




Welcome to **E-XFL.COM** 

### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

## **Applications of Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

| Details                         |                                                                        |
|---------------------------------|------------------------------------------------------------------------|
| Product Status                  | Obsolete                                                               |
| Core Processor                  | PowerPC G2                                                             |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                         |
| Speed                           | 200MHz                                                                 |
| Co-Processors/DSP               | Communications; RISC CPM                                               |
| RAM Controllers                 | DRAM, SDRAM                                                            |
| Graphics Acceleration           | No                                                                     |
| Display & Interface Controllers | -                                                                      |
| Ethernet                        | 10/100Mbps (3)                                                         |
| SATA                            | -                                                                      |
| USB                             | -                                                                      |
| Voltage - I/O                   | 3.3V                                                                   |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                       |
| Security Features               | -                                                                      |
| Package / Case                  | 480-LBGA Exposed Pad                                                   |
| Supplier Device Package         | 480-TBGA (37.5x37.5)                                                   |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kxpc8260zuihbc |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Table 2 lists recommended operational voltage conditions.

Table 2. Recommended Operating Conditions<sup>1</sup>

| Rating                         | Symbol         | 2.5-V Device <sup>2</sup> | Unit |
|--------------------------------|----------------|---------------------------|------|
| Core supply voltage            | VDD            | 2.4–2.7                   | V    |
| PLL supply voltage             | VCCSYN         | 2.4–2.7                   | V    |
| I/O supply voltage             | VDDH           | 3.135 – 3.465             | V    |
| Input voltage                  | VIN            | GND (-0.3) – 3.465        | V    |
| Junction temperature (maximum) | T <sub>j</sub> | 105                       | °C   |

Caution: These are the recommended and tested operating conditions. Proper device operating outside of these conditions is not guaranteed.

### NOTE: Core, PLL, and I/O Supply Voltages

VDDH, VCCSYN, and VDD must track each other and both must vary in the same direction—in the positive direction (+5% and +0.1 Vdc) or in the negative direction (-5% and -0.1 Vdc).

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V<sub>CC</sub>).

Figure 2 shows the undershoot and overshoot voltage of the 60x and local bus memory interface of the MPC8280. Note that in PCI mode the I/O interface is different.

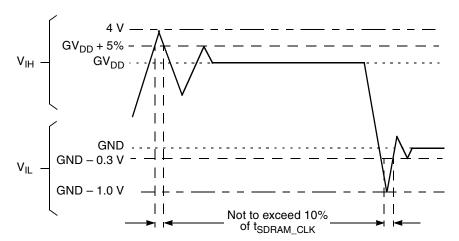



Figure 2. Overshoot/Undershoot Voltage

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

<sup>&</sup>lt;sup>2</sup> Parts labeled with an "-HVA" suffix are 2.6-V devices.



# Table 3 shows DC electrical characteristics.

Table 3. DC Electrical Characteristics<sup>1</sup>

| Characteristic                                                                             | Symbol           | Min | Max   | Unit |
|--------------------------------------------------------------------------------------------|------------------|-----|-------|------|
| Input high voltage, all inputs except CLKIN                                                | V <sub>IH</sub>  | 2.0 | 3.465 | V    |
| Input low voltage                                                                          | V <sub>IL</sub>  | GND | 0.8   | V    |
| CLKIN input high voltage                                                                   | V <sub>IHC</sub> | 2.4 | 3.465 | V    |
| CLKIN input low voltage                                                                    | V <sub>ILC</sub> | GND | 0.4   | V    |
| Input leakage current, V <sub>IN</sub> = VDDH <sup>2</sup>                                 | I <sub>IN</sub>  | _   | 10    | μΑ   |
| Hi-Z (off state) leakage current, V <sub>IN</sub> = VDDH <sup>2</sup>                      | I <sub>OZ</sub>  | _   | 10    | μΑ   |
| Signal low input current, V <sub>IL</sub> = 0.8 V                                          | IL               | _   | 1     | μA   |
| Signal high input current, V <sub>IH</sub> = 2.0 V                                         | I <sub>H</sub>   | _   | 1     | μΑ   |
| Output high voltage, $I_{OH} = -2 \text{ mA}$ except XFC, UTOPIA mode, and open drain pins | V <sub>OH</sub>  | 2.4 | _     | V    |
| In UTOPIA mode: I <sub>OH</sub> = -8.0mA<br>PA[0-31]<br>PB[4-31]<br>PC[0-31]<br>PD[4-31]   |                  |     |       |      |
| In UTOPIA mode: I <sub>OL</sub> = 8.0mA<br>PA[0-31]<br>PB[4-31]<br>PC[0-31]<br>PD[4-31]    | V <sub>OL</sub>  | _   | 0.5   | V    |



