

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	200MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	480-LBGA Exposed Pad
Supplier Device Package	480-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=xpc8255czuifbc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Common on-chip processor (COP) test interface
- High-performance (4.4–5.1 SPEC95 benchmark at 200 MHz; 280 Dhrystones MIPS at 200 MHz)
- Supports bus snooping for data cache coherency
- Floating-point unit (FPU)
- Separate power supply for internal logic and for I/O
- Separate PLLs for G2 core and for the CPM
 - G2 core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides 1.5:1, 2:1, 2:5:1, 3:1, 3:5:1, 4:1, 5:1, 6:1 ratios
 - Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3:5:1, 4:1, 5:1, 6:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs
 - Supports single- and four-beat burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
 - Supports data parity or ECC and address parity
- 32-bit data and 18-bit address local bus
 - Single-master bus, supports external slaves
 - Eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE Std 1149.1TM JTAG test access port
- Twelve-bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other userdefinable peripherals
 - Byte write enables and selectable parity generation
 - 32-bit address decodes with programmable bank size
 - Three user programmable machines, general-purpose chip-select machine, and page-mode pipeline SDRAM machine
 - Byte selects for 64 bus width (60x) and byte selects for 32 bus width (local)
 - Dedicated interface logic for SDRAM
- CPU core can be disabled and the device can be used in slave mode to an external core
- Communications processor module (CPM)

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

5

- Up to eight TDM interfaces (4 on the MPC8255)
 - Supports two groups of four TDM channels for a total of eight TDMs
 - 2,048 bytes of SI RAM
 - Bit or byte resolution
 - Independent transmit and receive routing, frame synchronization
 - Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN primary rate, Freescale interchip digital link (IDL), general circuit interface (GCI), and user-defined TDM serial interfaces
- Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs, SCCs, SMCs, and serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

2 Electrical and Thermal Characteristics

This section provides AC and DC electrical specifications and thermal characteristics for the MPC8260.

2.1 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MPC8260. Table 1 shows the maximum electrical ratings.

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 – 2.75	V
PLL supply voltage ²	VCCSYN	-0.3 – 2.75	V
I/O supply voltage ³	VDDH	-0.3 – 4.0	V
Input voltage ⁴	VIN	GND(-0.3) - 3.6	V
Junction temperature	T _j	120	°C
Storage temperature range	T _{STG}	(-55) – (+150)	°C

Table 1. Absolute Maximum Ratings¹

Note:

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 2) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V at any time, including during power-on reset.

Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.0 V during normal operation.

⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

Table 3 shows DC electrical characteristics.

Table 3. DC Electrical Characteristics¹

Characteristic	Symbol	Min	Max	Unit
Input high voltage, all inputs except CLKIN	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ²	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	_	10	μΑ
Signal low input current, V _{IL} = 0.8 V	IL	_	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μΑ
Output high voltage, $I_{OH} = -2 \text{ mA}$ except XFC, UTOPIA mode, and open drain pins	V _{OH}	2.4	_	V
In UTOPIA mode: I _{OH} = -8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31]				
In UTOPIA mode: I _{OL} = 8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31]	V _{OL}	_	0.5	V

2.3.1 Layout Practices

Each V_{CC} pin should be provided with a low-impedance path to the board's power supply. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 μF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and ground should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC8260 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

Table 5 provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required for conditions above $P_D = 3W$ (when the ambient temperature is 70° C or greater) to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink.

							P _{INT} (W) ²		
Bus (MHz)	CPM Multiplier	CPU Multiplier	CPM (MHz)	CPU (MHz)	VddI				
, ,	-				2.4	2.5	2.6	2.7	2.8 ³
33.3	4	4	133.3	133.3	2.04	2.14	2.26	2.38	2.50
50.0	2	3	100	150.0	2.21	2.30	2.45	2.59	2.69
66.7	2	2.5	133.3	166.7	2.47	2.62	2.74	2.88	3.02
66.7	2.5	2.5	166.7	166.7	2.57	2.69	2.83	2.98	3.12
66.7	2	3	133.3	200.0	2.81	2.95	3.12	3.29	3.43
66.7	2.5	3	166.7	200.0	2.88	3.05	3.22	3.38	3.55
50.0	3	4	150	200.0	2.83	3.00	3.14	3.31	3.48

Table 5. Estimated Power Dissipation for Various Configurations¹

Note:

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

¹ Test temperature = room temperature (25° C)

 $^{^{2}}$ P_{INT} = I_{DD} x V_{DD} Watts

^{3 2.8} Vddl does not apply to HiP3 Rev C silicon.

