 3.0$ V, maximum of 20 mA source current in all I/Os.
V _{OH3}	High output voltage, port 1 pins with LDO regulator disabled	V _{DD} – 0.2	_	-	V	I_{OH} < 10 μ A, V_{DD} \geq 3.0 V, maximum of 10 mA source current in all I/Os.
V _{OH4}	High output voltage, port 1 pins with LDO regulator disabled	V _{DD} – 0.9	_	-	V	I_{OH} = 5 mA, $V_{DD} \ge 3.0$ V, maximum of 20 mA source current in all I/Os.
V _{OH5}	High output voltage, port 1 pins with 3.0 V LDO regulator enabled	2.7	3.0	3.3	V	I_{OH} < 10 µA, $V_{DD} \ge 3.1$ V, maximum of 4 I/Os all sourcing 5 mA.
V _{OH6}	High output voltage, port 1 pins with 3.0 V LDO regulator enabled	2.2	_	-	V	I_{OH} = 5 mA, $V_{DD} \ge 3.1$ V, maximum of 20 mA source current in all I/Os.
V _{OH7}	High output voltage, port 1 pins with 2.4 V LDO regulator enabled	2.1	2.4	2.7	V	I_{OH} < 10 μ A, V_{DD} \geq 3.0 V, maximum of 20 mA source current in all I/Os.
V _{OH8}	High output voltage, port 1 pins with 2.4 V LDO regulator enabled	2.0	-	-	V	I_{OH} < 200 μA, $V_{DD} \ge$ 3.0 V, maximum of 20 mA source current in all I/Os.
V _{OH9}	High output voltage, port 1 pins with 1.8 V LDO regulator enabled	1.6	1.8	2.0	V	I_{OH} < 10 µA, 3.0 V \leq V _{DD} \leq 3.6 V, 0 °C \leq T _A \leq 85 °C, maximum of 20 mA source current in all I/Os.
V _{OH10}	High output voltage, port 1 pins with 1.8 V LDO regulator enabled	1.5	_	-	V	I_{OH} < 100 µA, 3.0 V \leq V $_{DD}$ \leq 3.6 V, 0 °C \leq TA \leq 85 °C, maximum of 20 mA source current in all I/Os.

AC Electrical Characteristics

AC Chip Level Specifications

Table 16 and Table 17 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$, 3.0 V to 3.6 V and $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$, or 2.4 V to 3.0 V and $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$ respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 $^\circ\text{C}$. These are for design guidance only.

Table 16. 5 V and 3.3 V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{CPU1}	CPU frequency (3.3 V nominal)	0.75	-	12.6	MHz	12 MHz only for SLIMO Mode = 0
F _{32K1}	ILO frequency	15	32	64	kHz	
F _{32K_U}	ILO untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing.
F _{IMO12}	IMO stability for 12 MHz (Commercial temperature) ^[15]	11.4	12	12.6	MHz	Trimmed for 3.3 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 0.
F _{IMO6}	IMO stability for 6 MHz (Commercial temperature)	5.5	6.0	6.5	MHz	Trimmed for 3.3 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 1.
DC _{IMO}	Duty cycle of IMO	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
t _{RAMP}	Supply ramp time	0	-	_	μs	
t _{XRST}	External reset pulse width	10	-	_	μs	
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO} ^[16]	12 MHz IMO cycle-to-cycle jitter (RMS)	-	200	1600	ps	
	12 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	600	1400	ps	N = 32
	12 MHz IMO period jitter (RMS)	_	100	900	ps	

Notes
15.0 °C to 70 °C ambient, V_{DD} = 3.3 V.
16. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products - AN5054 for more information.