# Table 3. DC Electrical Characteristics<sup>1</sup> (continued)

| Characteristic                   | Symbol          | Min | Max | Unit |
|----------------------------------|-----------------|-----|-----|------|
| I <sub>OL</sub> = 7. <u>0m</u> A | V <sub>OL</sub> | _   | 0.4 | V    |
| BR                               |                 |     |     |      |
| BG                               |                 |     |     |      |
| ABB/IRQ2                         |                 |     |     |      |
| TS<br>NO 241                     |                 |     |     |      |
| A[0-31]                          |                 |     |     |      |
| TT[0-4]<br>TBST                  |                 |     |     |      |
| TSIZE[0-3]                       |                 |     |     |      |
| AACK                             |                 |     |     |      |
| ARTRY                            |                 |     |     |      |
| DBG                              |                 |     |     |      |
| DBB/IRQ3                         |                 |     |     |      |
| D[0-63]                          |                 |     |     |      |
| DP(0)/RSRV/EXT_BR2               |                 |     |     |      |
| DP(1)/IRQ1/EXT_BG2               |                 |     |     |      |
| DP(2)/TLBISYNC/IRQ2/EXT_DBG2     |                 |     |     |      |
| DP(3)/IRQ3/EXT_BR3/CKSTP_OUT     |                 |     |     |      |
| DP(4)/IRQ4/EXT_BG3/CORE_SREST    |                 |     |     |      |
| DP(5)/TBEN/IRQ5/EXT_DBG3         |                 |     |     |      |
| DP(6)/CSE(0)/IRQ6                |                 |     |     |      |
| DP(7)/CSE(1)/IRQ7                |                 |     |     |      |
| PSDVAL<br>TA                     |                 |     |     |      |
| TA<br>TEA                        |                 |     |     |      |
| GBL/IRQ1                         |                 |     |     |      |
| CI/BADDR29/IRQ2                  |                 |     |     |      |
| WT/BADDR30/IRQ3                  |                 |     |     |      |
| L2_HIT/IRQ4                      |                 |     |     |      |
| CPU_BG/BADDR31/IRQ5              |                 |     |     |      |
| CPU_DBG                          |                 |     |     |      |
| CPU_BR                           |                 |     |     |      |
| IRQ0/NMI_OUT                     |                 |     |     |      |
| IRQ7/INT_OUT/APE                 |                 |     |     |      |
| PORESET                          |                 |     |     |      |
| HRESET                           |                 |     |     |      |
| SRESET                           |                 |     |     |      |
| RSTCONF                          |                 |     |     |      |
| QREQ                             |                 |     |     |      |



# 2.3.1 Layout Practices

Each  $V_{CC}$  pin should be provided with a low-impedance path to the board's power supply. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The  $V_{CC}$  power supply should be bypassed to ground using at least four 0.1  $\mu F$  by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip  $V_{CC}$  and ground should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as  $V_{CC}$  and GND planes.

All output pins on the MPC8260 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the  $V_{CC}$  and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

Table 5 provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required for conditions above  $P_D = 3W$  (when the ambient temperature is  $70^{\circ}$  C or greater) to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink.

| Bus<br>(MHz) |                   |                   |              |              |      |      | P <sub>INT</sub> (W) <sup>2</sup> |      |                  |
|--------------|-------------------|-------------------|--------------|--------------|------|------|-----------------------------------|------|------------------|
|              | CPM<br>Multiplier | CPU<br>Multiplier | CPM<br>(MHz) | CPU<br>(MHz) | VddI |      |                                   |      |                  |
| , ,          | -                 |                   |              |              | 2.4  | 2.5  | 2.6                               | 2.7  | 2.8 <sup>3</sup> |
| 33.3         | 4                 | 4                 | 133.3        | 133.3        | 2.04 | 2.14 | 2.26                              | 2.38 | 2.50             |
| 50.0         | 2                 | 3                 | 100          | 150.0        | 2.21 | 2.30 | 2.45                              | 2.59 | 2.69             |
| 66.7         | 2                 | 2.5               | 133.3        | 166.7        | 2.47 | 2.62 | 2.74                              | 2.88 | 3.02             |
| 66.7         | 2.5               | 2.5               | 166.7        | 166.7        | 2.57 | 2.69 | 2.83                              | 2.98 | 3.12             |
| 66.7         | 2                 | 3                 | 133.3        | 200.0        | 2.81 | 2.95 | 3.12                              | 3.29 | 3.43             |
| 66.7         | 2.5               | 3                 | 166.7        | 200.0        | 2.88 | 3.05 | 3.22                              | 3.38 | 3.55             |
| 50.0         | 3                 | 4                 | 150          | 200.0        | 2.83 | 3.00 | 3.14                              | 3.31 | 3.48             |

Table 5. Estimated Power Dissipation for Various Configurations<sup>1</sup>

#### Note:

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

<sup>&</sup>lt;sup>1</sup> Test temperature = room temperature (25° C)

 $<sup>^{2}</sup>$  P<sub>INT</sub> = I<sub>DD</sub> x V<sub>DD</sub> Watts

<sup>3 2.8</sup> Vddl does not apply to HiP3 Rev C silicon.



## 2.4 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for the 66 MHz MPC8260 device. Note that AC timings are based on a 50-pf load. Typical output buffer impedances are shown in Table 6.