Electrical and Thermal Characteristics

2.4 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for the 66 MHz MPC8260 device. Note that AC timings are based on a 50-pf load. Typical output buffer impedances are shown in Table 6.

Table 6. Output Buffer Impedances¹

Output Buffers	Typical Impedance (Ω)
60x bus	40
Local bus	40
Memory controller	40
Parallel I/O	46

Note:

Table 7 lists CPM output characteristics.

Table 7. AC Characteristics for CPM Outputs¹

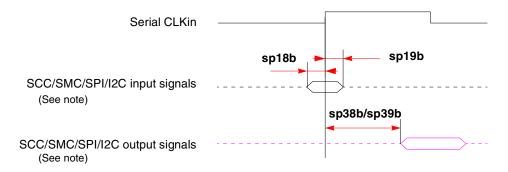
Spec N	lumber	Characteristic	Max Delay (ns)	Min Delay (ns)
Max	Min	Characteristic	66 MHz	66 MHz
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	1
sp36b	sp37b	FCC outputs—external clock (NMSI)	14	2
sp40	sp41	TDM outputs/SI	25	5
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	19	1
sp38b	sp39b	Ex_SCC/SMC/SPI/I2C outputs—external clock (NMSI)	19	2
sp42	sp43	PIO/TIMER/IDMA outputs	14	1

Note:

Table 8 lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

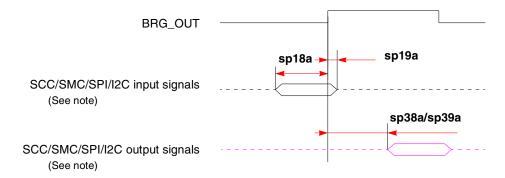
It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.


MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

These are typical values at 65° C. The impedance may vary by ±25% with process and temperature.

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

Figure 5 shows the SCC/SMC/SPI/I²C external clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

Figure 6 shows the SCC/SMC/SPI/I²C internal clock.

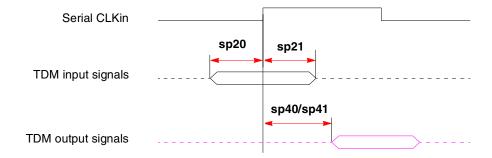
Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

Table 10 lists SIU output characteristics.

Table 10. AC Characteristics for SIU Outputs¹


Spec N	lumber	Characteristic	Max Delay (ns)	Min Delay (ns)
Max	Min	Characteristic	66 MHz	66 MHz
sp31	sp30	PSDVAL/TEA/TA	10	0.5
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	0.5
sp33a	sp30	Data bus	8	0.5
sp33b	sp30	DP	12	0.5
sp34	sp30	memc signals/ALE	6	0.5
sp35	sp30	all other signals	7.5	0.5

Note:

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing. When data pipelining is activated, sp12 can be used for data bus setup even when ECC or PARITY are used. Also, sp33a can be used as the AC specification for DP signals.

Figure 8 shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 8. TDM Signal Diagram

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

Figure 11 shows signal behavior in MEMC mode.

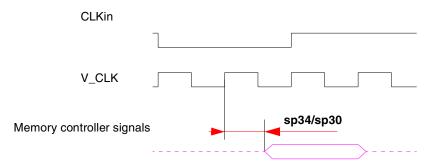


Figure 11. MEMC Mode Diagram

NOTE

Generally, all MPC8260 bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 11.

