

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	13
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc822t0friaafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC822/824

8-Bit Single-Chip Microcontroller

Data Sheet V1.2 2011-10

Microcontrollers

XC822/824

Table of Contents

Summary of Features

1 Summary of Features

The XC822/824 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 8 Kbytes of Boot ROM, Library ROM and User routines
 - 256 bytes of RAM
 - 256 bytes of XRAM
 - 2/4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 2.5 V 5.5 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

							7
2/4K Bytes Flash	LED and Touch Sense Controller		IIC	UART	SSC	Port 0	7-bit Digital VO
Boot ROM 8K Bytes	VCOO) Coro	Capture/Compare Unit 16-bit		On-Chip Debug Support	Port 1	6-bit Digital VO
XRAM 256 Bytes	XC800	JCore	Compare Unit 16-bit		ADC 10-bit 4-channel	Port 2	4-bit Digital/
RAM 256 Bytes	Timer 0 16-bit	Timer 1 16-bit	Timer 2 16-bit	Real-Time Clock	Watchdog Timer	MDU	
							-

Figure 1 XC822/824 Functional Units

- Power-on reset generation
- Brownout detection for IO supply and core logic supply
- 48 MHz on-chip OSC for clock generation
 Loss-of-Clock detection

(more features on next page)

Summary of Features

XC822/824 Variant Devices

The XC822/824 product family features devices with different configurations, program memory sizes, packages options and temperature profiles, to offer cost-effective solutions for different application requirements.

The list of XC822/824 device configurations are summarized in **Table 1**. The type of packages available are TSSOP-16 for XC822 and DSO-20 for XC824.

Device Name	MDU Module	LEDTSCU Module
XC822/824	No	No
XC822/824M	Yes	No
XC822/824T	No	Yes
XC822/824MT	Yes	Yes

Table 1Device Configuration

Table 2 shows the device sales type available, based on above device.

Table 2	Device Profile	
		_

Sales Type	Device Type	Program Memory (Kbytes)	Temp- erature Profile (°C)	Package Type	Quality Profile
SAF-XC822T-0FRI	Flash	2	-40 to 85	PG-TSSOP-16	Industrial
SAF-XC822-1FRI	Flash	4	-40 to 85	PG-TSSOP-16	Industrial
SAF-XC822T-1FRI	Flash	4	-40 to 85	PG-TSSOP-16	Industrial
SAF-XC822M-1FRI	Flash	4	-40 to 85	PG-TSSOP-16	Industrial
SAF-XC822MT-1FRI	Flash	4	-40 to 85	PG-TSSOP-16	Industrial
SAF-XC824M-1FGI	Flash	4	-40 to 85	PG-DSO-20	Industrial
SAF-XC824MT-1FGI	Flash	4	-40 to 85	PG-DSO-20	Industrial
SAX-XC824M-1FGI	Flash	4	-40 to 105	PG-DSO-20	Industrial
SAK-XC824M-1FGI	Flash	4	-40 to 125	PG-DSO-20	Industrial
SAF-XC822-1FRA	Flash	4	-40 to 85	PG-TSSOP-16	Automotive
SAF-XC822MT-1FRA	Flash	4	-40 to 85	PG-TSSOP-16	Automotive
SAK-XC822MT-0FRA	Flash	2	-40 to 125	PG-TSSOP-16	Automotive
SAK-XC822-1FRA	Flash	4	-40 to 125	PG-TSSOP-16	Automotive
SAK-XC822MT-1FRA	Flash	4	-40 to 125	PG-TSSOP-16	Automotive

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC822/824.

2.1 Block Diagram

The block diagram of the XC822/824 is shown in Figure 2.

Figure 2 XC822/824 Block Diagram

2.2 Logic Symbol

The logic symbol of the XC822/824 is shown in Figure 3.

Figure 3 XC822/824 Logic Symbol

The pin configuration of the XC824 in Figure 5.

Figure 5 XC824 Pin Configuration, PG-DSO-20 Package (top view)

XC822/824

General Device Information

Table 3Pin Definitions and Functions for XC822/824

Symbol	Pin Number DSO20/ TSSOP16	Туре	Reset State	Function	
P0.1	16/13		Hi-Z	T0_0	Timer 0 Input
				CC61_1	Input/Output of Capture/Compare channel 1
				MTSR_3	SSC Slave Receive Input
				MRST_2	SSC Master Receive Input/ Slave Transmit Output
				T13HR_0	CCU6 Timer 13 Hardware Run Input
				CCPOS1_0	CCU6 Hall Input 1
				TSIN1	Touch-sense Input 1
				LINE1	LED Line 1
P0.2	17/14		Hi-Z	T1_0	Timer 1 Input
				CC62_1	Input/Output of Capture/Compare channel 2
				SCL_1	IIC Clock Line
				CCPOS2_0	CCU6 Hall Input 2
				TSIN2	Touch-sense Input 2
				LINE2	LED Line 2
P0.3	18/15		Hi-Z	CC60_1	Input/Output of Capture/Compare channel 0
				SDA_1	IIC Data Line
				CTRAP_0	CCU6 Trap Input
				TSIN3	Touch-sense Input 3
				LINE3	LED Line 3

2.7 Chip Identification Number

The XC822/824 identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 51_{H} . However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product and variant type information.