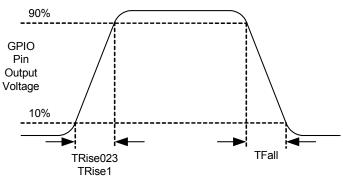
Table 17. 2.7 V AC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{CPU1A}	CPU frequency (2.7 V nominal)	0.75	-	3.25	MHz	2.4 V < V _{DD} < 3.0 V.
F _{CPU1B}	CPU frequency (2.7 V minimum)	0.75	-	6.3	MHz	2.7 V < V _{DD} < 3.0 V.
F _{32K1}	ILO frequency	8	32	96	kHz	
F _{32K_U}	ILO untrimmed frequency	5	-	-	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing.
F _{IMO12}	IMO stability for 12 MHz (Commercial temperature) ^[17]	11.0	12	12.9	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 0.
F _{IMO6}	IMO stability for 6 MHz (Commercial temperature)	5.5	6.0	6.5	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 14, SLIMO Mode = 1.
DC _{IMO}	Duty cycle of IMO	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
t _{RAMP}	Supply ramp time	0	-	_	μs	
t _{XRST}	External reset pulse width	10	-	_	μs	
t _{POWERUP}		-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO} ^[18]	12 MHz IMO cycle-to-cycle jitter (RMS)	-	500	900	ps	
	12 MHz IMO long term N cycle-to-cycle jitter (RMS)	_	800	1400	ps	N = 32
	12 MHz IMO period jitter (RMS)		300	500	ps	

Notes
17.0 °C to 70 °C ambient, V_{DD} = 3.3 V.
18. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products - AN5054 for more information.

AC GPIO Specifications

Table 18 and Table 19 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$ respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 $^{\circ}\text{C}$. These are for design guidance only.


Table 18. 5 V and 3.3 V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	_	6	MHz	Normal strong mode, Port 1.
t _{Rise023}	Rise time, strong mode, Cload = 50 pF, ports 0, 2, 3	15	_	80	ns	V _{DD} = 3.0 V to 3.6 V and 4.75 V to 5.25 V, 10% to 90%
t _{Rise1}	Rise time, strong mode, Cload = 50 pF, port 1	10	_	50	ns	V _{DD} = 3.0 V to 3.6 V, 10% to 90%
t _{Fall}	Fall time, strong mode, Cload = 50 pF, all ports	10	_	50	ns	V _{DD} = 3.0 V to 3.6 V and 4.75 V to 5.25 V, 10% to 90%

Table 19. 2.7 V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	1.5	MHz	Normal Strong Mode, Port 1.
t _{Rise023}	Rise time, strong mode, Cload = 50 pF, ports 0, 2, 3	15	_	100	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
t _{Rise1}	Rise time, strong mode, Cload = 50 pF, port 1	10	_	70	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%
t _{Fall}	Fall time, strong mode, Cload = 50 pF, all ports	10	_	70	ns	V _{DD} = 2.4 V to 3.0 V, 10% to 90%

Figure 9. GPIO Timing Diagram

AC Comparator Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 2.4 V to 3.0 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 20. AC Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{COMP}	Comparator response time, 50 mV overdrive	-	_	100 200	ns ns	$V_{DD} \ge 3.0 \text{ V}$ 2.4 V < V_{CC} < 3.0 V

Document Number: 001-41947 Rev. *N Page 21 of 41

Table 24. 2.7 V AC External Clock Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT2B}	Frequency with CPU clock divide by 2 or greater (2.7 V minimum)	1.5	_	12.6	MHz	$2.7\mathrm{V} < \mathrm{V}_{DD} < 3.0\mathrm{V}$. If the frequency of the external clock is greater than 3 MHz, the CPU clock divider is set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
_	High period with CPU clock divide by 1	160	_	5300	ns	
_	Low period with CPU clock divide by 1	160	-	-	ns	
_	Power-up IMO to switch	150	-	_	μs	