Table 6. Output Buffer Impedances<sup>1</sup>

| Output Buffers    | Typical Impedance ( $\Omega$ ) |
|-------------------|--------------------------------|
| 60x bus           | 40                             |
| Local bus         | 40                             |
| Memory controller | 40                             |
| Parallel I/O      | 46                             |

#### Note:

Table 7 lists CPM output characteristics.

Table 7. AC Characteristics for CPM Outputs<sup>1</sup>

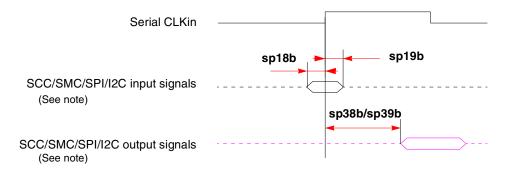
| Spec N | lumber | Characteristic                                   | Max Delay (ns) | Min Delay (ns) |
|--------|--------|--------------------------------------------------|----------------|----------------|
| Max    | Min    | Characteristic                                   | 66 MHz         | 66 MHz         |
| sp36a  | sp37a  | FCC outputs—internal clock (NMSI)                | 6              | 1              |
| sp36b  | sp37b  | FCC outputs—external clock (NMSI)                | 14             | 2              |
| sp40   | sp41   | TDM outputs/SI                                   | 25             | 5              |
| sp38a  | sp39a  | SCC/SMC/SPI/I2C outputs—internal clock (NMSI)    | 19             | 1              |
| sp38b  | sp39b  | Ex_SCC/SMC/SPI/I2C outputs—external clock (NMSI) | 19             | 2              |
| sp42   | sp43   | PIO/TIMER/IDMA outputs                           | 14             | 1              |

### Note:

Table 8 lists CPM input characteristics.

### NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

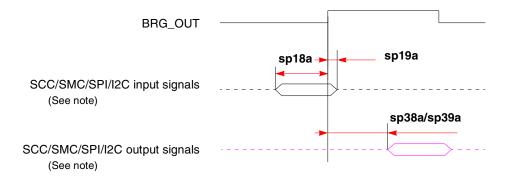

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

These are typical values at 65° C. The impedance may vary by ±25% with process and temperature.

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.



Figure 5 shows the SCC/SMC/SPI/I<sup>2</sup>C external clock.



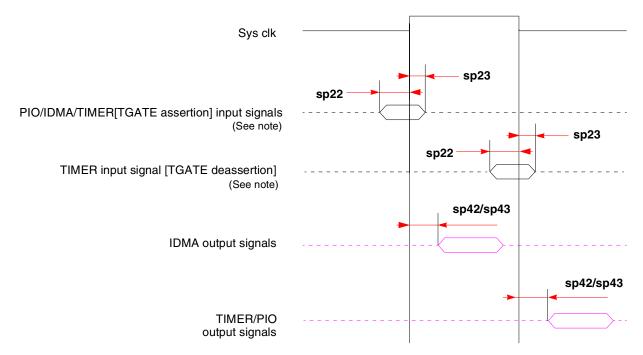

Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I<sup>2</sup>C External Clock Diagram

Figure 6 shows the SCC/SMC/SPI/I<sup>2</sup>C internal clock.




Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I<sup>2</sup>C Internal Clock Diagram



Figure 7 shows PIO, timer, and DMA signals.



Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.

Figure 7. PIO, Timer, and DMA Signal Diagram

Table 9 lists SIU input characteristics.

Table 9. AC Characteristics for SIU Inputs<sup>1</sup>

| Spec N | lumber | Characteristic                   | Setup (ns) | Hold (ns) |
|--------|--------|----------------------------------|------------|-----------|
| Setup  | Hold   | Onaracteristic                   | 66 MHz     | 66 MHz    |
| sp11   | sp10   | AACK/ARTRY/TA/TS/TEA/DBG/BG/BR   | 6          | 1         |
| sp12   | sp10   | Data bus in normal mode          | 5          | 1         |
| sp13   | sp10   | Data bus in ECC and PARITY modes | 8          | 1         |
| sp14   | sp10   | DP pins                          | 8          | 1         |
| sp14   | sp10   | All other pins                   | 5          | 1         |

## Note:

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.



Figure 9 shows the interaction of several bus signals.

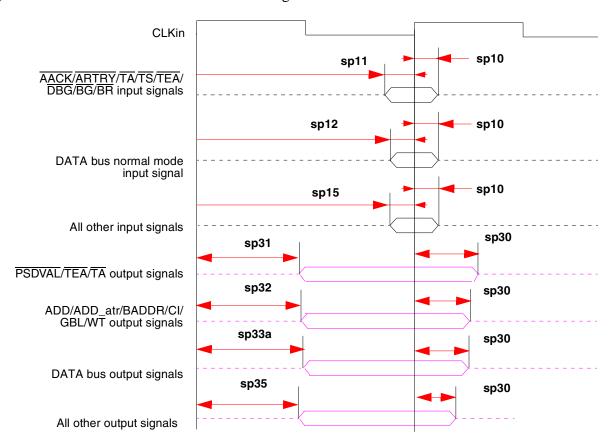



Figure 9. Bus Signals

Figure 10 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).