Table 11. Tick Spacing for Memory Controller Signals

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)			
PLE CIOCK NATIO	T2	Т3	Т4	
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin	
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin	
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin	

Figure 12 is a graphical representation of Table 11.

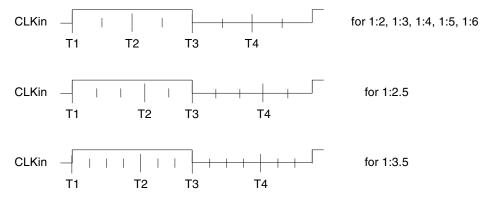


Figure 12. Internal Tick Spacing for Memory Controller Signals

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 13. Clock Configuration Modes¹ (continued)

MODCK_H-MODCK[1-3]	Input Clock Frequency ^{2,3,4}	CPM Multiplication Factor ^{2, 5}	CPM Frequency ²	Core Multiplication Factor ^{2, 6}	Core Frequency ²
0001_101	33 MHz	3	100 MHz	4	133 MHz
0001_110	33 MHz	3	100 MHz	5	166 MHz
0001_111	33 MHz	3	100 MHz	6	200 MHz
0010_000	33 MHz	3	100 MHz	7	233 MHz
0010_001	33 MHz	3	100 MHz	8	266 MHz
0010_010	33 MHz	4	133 MHz	4	133 MHz
0010_011	33 MHz	4	133 MHz	5	166 MHz
0010_100	33 MHz	4	133 MHz	6	200 MHz
0010_101	33 MHz	4	133 MHz	7	233 MHz
0010_110	33 MHz	4	133 MHz	8	266 MHz
	1		-		!
0010_111	33 MHz	5	166 MHz	4	133 MHz
0011_000	33 MHz	5	166 MHz	5	166 MHz
0011_001	33 MHz	5	166 MHz	6	200 MHz
0011_010	33 MHz	5	166 MHz	7	233 MHz
0011_011	33 MHz	5	166 MHz	8	266 MHz
0011_100	33 MHz	6	200 MHz	4	133 MHz
0011_101	33 MHz	6	200 MHz	5	166 MHz
0011_110	33 MHz	6	200 MHz	6	200 MHz
0011_111	33 MHz	6	200 MHz	7	233 MHz
0100_000	33 MHz	6	200 MHz	8	266 MHz
0100_001			Reserved		
0100_010					
0100_011					
0100_100					
0100_101					
0100_110					

- ¹ Because of speed dependencies, not all of the possible configurations in Table 13 are applicable.
- ² The user should choose the input clock frequency and the multiplication factors such that the frequency of the CPU ranges between 133–200 and the CPM ranges between 50–166 MHz.
- ³ Input clock frequency is given only for the purpose of reference. User should set MODCK_H-MODCK_L so that the resulting configuration does not exceed the frequency rating of the user's part.
- ⁴ 60x and local bus frequency. Identical to CLKIN.
- ⁵ CPM multiplication factor = CPM clock/bus clock
- ⁶ CPU multiplication factor = Core PLL multiplication factor

4 Pinout

This section provides the pin assignments and pinout list for the MPC8260.

Pinout

Table 14. Pinout List (continued)

Pin Name	Ball
A18	M5
A19	N5
A20	N4
A21	N3
A22	N2
A23	N1
A24	P4
A25	P3
A26	P2
A27	P1
A28	R1
A29	R3
A30	R5
A31	R4
TT0	F1
TT1	G4
TT2	G3
TT3	G2
TT4	F2
TBST	D3
TSIZ0	C1
TSIZ1	E4
TSIZ2	D2
TSIZ3	F5
AACK	F3
ARTRY	E1
DBG	V1
DBB/IRQ3	V2
D0	B20
D1	A18
D2	A16
D3	A13
D4	E12
D5	D9
D6	A6

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball
D7	B5
D8	A20
D9	E17
D10	B15
D11	B13
D12	A11
D13	E9
D14	B7
D15	B4
D16	D19
D17	D17
D18	D15
D19	C13
D20	B11
D21	A8
D22	A5
D23	C5
D24	C19
D25	C17
D26	C15
D27	D13
D28	C11
D29	B8
D30	A4
D31	E6
D32	E18
D33	B17
D34	A15
D35	A12
D36	D11
D37	C8
D38	E7
D39	A3
D40	D18
D41	A17