AC Programming Specifications

Table 25 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, 3.0 V to 3.6 V and $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, or 2.4 V to 3.0 V and $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$ respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 25. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes	
t _{RSCLK}	Rise time of SCLK	1	_	20	ns		
t _{FSCLK} Fall time of SCLK		1	_	20	ns		
t _{SSCLK} Data set up time to falling edge of SCLK		40	_	_	ns		
t _{HSCLK}	Data hold time from falling edge of SCLK	40	_	_	ns		
F _{SCLK}	Frequency of SCLK	0	_	8	MHz		
t _{ERASEB}	Flash erase time (Block)	-	10	_	ms		
t _{WRITE}	Flash block write time	_	40	-	ms		
t _{DSCLK}	Data out delay from falling edge of SCLK	_	_	45	ns	3.6 < V _{DD}	
t _{DSCLK3}	Data out delay from falling edge of SCLK	_	-	50	ns	$3.0 \le V_{DD} \le 3.6$	
t _{DSCLK2}	Data out delay from falling edge of SCLK	_	-	70	ns	$2.4 \le V_{DD} \le 3.0$	
t _{ERASEALL}	Flash erase time (Bulk)	_	20	_	ms	Erase all blocks and protection fields at once	
t _{PROGRAM_HOT}	Flash block erase + Flash block write time	_	_	100	ms	ns 0 °C ≤ Tj ≤ 100 °C	
t _{PROGRAM_COLD}	Flash block erase + Flash block write time	_	_	200	ms	$-40 ^{\circ}\text{C} \le \text{Tj} \le 0 ^{\circ}\text{C}$	

Page 24 of 41

AC I²C Specifications

Table 26 and Table 27 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$, 3.0 V to 3.6 V and $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$, or 2.4 V to 3.0 V and $-40~^\circ\text{C} \le T_A \le 85~^\circ\text{C}$ respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 $^\circ\text{C}$. These are for design guidance only.

Table 26. AC Characteristics of the I^2C SDA and SCL Pins for $V_{DD} \ge 3.0 \text{ V}$

Cumbal	Decembion	Standa	rd Mode	Fast Mode		Units	Notes
Symbol	Description	Min	Max	Min	Max	Units	Notes
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz	
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	_	0.6	-	μs	
t _{LOWI2C}	LOW period of the SCL clock	4.7	_	1.3	_	μs	
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	_	0.6	-	μs	
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μs	
t _{HDDATI2C}	Data hold time	0	_	0	_	μs	
t _{SUDATI2C}	Data setup time	250	_	100 ^[19]	_	ns	
t _{SUSTOI2C}	Setup time for STOP condition	4.0	_	0.6	_	μs	
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μs	
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter	-	-	0	50	ns	

Table 27. 2.7 V AC Characteristics of the I²C SDA and SCL Pins (Fast Mode not supported)

Symbol	Description	Standa	rd Mode	Fast Mode		Units	Notes
Symbol	Description	Min	Min Max		Min Max		Notes
F _{SCLI2C}	SCL clock frequency	0	100	-	_	kHz	
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	_	_	_	μs	
t _{LOWI2C}	LOW period of the SCL clock	4.7	-	-	-	μs	
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	-	-	μs	
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	_	-	_	μs	
t _{HDDATI2C}	Data hold time	0	_	-	-	μs	
t _{SUDATI2C}	Data setup time	250	-	-	-	ns	
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	-	-	μs	
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	_	-	_	μs	
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	-	_	_	_	ns	

Document Number: 001-41947 Rev. *N

^{19.} A Fast Mode I²C bus device is used in a Standard Mode I²C bus system but the requirement T_{SUDAT} ≥ 250 ns is met. This automatically is the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trmax + T_{SUDAT} = 1000 + 250 = 1250 ns (according to the Standard Mode I²C bus specification) before the SCL line is released.