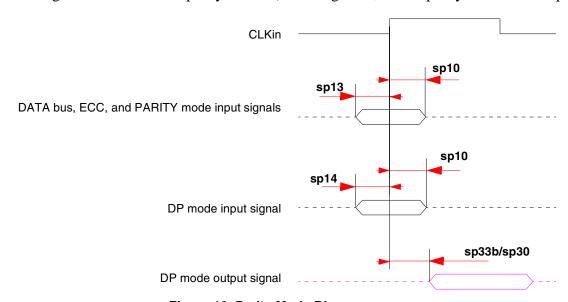



Figure 10. Parity Mode Diagram

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



Figure 11 shows signal behavior in MEMC mode.

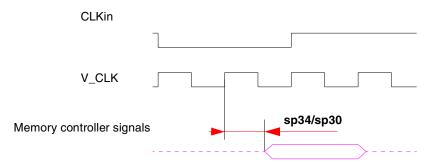



Figure 11. MEMC Mode Diagram

#### **NOTE**

Generally, all MPC8260 bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 11.

**Table 11. Tick Spacing for Memory Controller Signals** 

| PLL Clock Ratio         | Tick Spacing (T1 Occurs at the Rising Edge of CLKin) |           |             |  |
|-------------------------|------------------------------------------------------|-----------|-------------|--|
| PLE CIOCK NATIO         | T2                                                   | Т3        | Т4          |  |
| 1:2, 1:3, 1:4, 1:5, 1:6 | 1/4 CLKin                                            | 1/2 CLKin | 3/4 CLKin   |  |
| 1:2.5                   | 3/10 CLKin                                           | 1/2 CLKin | 8/10 CLKin  |  |
| 1:3.5                   | 4/14 CLKin                                           | 1/2 CLKin | 11/14 CLKin |  |

Figure 12 is a graphical representation of Table 11.

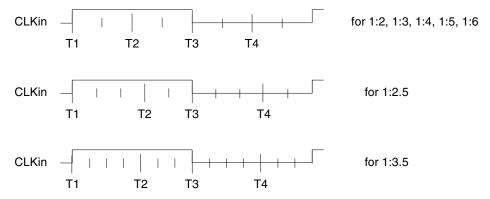



Figure 12. Internal Tick Spacing for Memory Controller Signals

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



Table 13. Clock Configuration Modes<sup>1</sup> (continued)

| MODCK_H-MODCK[1-3] | Input Clock<br>Frequency <sup>2,3,4</sup> | CPM Multiplication<br>Factor <sup>2, 5</sup> | CPM<br>Frequency <sup>2</sup> | Core Multiplication<br>Factor <sup>2, 6</sup> | Core<br>Frequency <sup>2</sup> |
|--------------------|-------------------------------------------|----------------------------------------------|-------------------------------|-----------------------------------------------|--------------------------------|
| 0001_101           | 33 MHz                                    | 3                                            | 100 MHz                       | 4                                             | 133 MHz                        |
| 0001_110           | 33 MHz                                    | 3                                            | 100 MHz                       | 5                                             | 166 MHz                        |
| 0001_111           | 33 MHz                                    | 3                                            | 100 MHz                       | 6                                             | 200 MHz                        |
| 0010_000           | 33 MHz                                    | 3                                            | 100 MHz                       | 7                                             | 233 MHz                        |
| 0010_001           | 33 MHz                                    | 3                                            | 100 MHz                       | 8                                             | 266 MHz                        |
| 0010_010           | 33 MHz                                    | 4                                            | 133 MHz                       | 4                                             | 133 MHz                        |
| 0010_011           | 33 MHz                                    | 4                                            | 133 MHz                       | 5                                             | 166 MHz                        |
| 0010_100           | 33 MHz                                    | 4                                            | 133 MHz                       | 6                                             | 200 MHz                        |
| 0010_101           | 33 MHz                                    | 4                                            | 133 MHz                       | 7                                             | 233 MHz                        |
| 0010_110           | 33 MHz                                    | 4                                            | 133 MHz                       | 8                                             | 266 MHz                        |
|                    | 1                                         |                                              | -                             |                                               | !                              |
| 0010_111           | 33 MHz                                    | 5                                            | 166 MHz                       | 4                                             | 133 MHz                        |
| 0011_000           | 33 MHz                                    | 5                                            | 166 MHz                       | 5                                             | 166 MHz                        |
| 0011_001           | 33 MHz                                    | 5                                            | 166 MHz                       | 6                                             | 200 MHz                        |
| 0011_010           | 33 MHz                                    | 5                                            | 166 MHz                       | 7                                             | 233 MHz                        |
| 0011_011           | 33 MHz                                    | 5                                            | 166 MHz                       | 8                                             | 266 MHz                        |
| 0011_100           | 33 MHz                                    | 6                                            | 200 MHz                       | 4                                             | 133 MHz                        |
| 0011_101           | 33 MHz                                    | 6                                            | 200 MHz                       | 5                                             | 166 MHz                        |
| 0011_110           | 33 MHz                                    | 6                                            | 200 MHz                       | 6                                             | 200 MHz                        |
| 0011_111           | 33 MHz                                    | 6                                            | 200 MHz                       | 7                                             | 233 MHz                        |
| 0100_000           | 33 MHz                                    | 6                                            | 200 MHz                       | 8                                             | 266 MHz                        |
|                    |                                           |                                              |                               |                                               |                                |
| 0100_001           |                                           |                                              | Reserved                      |                                               |                                |
| 0100_010           |                                           |                                              |                               |                                               |                                |
| 0100_011           |                                           |                                              |                               |                                               |                                |
| 0100_100           |                                           |                                              |                               |                                               |                                |
| 0100_101           |                                           |                                              |                               |                                               |                                |
| 0100_110           |                                           |                                              |                               |                                               |                                |