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball
LCL_D6	K25
LCL_D7	L29
LCL_D8	L27
LCL_D9	L26
LCL_D10	L25
LCL_D11	M29
LCL_D12	M28
LCL_D13	M27
LCL_D14	M26
LCL_D15	N29
LCL_D16	T25
LCL_D17	U27
LCL_D18	U26
LCL_D19	U25
LCL_D20	V29
LCL_D21	V28
LCL_D22	V27
LCL_D23	V26
LCL_D24	W27
LCL_D25	W26
LCL_D26	W25
LCL_D27	Y29
LCL_D28	Y28
LCL_D29	Y25
LCL_D30	AA29
LCL_D31	AA28
LCL_DP0	L28
LCL_DP1	N28
LCL_DP2	T28
LCL_DP3	W28
IRQ0/NMI_OUT	T1
IRQ7/INT_OUT/APE	D1
TRST	AH3
TCK	AG5
TMS	AJ3

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Pinout

Table 14. Pinout List (continued)

Pin Name	Ball		
TDI	AE6		
TDO	AF5		
TRIS	AB4		
PORESET	AG6		
HRESET	AH5		
SRESET	AF6		
QREQ	AA3		
RSTCONF	AJ4		
MODCK1/AP1/TC0/BNKSEL0	W2		
MODCK2/AP2/TC1/BNKSEL1	W3		
MODCK3/AP3/TC2/BNKSEL2	W4		
XFC	AB2		
CLKIN1	AH4		
PA0/RESTART1/DREQ3/FCC2_UTM_TXADDR2	AC29 ²		
PA1/REJECT1/FCC2_UTM_TXADDR1/DONE3	AC25 ²		
PA2/CLK20/FCC2_UTM_TXADDR0/DACK3	AE28 ²		
PA3/CLK19/FCC2_UTM_RXADDR0/DACK4/L1RXD1A2	AG29 ²		
PA4/REJECT2/FCC2_UTM_RXADDR1/DONE4	AG28 ²		
PA5/RESTART2/DREQ4/FCC2_UTM_RXADDR2	AG26 ²		
PA6/L1RSYNCA1	AE24 ²		
PA7/SMSYN2/L1TSYNCA1/L1GNTA1	AH25 ²		
PA8/SMRXD2/L1RXD0A1/L1RXDA1	AF23 ²		
PA9/SMTXD2/L1TXD0A1	AH23 ²		
PA10/FCC1_UT8_RXD0/FCC1_UT16_RXD8/MSNUM5	AE22 ²		
PA11/FCC1_UT8_RXD1/FCC1_UT16_RXD9/MSNUM4	AH22 ²		
PA12/FCC1_UT8_RXD2/FCC1_UT16_RXD10/MSNUM3	AJ21 ²		
PA13/FCC1_UT8_RXD3/FCC1_UT16_RXD11/MSNUM2	AH20 ²		
PA14/FCC1_UT8_RXD4/FCC1_UT16_RXD12/FCC1_RXD3	AG19 ²		
PA15/FCC1_UT8_RXD5/FCC1_UT16_RXD13/FCC1_RXD2	AF18 ²		
PA16/FCC1_UT8_RXD6/FCC1_UT16_RXD14/FCC1_RXD1	AF17 ²		
PA17/FCC1_UT8_RXD7/FCC1_UT16_RXD15/FCC1_RXD0/FCC1_RXD	AE16 ²		
PA18/FCC1_UT8_TXD7/FCC1_UT16_TXD15/FCC1_TXD0/FCC1_TXD	AJ16 ²		
PA19/FCC1_UT8_TXD6/FCC1_UT16_TXD14/FCC1_TXD1	AG15 ²		
PA20/FCC1_UT8_TXD5/FCC1_UT16_TXD13/FCC1_TXD2	AJ13 ²		
PA21/FCC1_UT8_TXD4/FCC1_UT16_TXD12/FCC1_TXD3	AE13 ²		