I2C_SDA

T_SUDATI2C

T_HDDATI2C

T_HDDATI2C

T_HDDATI2C

T_HUSTAI2C

T_HUSTAI2C

T_HIGHI2C

T_LOWI2C

START Condition

Repeated START Condition

STOP Condition

Figure 10. Definition for Timing for Fast or Standard Mode on the I²C Bus

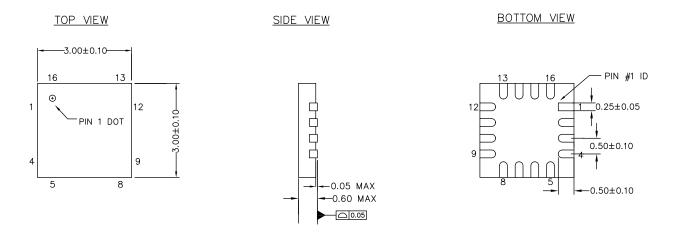
AC SPI Specifications

Table 28. SPI Master AC Specifications

Symbol	Description Conditions M		Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency		_	_	12	MHz
DC	SCLK duty cycle		_	50	-	%
t _{SETUP}	MISO to SCLK setup time		40	_	-	ns
t _{HOLD}	SCLK to MISO hold time		40	_	_	ns
t _{OUT_VAL}	SCLK to MOSI valid time		_	_	40	ns
t _{OUT_H}	MOSI high time		40	_	-	ns

Table 29. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency		_	_	4	MHz
t_{LOW}	SCLK low time		41.67	_	_	ns
t _{HIGH}	SCLK high time		41.67	_	_	ns
t _{SETUP}	MOSI to SCLK setup time		30	_	_	ns
t _{HOLD}	SCLK to MOSI hold time		50	_	_	ns
t _{SS_MISO}	SS high to MISO valid		_	_	153	ns
t _{SCLK_MISO}	SCLK to MISO valid		_	_	125	ns
t _{SS_HIGH}	SS high time		_	_	50	ns
t _{SS_CLK}	Time from SS low to first SCLK		2/SCLK	_	-	ns
t _{CLK_SS}	Time from last SCLK to SS high		2/SCLK	_	_	ns

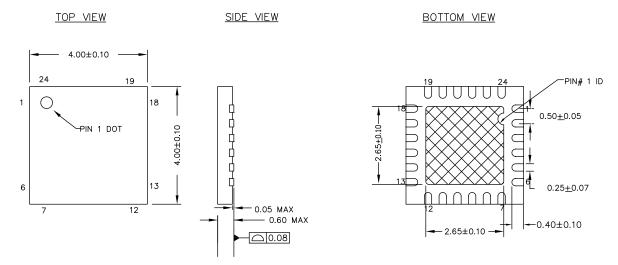


Packaging Dimensions

This section illustrates the packaging specifications for the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC devices, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

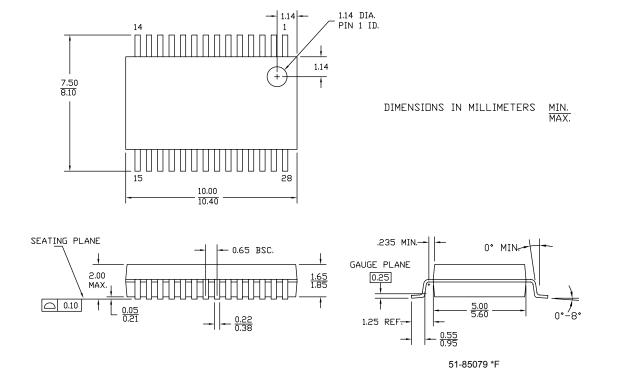
Figure 11. 16-pin Chip On-Lead (3 × 3 × 0.6 mm) (Sawn) Package Outline, 001-09116


NOTES

- 1. REFERENCE JEDEC # MO-220
- 2. ALL DIMENSIONS ARE IN MILLIMETERS

001-09116 *J

Figure 12. 24-pin QFN (4 × 4 × 0.55 mm) 2.65 × 2.65 E-Pad (Sawn) Package Outline, 001-13937