- <sup>1</sup> Because of speed dependencies, not all of the possible configurations in Table 13 are applicable.
- <sup>2</sup> The user should choose the input clock frequency and the multiplication factors such that the frequency of the CPU ranges between 133–200 and the CPM ranges between 50–166 MHz.
- <sup>3</sup> Input clock frequency is given only for the purpose of reference. User should set MODCK\_H-MODCK\_L so that the resulting configuration does not exceed the frequency rating of the user's part.
- <sup>4</sup> 60x and local bus frequency. Identical to CLKIN.
- <sup>5</sup> CPM multiplication factor = CPM clock/bus clock
- <sup>6</sup> CPU multiplication factor = Core PLL multiplication factor

This section provides the pin assignments and pinout list for the MPC8260.



# 4.1 Pin Assignments

Figure 13 shows the pinout of the MPC8260 480 TBGA package as viewed from the top surface.

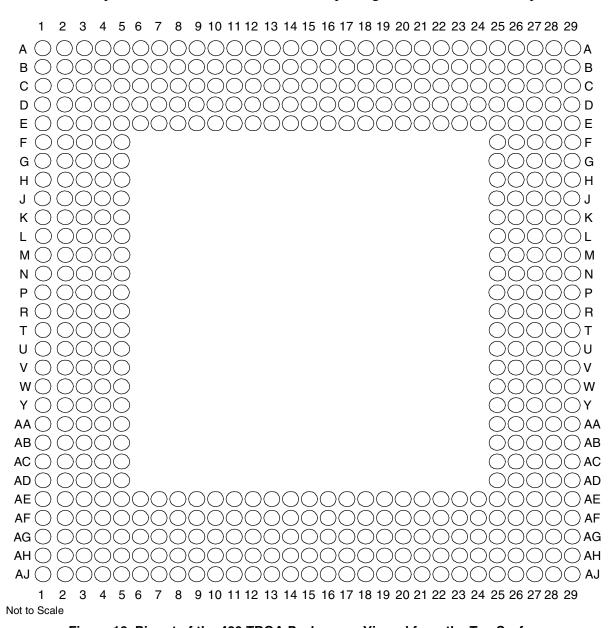



Figure 13. Pinout of the 480 TBGA Package as Viewed from the Top Surface

 ${\bf MPC8260\ PowerQUICC\ II\ Integrated\ Communications\ Processor\ Hardware\ Specifications,\ Rev.\ 2}$ 



# **Table 14. Pinout List (continued)**

| Pin Name | Ball |
|----------|------|
| A18      | M5   |
| A19      | N5   |
| A20      | N4   |
| A21      | N3   |
| A22      | N2   |
| A23      | N1   |
| A24      | P4   |
| A25      | P3   |
| A26      | P2   |
| A27      | P1   |
| A28      | R1   |
| A29      | R3   |
| A30      | R5   |
| A31      | R4   |
| тто      | F1   |
| TT1      | G4   |
| TT2      | G3   |
| TT3      | G2   |
| TT4      | F2   |
| TBST     | D3   |
| TSIZ0    | C1   |
| TSIZ1    | E4   |
| TSIZ2    | D2   |
| TSIZ3    | F5   |
| AACK     | F3   |
| ARTRY    | E1   |
| DBG      | V1   |
| DBB/IRQ3 | V2   |
| D0       | B20  |
| D1       | A18  |
| D2       | A16  |
| D3       | A13  |
| D4       | E12  |
| D5       | D9   |
| D6       | A6   |

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



# **Table 14. Pinout List (continued)**

| Pin Name                     | Ball |
|------------------------------|------|
| D42                          | A14  |
| D43                          | B12  |
| D44                          | A10  |
| D45                          | D8   |
| D46                          | B6   |
| D47                          | C4   |
| D48                          | C18  |
| D49                          | E16  |
| D50                          | B14  |
| D51                          | C12  |
| D52                          | B10  |
| D53                          | A7   |
| D54                          | C6   |
| D55                          | D5   |
| D56                          | B18  |
| D57                          | B16  |
| D58                          | E14  |
| D59                          | D12  |
| D60                          | C10  |
| D61                          | E8   |
| D62                          | D6   |
| D63                          | C2   |
| DP0/RSRV/EXT_BR2             | B22  |
| IRQ1/DP1/EXT_BG2             | A22  |
| IRQ2/DP2/TLBISYNC/EXT_DBG2   | E21  |
| IRQ3/DP3/CKSTP_OUT/EXT_BR3   | D21  |
| IRQ4/DP4/CORE_SRESET/EXT_BG3 | C21  |
| IRQ5/DP5/TBEN/EXT_DBG3       | B21  |
| IRQ6/DP6/CSE0                | A21  |
| IRQ7/DP7/CSE1                | E20  |
| PSDVAL                       | V3   |
| TA                           | C22  |
| TEA                          | V5   |
| GBL/IRQ1                     | W1   |
| CI/BADDR29/IRQ2              | U2   |