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball		
PA22/FCC1_UT8_TXD3/FCC1_UT16_TXD11	AF12 ²		
PA23/FCC1_UT8_TXD2/FCC1_UT16_TXD10	AG11 ²		
PA24/FCC1_UT8_TXD1/FCC1_UT16_TXD9/MSNUM1	AH9 ²		
PA25/FCC1_UT8_TXD0/FCC1_UT16_TXD8/MSNUM0	AJ8 ²		
PA26/FCC1_UTM_RXCLAV/FCC1_UTS_RXCLAV/FCC1_MII_RX_ER	AH7 ²		
PA27/FCC1_UT_RXSOC/FCC1_MII_RX_DV	AF7 ²		
PA28/FCC1_UTM_RXENB/FCC1_UTS_RXENB/FCC1_MII_TX_EN	AD5 ²		
PA29/FCC1_UT_TXSOC/FCC1_MII_TX_ER	AF1 ²		
PA30/FCC1_UTM_TXCLAV/FCC1_UTS_TXCLAV/FCC1_MII_CRS/FCC1_RTS	AD3 ²		
PA31/FCC1_UTM_TXENB/FCC1_UTS_TXENB/FCC1_MII_COL	AB5 ²		
PB4/FCC3_TXD3/FCC2_UT8_RXD0/L1RSYNCA2/FCC3_RTS	AD28 ²		
PB5/FCC3_TXD2/FCC2_UT8_RXD1/L1TSYNCA2/L1GNTA2	AD26 ²		
PB6/FCC3_TXD1/FCC2_UT8_RXD2/L1RXDA2/L1RXD0A2	AD25 ²		
PB7/FCC3_TXD0/FCC3_TXD/FCC2_UT8_RXD3/L1TXDA2/L1TXD0A2	AE26 ²		
PB8/FCC2_UT8_TXD3/FCC3_RXD0/FCC3_RXD/TXD3/L1RSYNCD1	AH27 ²		
PB9/FCC2_UT8_TXD2/FCC3_RXD1/L1TXD2A2/L1TSYNCD1/L1GNTD1	AG24 ²		
PB10/FCC2_UT8_TXD1/FCC3_RXD2/L1RXDD1	AH24 ²		
PB11/FCC3_RXD3/FCC2_UT8_TXD0/L1TXDD1	AJ24 ²		
PB12/FCC3_MII_CRS/L1CLKOB1/L1RSYNCC1/TXD2	AG22 ²		
PB13/FCC3_MII_COL/L1RQB1/L1TSYNCC1/L1GNTC1/L1TXD1A2	AH21 ²		
PB14/FCC3_MII_TX_EN/RXD3/L1RXDC1 AG20 ²			
PB15/FCC3_MII_TX_ER/RXD2/L1TXDC1 AF19 ²			
PB16/FCC3_MII_RX_ER/L1CLKOA1/CLK18	AJ18 ²		
PB17/FCC3_MII_RX_DV/L1RQA1/CLK17	AJ17 ²		
PB18/FCC2_UT8_RXD4/FCC2_RXD3/L1CLKOD2/L1RXD2A2	AE14 ²		
PB19/FCC2_UT8_RXD5/FCC2_RXD2/L1RQD2/L1RXD3A2	AF13 ²		
PB20/FCC2_UT8_RXD6/FCC2_RXD1/L1RSYNCD2/L1TXD1A1	AG12 ²		
PB21/FCC2_UT8_RXD7/FCC2_RXD0/FCC2_RXD/L1TSYNCD2/L1GNTD2/ L1TXD2A1	AH11 ²		
PB22/FCC2_UT8_TXD7/FCC2_TXD0/FCC2_TXD/L1RXD1A1/L1RXDD2	AH16 ²		
PB23/FCC2_UT8_TXD6/FCC2_TXD1/L1RXD2A1/L1TXDD2	AE15 ²		
PB24/FCC2_UT8_TXD5/FCC2_TXD2/L1RXD3A1/L1RSYNCC2	AJ9 ²		
PB25/FCC2_UT8_TXD4/FCC2_TXD3/L1TSYNCC2/L1GNTC2/L1TXD3A1	AE9 ²		
PB26/FCC2_MII_CRS/FCC2_UT8_TXD1/L1RXDC2	AJ7 ²		
PB27/FCC2_MII_COL/FCC2_UT8_TXD0/L1TXDC2	AH6 ²		