Two methods are provided to read a device's Chip Identification number:

- In-application subroutine, GET_CHIP_INFO
- Boot-loader (BSL) mode A

 Table 5 lists the Chip Identification numbers of XC822/824 device variants.

Product Variant	Chip Identification Number
XC822T-0FR	51080343 _H
XC822MT-0FR	51080303 _H
XC822-1FR	51080163 _H
XC822T-1FR	51080143 _H
XC822M-1FR	51080123 _H
XC822MT-1FR	51080103 _H
XC824M-1FG	51080122 _H
XC824MT-1FG	51080102 _H

Table 5 Chip Identification Number

3 Electrical Parameters

Chapter 3 provides the characteristics of the electrical parameters which are implementation-specific for the XC822/824.

3.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 3.2** and **Section 3.3**.

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC822/824 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

- CC
 - These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC822/824 and must be regarded for a system design.
- SR
 - These parameters indicate System Requirements, which must be provided by the microcontroller system in which the XC822/824 is designed in.

3.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC822/824 can be subjected to without permanent damage.

Parameter	Symbol	Limit	Values	Unit	Notes
		Min.	Max.		
Ambient temperature	T _A	-40	125	°C	under bias
Storage temperature	T _{ST}	-65	150	°C	-
Junction temperature	TJ	-40	150	°C	under bias
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	
Input current on any pin during overload condition	I _{IN}	-10	10	mA	
Absolute sum of all input currents during overload condition	$\Sigma I_{\sf IN} $	_	50	mA	

Table 6Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

3.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

3.2.1 Input/Output Characteristics

Table 8 provides the characteristics of the input/output pins of the XC822/XC824.

Table 8Input/Output Characteristics of XC822/XC824 (Operating Conditions
apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			Min.	Max.			
Output low voltage on port pins	V_{OLP}	CC	_	1.0	V	I_{OL} = 25 mA (5 V) I_{OL} = 13 mA (3.3 V)	
			_	0.4	V	$I_{\rm OL}$ = 10 mA (5 V) $I_{\rm OL}$ = 5 mA (3.3 V)	
Output high voltage on port pins	V_{OHP}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -15 mA (5 V) I _{OH} = -8 mA (3.3 V)	
			V _{DDP} - 0.4	-	V	I _{OH} = -5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)	
Input low voltage on port pins	V_{ILP}	SR	-	$0.3 imes V_{ m DDP}$	V	CMOS Mode	
Input high voltage on port pins	V_{IHP}	SR	$0.7 imes V_{ m DDP}$	_	V	CMOS Mode	
Input Hysteresis ¹⁾	HYS	CC	$0.08 \times V_{ m DDP}$	_	V	CMOS Mode (5 V)	
			$0.03 imes V_{ m DDP}$	_	V	CMOS Mode (3.3 V)	
			$0.01 imes V_{ m DDP}$	_	V	CMOS Mode (2.5 V)	
Pull-up current on	$I_{\rm PUP}$	CC	-	-20	μA	V _{IH,min} (5 V)	
port pins			-150	-	μA	V _{IL,max} (5 V)	
			-	-5	μA	V _{IH,min} (3.3 V)	
			-100	-	μA	V _{IL,max} (3.3 V)	

		511511		Janny	Conditio		, , , DDP - 3 ()
Parameter	Symbol		Li	Limit Values			Test Conditions /
			Min.	Тур.	Max.	-	Remarks
Integral Nonlinearity	EA _{INL}	CC	-	-	±1.5	LSB	10-bit conversion ³⁾
Offset	EAOFF	CC	_	+4	-	LSB	10-bit conversion ³⁾
Gain	EAGAIN	CC	_	-4	-	LSB	10-bit conversion ³⁾
Switched capacitance at an analog input	C _{AINSW}	CC	_	2	3	pF	3)5)
Total capacitance at an analog input	C_{AINT}	CC	_	_	12	pF	3)5)
Input resistance of an analog input	R _{AIN}	CC	-	1.5	2	kΩ	3)

Table 10ADC Characteristics (Operating Conditions apply; $V_{DDP} = 5$ V)

1) 1.2 V at V_{DDP} = 3.0 V.

2) TUE is tested at $V_{\text{AREF}} = V_{\text{DDP}} = 5.0 \text{ V}$ and CPU clock ($f_{\text{SCLK, CCLK}}$) = 8 MHz.

3) Not subject to production test, verified by design/characterization.

If a reduced positive reference voltage is used, TUE will increase. If the positive reference is reduced by a factor of K, the TUE will increased by 1/K. Example:K = 0.8, 1/K = 1.25; 1.25 X TUE = 2.5 LSB10.

5) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

Figure 10 Differential like measurement with internal 1.2V voltage reference, and CH0 gnd.

Figure 11 ADC Input Circuits

Table 14Emulated Flash Data Retention and Endurance based on EEPROM
Emulation ROM Library (Operating Conditions apply)1)

Retention	Endurance ²⁾	Emulation Size	Remarks
2 years	1,600,000 cycles	31 bytes	
2 years	1,400,000 cycles	62 bytes	
2 years	1,200,000 cycles	93 bytes	
2 years	1,000,000 cycles	124 bytes	

1) EEPROM Emulation ROM Library can only be used in the 4 Kbyte Flash variant.

2) These values show the maximum endurance. Maximum endurance is the maximum possible unique data write if each data update is only 31 bytes. Minimum endurance cycle is the maximum possible unique data write if each data update is the same as the emulation size. The minimum endurance cycle can be calculated using the formulae [(max. endurance)*(31)/(emulation size)].

- 9) LEDTSCU active curent is measured with: module enabled, counter running in 8 MHz.
- 10) IIC active current is measured with: module enabled, performing a master transmit with the master clock running at 400 KHz.

3.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

3.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 12**, **Figure 13** and **Figure 14**.

Figure 12 Rise/Fall Time Parameters

Figure 13 Testing Waveform, Output Delay

Figure 14 Testing Waveform, Output High Impedance

3.3.2 Output Rise/Fall Times

Table 18 provides the characteristics of the output rise/fall times in the XC822/824.

Table 18 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values		Limit Values		Unit	Test Conditions
		Min.	Max.				
Rise/fall times on Standard Pad ¹⁾²⁾	t _R , t _F	-	10	ns	20 pF ³⁾⁴⁾ (5 V & 3.3 V).		

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.

3) Additional rise/fall time valid for $C_L = 20 \text{ pF} - C_L = 100 \text{ pF} @ 0.125 \text{ ns/pF} \text{ at 5 V supply voltage}.$

4) Additional rise/fall time valid for $C_L = 20 \text{ pF} - C_L = 100 \text{ pF} \cdot @ 0.225 \text{ ns/pF}$ at 3.3 V supply voltage.

Figure 15 Rise/Fall Times Parameters

3.3.3 Oscillator Timing and Wake-up Timing

Table 19 provides the characteristics of the power-on reset, PLL and Wake-up timings in the XC822/824.

Table 19 Power-On Reset Wake-up Timing¹⁾ (Operating Conditions apply)

Parameter	Symbol		Limit Values		ues	Unit	Test Conditions
			Min.	Тур.	Max.		
48 MHz Oscillator start-up time	t _{48MOSCST}	CC	_	_	13	μS	
75 KHz Oscillator start- up time	t _{75KOSCST}	CC	_	-	800	μS	
Flash initialization time	t _{FINT}	CC	-	160	_	μS	

1) Not subject to production test, verified by design/characterisation.

3.3.4 On-Chip Oscillator Characteristics

Table 20 provides the characteristics of the 48 MHz oscillator in the XC822/824.

Parameter	Symbol		Limit Values			Unit	Test Conditions
			Min.	Тур.	Max.		
Nominal frequency	f _{nom}	CC	-0.5 %	48	+0.5%	MHz	under nominal conditions ¹⁾ after trimming
Long term frequency deviation	Δf _{LT} CC	CC	-2.0	_	3.0	%	with respect to $f_{\rm NOM}$, over lifetime and temperature (0 °C to 85 °C)
			-4.5	_	4.5	%	with respect to $f_{\rm NOM}$, over lifetime and temperature (-40 °C to 125 °C)
Short term frequency deviation (over core supply voltage ²⁾)	Δf_{ST}	CC	-1	-	1	%	with respect to <i>f</i> _{NOM} , within one LIN message (< 10 ms 100 ms)

Table 20 48 MHz Oscillator Characteristics (Operating Conditions apply)

1) Nominal condition: $V_{\text{DDC}} = 2.5 \text{ V}, T_{\text{A}} = +25^{\circ}\text{C}.$

2) Core voltage supply, $V_{\text{DDC}} = 2.5 \text{ V} \pm 7.5\%$.

3.3.5.2 SSC Slave Mode Timing

Table 23 provides the SSC slave mode timing in the XC822/824.

Table 23	SSC Slave Mode	Timing ¹⁾ (Operating	Conditions apply; CL = 50 pF)
----------	----------------	---------------------------------	-------------------------------

Parameter	Sym	bol	Limit	Unit	
			Min.	Max.	
SCLK clock period	t ₀	SR	4 * T _{SSC} ²⁾	_	ns
MRST delay from SCLK	t ₁	CC	0	20	ns
MTSR setup to SCLK	<i>t</i> ₂	SR	46	-	ns
MTSR hold from SCLK	<i>t</i> ₃	SR	0	-	ns

1) Not subject to production test, verified by design/characterisation.

2) $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 166.7$ ns. T_{CPU} is the CPU clock period.

Figure 17 SSC Slave Mode Timing