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



# **Table 14. Pinout List (continued)**

| Pin Name                 | Ball |
|--------------------------|------|
| WT/BADDR30/IRQ3          | U3   |
| L2_HIT/IRQ4              | Y4   |
| CPU_BG/BADDR31/IRQ5      | U4   |
| CPU_DBG                  | R2   |
| CPU_BR                   | Y3   |
| CS0                      | F25  |
| CS1                      | C29  |
| CS2                      | E27  |
| CS3                      | E28  |
| CS4                      | F26  |
| CS5                      | F27  |
| CS6                      | F28  |
| CS7                      | G25  |
| CS8                      | D29  |
| CS9                      | E29  |
| CS10/BCTL1               | F29  |
| CS11/AP0                 | G28  |
| BADDR27                  | T5   |
| BADDR28                  | U1   |
| ALE                      | T2   |
| BCTL0                    | A27  |
| PWE0/PSDDQM0/PBS0        | C25  |
| PWE1/PSDDQM1/PBS1        | E24  |
| PWE2/PSDDQM2/PBS2        | D24  |
| PWE3/PSDDQM3/PBS3        | C24  |
| PWE4/PSDDQM4/PBS4        | B26  |
| PWE5/PSDDQM5/PBS5        | A26  |
| PWE6/PSDDQM6/PBS6        | B25  |
| PWE7/PSDDQM7/PBS7        | A25  |
| PSDA10/PGPL0             | E23  |
| PSDWE/PGPL1              | B24  |
| POE/PSDRAS/PGPL2         | A24  |
| PSDCAS/PGPL3             | B23  |
| PGTA/PUPMWAIT/PGPL4/PPBS | A23  |
| PSDAMUX/PGPL5            | D22  |

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



# **Table 14. Pinout List (continued)**

| Pin Name                                                             | Ball              |
|----------------------------------------------------------------------|-------------------|
| PA22/FCC1_UT8_TXD3/FCC1_UT16_TXD11                                   | AF12 <sup>2</sup> |
| PA23/FCC1_UT8_TXD2/FCC1_UT16_TXD10                                   | AG11 <sup>2</sup> |
| PA24/FCC1_UT8_TXD1/FCC1_UT16_TXD9/MSNUM1                             | AH9 <sup>2</sup>  |
| PA25/FCC1_UT8_TXD0/FCC1_UT16_TXD8/MSNUM0                             | AJ8 <sup>2</sup>  |
| PA26/FCC1_UTM_RXCLAV/FCC1_UTS_RXCLAV/FCC1_MII_RX_ER                  | AH7 <sup>2</sup>  |
| PA27/FCC1_UT_RXSOC/FCC1_MII_RX_DV                                    | AF7 <sup>2</sup>  |
| PA28/FCC1_UTM_RXENB/FCC1_UTS_RXENB/FCC1_MII_TX_EN                    | AD5 <sup>2</sup>  |
| PA29/FCC1_UT_TXSOC/FCC1_MII_TX_ER                                    | AF1 <sup>2</sup>  |
| PA30/FCC1_UTM_TXCLAV/FCC1_UTS_TXCLAV/FCC1_MII_CRS/FCC1_RTS           | AD3 <sup>2</sup>  |
| PA31/FCC1_UTM_TXENB/FCC1_UTS_TXENB/FCC1_MII_COL                      | AB5 <sup>2</sup>  |
| PB4/FCC3_TXD3/FCC2_UT8_RXD0/L1RSYNCA2/FCC3_RTS                       | AD28 <sup>2</sup> |
| PB5/FCC3_TXD2/FCC2_UT8_RXD1/L1TSYNCA2/L1GNTA2                        | AD26 <sup>2</sup> |
| PB6/FCC3_TXD1/FCC2_UT8_RXD2/L1RXDA2/L1RXD0A2                         | AD25 <sup>2</sup> |
| PB7/FCC3_TXD0/FCC3_TXD/FCC2_UT8_RXD3/L1TXDA2/L1TXD0A2                | AE26 <sup>2</sup> |
| PB8/FCC2_UT8_TXD3/FCC3_RXD0/FCC3_RXD/TXD3/L1RSYNCD1                  | AH27 <sup>2</sup> |
| PB9/FCC2_UT8_TXD2/FCC3_RXD1/L1TXD2A2/L1TSYNCD1/L1GNTD1               | AG24 <sup>2</sup> |
| PB10/FCC2_UT8_TXD1/FCC3_RXD2/L1RXDD1                                 | AH24 <sup>2</sup> |
| PB11/FCC3_RXD3/FCC2_UT8_TXD0/L1TXDD1                                 | AJ24 <sup>2</sup> |
| PB12/FCC3_MII_CRS/L1CLKOB1/L1RSYNCC1/TXD2                            | AG22 <sup>2</sup> |
| PB13/FCC3_MII_COL/L1RQB1/L1TSYNCC1/L1GNTC1/L1TXD1A2                  | AH21 <sup>2</sup> |
| PB14/FCC3_MII_TX_EN/RXD3/L1RXDC1                                     | AG20 <sup>2</sup> |
| PB15/FCC3_MII_TX_ER/RXD2/L1TXDC1                                     | AF19 <sup>2</sup> |
| PB16/FCC3_MII_RX_ER/L1CLKOA1/CLK18                                   | AJ18 <sup>2</sup> |
| PB17/FCC3_MII_RX_DV/L1RQA1/CLK17                                     | AJ17 <sup>2</sup> |
| PB18/FCC2_UT8_RXD4/FCC2_RXD3/L1CLKOD2/L1RXD2A2                       | AE14 <sup>2</sup> |
| PB19/FCC2_UT8_RXD5/FCC2_RXD2/L1RQD2/L1RXD3A2                         | AF13 <sup>2</sup> |
| PB20/FCC2_UT8_RXD6/FCC2_RXD1/L1RSYNCD2/L1TXD1A1                      | AG12 <sup>2</sup> |
| PB21/FCC2_UT8_RXD7/FCC2_RXD0/FCC2_RXD/L1TSYNCD2/L1GNTD2/<br>L1TXD2A1 | AH11 <sup>2</sup> |
| PB22/FCC2_UT8_TXD7/FCC2_TXD0/FCC2_TXD/L1RXD1A1/L1RXDD2               | AH16 <sup>2</sup> |
| PB23/FCC2_UT8_TXD6/FCC2_TXD1/L1RXD2A1/L1TXDD2                        | AE15 <sup>2</sup> |
| PB24/FCC2_UT8_TXD5/FCC2_TXD2/L1RXD3A1/L1RSYNCC2                      | AJ9 <sup>2</sup>  |
| PB25/FCC2_UT8_TXD4/FCC2_TXD3/L1TSYNCC2/L1GNTC2/L1TXD3A1              | AE9 <sup>2</sup>  |
| PB26/FCC2_MII_CRS/FCC2_UT8_TXD1/L1RXDC2                              | AJ7 <sup>2</sup>  |
| PB27/FCC2_MII_COL/FCC2_UT8_TXD0/L1TXDC2                              | AH6 <sup>2</sup>  |