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Pinout

Table 14. Pinout List (continued)

Pin Name	Ball		
PB28/FCC2_MII_RX_ER/FCC2_RTS/L1TSYNCB2/L1GNTB2/TXD1	AE3 ²		
PB29/FCC2_UTM_RXCLAV/FCC2_UTS_RXCLAV/L1RSYNCB2/ FCC2_MII_TX_EN	AE2 ²		
PB30/FCC2_MII_RX_DV/FCC2_UT_TXSOC/L1RXDB2	AC5 ²		
PB31/FCC2_MII_TX_ER/FCC2_UT_RXSOC/L1TXDB2	AC4 ²		
PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2	AB26 ²		
PC1/DREQ2/BRGO6/L1RQA2	AD29 ²		
PC2/FCC3_CD/FCC2_UT8_TXD3/DONE2	AE29 ²		
PC3/FCC3_CTS/FCC2_UT8_TXD2/DACK2/CTS4	AE27 ²		
PC4/FCC2_UTM_RXENB/FCC2_UTS_RXENB/SI2_L1ST4/FCC2_CD	AF27 ²		
PC5/FCC2_UTM_TXCLAV/FCC2_UTS_TXCLAV/SI2_L1ST3/FCC2_CTS	AF24 ²		
PC6/FCC1_CD/L1CLKOC1/FCC1_UTM_RXADDR2/FCC1_UTS_RXADDR2/FCC1_UTM_RXCLAV1	AJ26 ²		
PC7/FCC1_CTS/L1RQC1/FCC1_UTM_TXADDR2/FCC1_UTS_TXADDR2/FCC1_UTM_TXCLAV1	AJ25 ²		
PC8/CD4/RENA4/FCC1_UT16_TXD0/SI2_L1ST2/CTS3	AF22 ²		
PC9/CTS4/CLSN4/FCC1_UT16_TXD1/SI2_L1ST1/L1TSYNCA2/L1GNTA2	AE21 ²		
PC10/CD3/RENA3/FCC1_UT16_TXD2/SI1_L1ST4/FCC2_UT8_RXD3	AF20 ²		
PC11/CTS3/CLSN3/L1CLKOD1/L1TXD3A2/FCC2_UT8_RXD2	AE19 ²		
PC12/CD2/RENA2/SI1_L1ST3/FCC1_UTM_RXADDR1/FCC1_UTS_RXADDR1	AE18 ²		
PC13/CTS2/CLSN2/L1RQD1/FCC1_UTM_TXADDR1/FCC1_UTS_TXADDR1	AH18 ²		
PC14/CD1/RENA1/FCC1_UTM_RXADDR0/FCC1_UTS_RXADDR0	AH17 ²		
PC15/CTS1/CLSN1/SMTXD2/FCC1_UTM_TXADDR0/FCC1_UTS_TXADDR0	AG16 ²		
PC16/CLK16/TIN4	AF15 ²		
PC17/CLK15/TIN3/BRGO8	AJ15 ²		
PC18/CLK14/TGATE2	AH14 ²		
PC19/CLK13/BRGO7/SPICLK	AG13 ²		
PC20/CLK12/TGATE1	AH12 ²		
PC21/CLK11/BRGO6	AJ11 ²		
PC22/CLK10/DONE1	AG10 ²		
PC23/CLK9/BRGO5/DACK1	AE10 ²		
PC24/FCC2_UT8_TXD3/CLK8/TOUT4	AF9 ²		
PC25/FCC2_UT8_TXD2/CLK7/BRGO4	AE8 ²		
PC26/CLK6/TOUT3/TMCLK	AJ6 ²		
PC27/FCC3_TXD/FCC3_TXD0/CLK5/BRGO3	AG2 ²		
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2	AF3 ²		