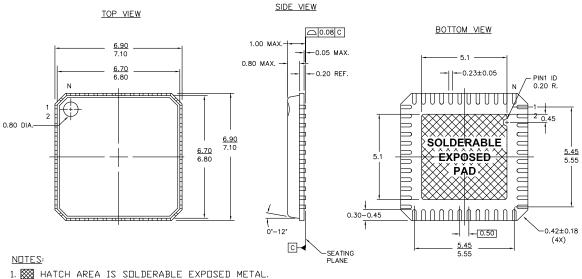


NOTES:

- 1. HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: $29 \pm 3 \text{ mg}$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13937 *F

Figure 13. 28-pin SSOP (210 Mils) Package Outline, 51-85079


001-48913 *D

001-12919 *D

Figure 14. 32-pin QFN (5 × 5 × 0.55 mm) 1.3 × 2.7 E-Pad (Sawn Type) Package Outline, 001-48913 **BOTTOM VIEW TOP VIEW** SIDE VIEW 5.0 ±0.10 PIN 1 ID $\overline{U}\overline{U}\overline{U}\overline{U}\overline{U}\overline{U}$ 0.5 ±0.05 PIN 1 DOT 0.25 ±0.05 0.05 MAX 0.40 ±0.10 0.60 MAX 1.299 _____O.05 C NOTES: 1. ZZZZ HATCH AREA IS SOLDERABLE EXPOSED PAD 2. BASED ON REF JEDEC # MO-248

Figure 15. 48-pin QFN (7 × 7 × 1.0 mm) 5.1 × 5.1 E-Pad (Subcon Punch Type Package) Package Outline, 001-12919

- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.13g

3. PACKAGE WEIGHT: 38mg ± 4 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

	PART #	DESCRIPTION
	LF48A	STANDARD
[LY48A	LEAD FREE

Important For information on the preferred dimensions for mounting the QFN packages, see the following application note at http://www.amkor.com/products/notes papers/MLFAppNote.pdf.

It is important to note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.

Thermal Impedances

Table 31. Thermal Impedances Per Package

Package	Typical θ _{JA} ^[20]
16-pin COL	46 °C/W
24-pin QFN ^[21]	25 °C/W
28-pin SSOP	96 °C/W
32-pin QFN ^[21]	27 °C/W
48-pin QFN ^[21]	28 °C/W

Solder Reflow Specifications

Table 32 lists the minimum solder reflow peak temperature to achieve good solderability.

Table 32. Solder Reflow Specifications

Package	Maximum Peak Temperature	Time at Maximum Peak Temperature
16-pin COL	260 °C	30 s
24-pin QFN	260 °C	30 s
28-pin SSOP	260 °C	30 s
32-pin QFN	260 °C	30 s
48-pin QFN	260 °C	30 s

 $^{20.\,\}mathrm{I_J} = \mathrm{T_A} + \mathrm{Power} \times \theta_{\mathrm{JA}}$ 21. To achieve the thermal impedance specified for the QFN package, the center thermal pad is soldered to the PCB ground plane.

Page 33 of 41

Acronyms

Acronyms Used

Table 34 lists the acronyms that are used in this document.

Table 34. Acronyms Used in this Datasheet

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter		on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PGA	programmable gain amplifier
CPU	central processing unit	POR	power on reset
EEPROM	electrically erasable programmable read-only memory	PPOR	precision power on reset
GPIO	general purpose I/O	PSoC®	Programmable System-on-Chip
ICE	in-circuit emulator	PWM	pulse width modulator
IDAC	current DAC	QFN	quad flat no leads
IDE	integrated development environment	SLIMO	slow IMO
ILO	internal low speed oscillator	SPI TM	serial peripheral interface
IMO	internal main oscillator	SRAM	static random access memory
I/O	input/output	SROM	supervisory read only memory
ISSP	in-system serial programming	SSOP	shrink small-outline package
LCD	liquid crystal display	USB	universal serial bus
LDO		WDT	watchdog timer
LED	light-emitting diode	WLCSP	wafer level chip scale package
LVD	low voltage detect	XRES	external reset
MCU	microcontroller unit		

Reference Documents

 $PSoC^{\$}\ CY8C20x34\ and\ PSoC^{\$}\ CY8C20x24\ Technical\ Reference\ Manual\ (TRM)-001-13033$

Design Aids – Reading and Writing PSoC[®] Flash – AN2015 (001-40459)

Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.