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



# **Table 14. Pinout List (continued)**

| Pin Name                                                                | Ball              |
|-------------------------------------------------------------------------|-------------------|
| PB28/FCC2_MII_RX_ER/FCC2_RTS/L1TSYNCB2/L1GNTB2/TXD1                     | AE3 <sup>2</sup>  |
| PB29/FCC2_UTM_RXCLAV/FCC2_UTS_RXCLAV/L1RSYNCB2/<br>FCC2_MII_TX_EN       | AE2 <sup>2</sup>  |
| PB30/FCC2_MII_RX_DV/FCC2_UT_TXSOC/L1RXDB2                               | AC5 <sup>2</sup>  |
| PB31/FCC2_MII_TX_ER/FCC2_UT_RXSOC/L1TXDB2                               | AC4 <sup>2</sup>  |
| PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2                                         | AB26 <sup>2</sup> |
| PC1/DREQ2/BRGO6/L1RQA2                                                  | AD29 <sup>2</sup> |
| PC2/FCC3_CD/FCC2_UT8_TXD3/DONE2                                         | AE29 <sup>2</sup> |
| PC3/FCC3_CTS/FCC2_UT8_TXD2/DACK2/CTS4                                   | AE27 <sup>2</sup> |
| PC4/FCC2_UTM_RXENB/FCC2_UTS_RXENB/SI2_L1ST4/FCC2_CD                     | AF27 <sup>2</sup> |
| PC5/FCC2_UTM_TXCLAV/FCC2_UTS_TXCLAV/SI2_L1ST3/FCC2_CTS                  | AF24 <sup>2</sup> |
| PC6/FCC1_CD/L1CLKOC1/FCC1_UTM_RXADDR2/FCC1_UTS_RXADDR2/FCC1_UTM_RXCLAV1 | AJ26 <sup>2</sup> |
| PC7/FCC1_CTS/L1RQC1/FCC1_UTM_TXADDR2/FCC1_UTS_TXADDR2/FCC1_UTM_TXCLAV1  | AJ25 <sup>2</sup> |
| PC8/CD4/RENA4/FCC1_UT16_TXD0/SI2_L1ST2/CTS3                             | AF22 <sup>2</sup> |
| PC9/CTS4/CLSN4/FCC1_UT16_TXD1/SI2_L1ST1/L1TSYNCA2/L1GNTA2               | AE21 <sup>2</sup> |
| PC10/CD3/RENA3/FCC1_UT16_TXD2/SI1_L1ST4/FCC2_UT8_RXD3                   | AF20 <sup>2</sup> |
| PC11/CTS3/CLSN3/L1CLKOD1/L1TXD3A2/FCC2_UT8_RXD2                         | AE19 <sup>2</sup> |
| PC12/CD2/RENA2/SI1_L1ST3/FCC1_UTM_RXADDR1/FCC1_UTS_RXADDR1              | AE18 <sup>2</sup> |
| PC13/CTS2/CLSN2/L1RQD1/FCC1_UTM_TXADDR1/FCC1_UTS_TXADDR1                | AH18 <sup>2</sup> |
| PC14/CD1/RENA1/FCC1_UTM_RXADDR0/FCC1_UTS_RXADDR0                        | AH17 <sup>2</sup> |
| PC15/CTS1/CLSN1/SMTXD2/FCC1_UTM_TXADDR0/FCC1_UTS_TXADDR0                | AG16 <sup>2</sup> |
| PC16/CLK16/TIN4                                                         | AF15 <sup>2</sup> |
| PC17/CLK15/TIN3/BRGO8                                                   | AJ15 <sup>2</sup> |
| PC18/CLK14/TGATE2                                                       | AH14 <sup>2</sup> |
| PC19/CLK13/BRGO7/SPICLK                                                 | AG13 <sup>2</sup> |
| PC20/CLK12/TGATE1                                                       | AH12 <sup>2</sup> |
| PC21/CLK11/BRGO6                                                        | AJ11 <sup>2</sup> |
| PC22/CLK10/DONE1                                                        | AG10 <sup>2</sup> |
| PC23/CLK9/BRGO5/DACK1                                                   | AE10 <sup>2</sup> |
| PC24/FCC2_UT8_TXD3/CLK8/TOUT4                                           | AF9 <sup>2</sup>  |
| PC25/FCC2_UT8_TXD2/CLK7/BRGO4                                           | AE8 <sup>2</sup>  |
| PC26/CLK6/TOUT3/TMCLK                                                   | AJ6 <sup>2</sup>  |
| PC27/FCC3_TXD/FCC3_TXD0/CLK5/BRGO3                                      | AG2 <sup>2</sup>  |
| PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2                                         | AF3 <sup>2</sup>  |

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



**Table 15. Symbol Legend (continued)** 

| Symbol | Meaning                                                            |
|--------|--------------------------------------------------------------------|
| UTS    | Indicates that a signal is part of the UTOPIA slave interface      |
| UT8    | Indicates that a signal is part of the 8-bit UTOPIA interface      |
| UT16   | Indicates that a signal is part of the 16-bit UTOPIA interface     |
| MII    | Indicates that a signal is part of the media independent interface |

# 5 Package Description

The following sections provide the package parameters and mechanical dimensions for the MPC8260.

# 5.1 Package Parameters

Package parameters are provided in Table 16. The package type is a  $37.5 \times 37.5$  mm, 480-lead TBGA.

**Table 16. Package Parameters** 

| Parameter                        | Value                    |
|----------------------------------|--------------------------|
| Package Outline                  | 37.5 x 37.5 mm           |
| Interconnects                    | 480 (29 x 29 ball array) |
| Pitch                            | 1.27 mm                  |
| Nominal unmounted package height | 1.55 mm                  |



# 5.2 Mechanical Dimensions

Figure 15 provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA package.

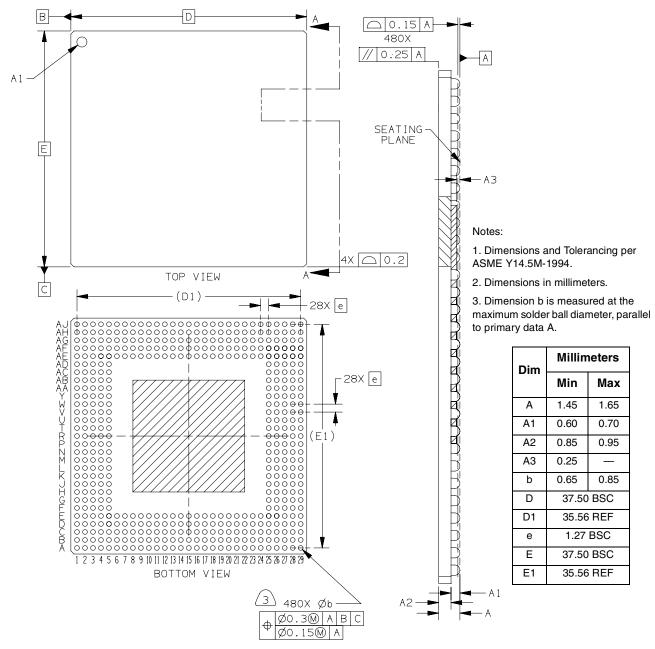



Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2



#### How to Reach Us:

#### Home Page:

www.freescale.com

### Web Support:

http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

### For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICCare trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine, is a trademarksof Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE 1149.1 and 802.3 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© 2010 Freescale Semiconductor, Inc.

Document Number: MPC8260EC

Rev. 2 05/2010