Document Number: 001-41947 Rev. *N

Glossary (continued)

- 1. A functional unit that performs a single function, such as an oscillator.
- 2. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.

buffer

- 1. A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for I/O operations, into which data is read, or from which
- 2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
- 3. An amplifier used to lower the output impedance of a system.

bus

- 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
- 2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
- 3. One or more conductors that serve as a common connection for a group of related devices.

clock

The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.

comparator

An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.

compiler

A program that translates a high level language, such as C, into machine language.

configuration space

In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.

crystal oscillator

An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.

check (CRC)

cyclic redundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.

A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.

debugger

data bus

A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and

analyze memory.

dead band

A period of time when neither of two or more signals are in their active state or in transition.

digital blocks

The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.

digital-to-analog (DAC)

A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.

duty cycle

The relationship of a clock period high time to its low time, expressed as a percent.

emulator

Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.

Glossary (continued)

SRAM An acronym for static random access memory. A memory device where you can store and retrieve data at a high

rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged

until it is explicitly altered or until power is removed from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate

circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code,

operating from Flash.

stop bit A signal following a character or block that prepares the receiving device to receive the next character or block.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.

2. A system whose operation is synchronized by a clock signal.

tri-state A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any

value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit,

allowing another output to drive the same net.

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower

level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming

Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal

program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during

the initialization phase of the program.

 V_{DD} A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.

V_{SS} A name for a power net meaning "voltage source." The most negative power supply signal.

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Document History Page (continued)

	Title: CY8C Number: 00		C20324/CY8C2	0424/CY8C20524, CapSense [®] PSoC [®] Programmable System-on-Chip™
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*L	3638597	BVI	06/06/2012	Updated Getting Started: Updated Application Notes: Updated Development Kits: Updated Development Kits: Updated description. Updated Training: Updated description. Updated CYPros Consultants: Updated description. Updated Solutions Library: Updated description. Updated Solutions Library: Updated description. Updated Technical Support: Updated description. Updated Table 28: Renamed "tout HIGH" as "tout_H" in "Symbol" column. Updated Table 29: Removed tsclk parameter and its details. Added Fsclk parameter and its details. Updated Packaging Dimensions: spec 001-09116 – Changed revision from *E to *F. spec 001-13937 – Changed revision from *D to *E. spec 001-12919 – Changed revision from *B to *C. Updated Solder Reflow Specifications: Updated Table 32: Replaced "Time at Maximum Temperature" with "Time at Maximum Peak Temperature" in column heading and updated details in that column. Updated Development Tool Selection: Updated PSoC Designer: Updated Reference Documents: Removed spec 001-17397 and spec 001-14503 from the list as these spec are obsolete.
*M	4311264	VAIR	03/19/2014	Updated Designing with PSoC Designer: Updated Configure User Modules: Updated description (Replaced references of PWM User Module with EzI2C User Module). Updated Packaging Dimensions: spec 001-09116 – Changed revision from *F to *J. spec 001-13937 – Changed revision from *D to *E. spec 001-48913 – Changed revision from *B to *D. spec 001-12919 – Changed revision from *C to *D.
*N	5625819	DCHE	02/09/2017	Updated Packaging Dimensions: spec 001-13937 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/wireless

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

ARM® Cortex® Microcontrollers

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

Microcontrollers

Wireless Connectivity

PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-41947 Rev. *N

Revised February 9, 2017

Page 41 of 41