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball			
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1	AF2 ²			
PC30/FCC2_UT8_TXD3/CLK2/TOUT1	AE1 ²			
PC31/CLK1/BRGO1	AD1 ²			
PD4/BRGO8/L1TSYNCD1/L1GNTD1/FCC3_RTS/SMRXD2	AC28 ²			
PD5/FCC1_UT16_TXD3/ DONE1	AD27 ²			
PD6/FCC1_UT16_TXD4/DACK1	AF29 ²			
PD7/SMSYN1/FCC1_UTM_TXADDR3/FCC1_UTS_TXADDR3/ FCC1_UTM_TXADDR4/FCC1_TXCLAV2	AF28 ²			
PD8/SMRXD1/FCC2_UT_TXPRTY/BRGO5	AG25 ²			
PD9/SMTXD1/FCC2_UT_RXPRTY/BRGO3	AH26 ²			
PD10/L1CLKOB2/FCC2_UT8_RXD1/L1RSYNCB1/BRGO4	AJ27 ²			
PD11/L1RQB2/FCC2_UT8_RXD0/L1TSYNCB1/L1GNTB1	AJ23 ²			
PD12/SI1_L1ST2/L1RXDB1	AG23 ²			
PD13/SI1_L1ST1/L1TXDB1	AJ22 ²			
PD14/FCC1_UT16_RXD0/L1CLKOC2/I2CSCL	AE20 ²			
PD15/FCC1_UT16_RXD1/L1RQC2/I2CSDA	AJ20 ²			
PD16/FCC1_UT_TXPRTY/L1TSYNCC1/L1GNTC1/SPIMISO	AG18 ²			
PD17/FCC1_UT_RXPRTY/BRGO2/SPIMOSI	AG17 ²			
PD18/FCC1_UTM_RXADDR4/FCC1_UTS_RXADDR4/FCC1_UTM_RXCLAV3/ SPICLK/FCC2_UTM_RXADDR3/FCC2_UTS_RXADDR0	AF16 ²			
PD19/FCC1_UTM_TXADDR4/FCC1_UTS_TXADDR4/FCC1_UTM_TXCLAV3/ SPISEL/BRGO1/FCC2_UTM_TXADDR3/FCC2_UTS_TXADDR0 AH15 ²				
PD20/RTS4/TENA4/FCC1_UT16_RXD2/L1RSYNCA2 AJ14 ²				
PD21/TXD4/FCC1_UT16_RXD3/L1RXD0A2/L1RXDA2	AH13 ²			
PD22/RXD4/FCC1_UT16_TXD5/L1TXD0A2/L1TXDA2	AJ12 ²			
PD23/RTS3/TENA3/FCC1_UT16_RXD4/L1RSYNCD1	AE12 ²			
PD24/TXD3/FCC1_UT16_RXD5/L1RXDD1	AF10 ²			
PD25/RXD3/FCC1_UT16_TXD6/L1TXDD1	AG9 ²			
PD26/RTS2/TENA2/FCC1_UT16_RXD6/L1RSYNCC1	AH8 ²			
PD27/TXD2/FCC1_UT16_RXD7/L1RXDC1	AG7 ²			
PD28/RXD2/FCC1_UT16_TXD7/L1TXDC1	AE4 ²			
PD29/RTS1/TENA1/FCC1_UTM_RXADDR3/FCC1_UTS_RXADDR3/ FCC1_UTM_RXCLAV2/FCC2_UTM_RXADDR4/FCC2_UTS_RXADDR1	AG1 ²			
PD30/FCC2_UTM_TXENB/FCC2_UTS_TXENB/TXD1	AD4 ²			
PD31/RXD1	AD2 ²			
VCCSYN	AB3			

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

5.2 Mechanical Dimensions

Figure 15 provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA package.

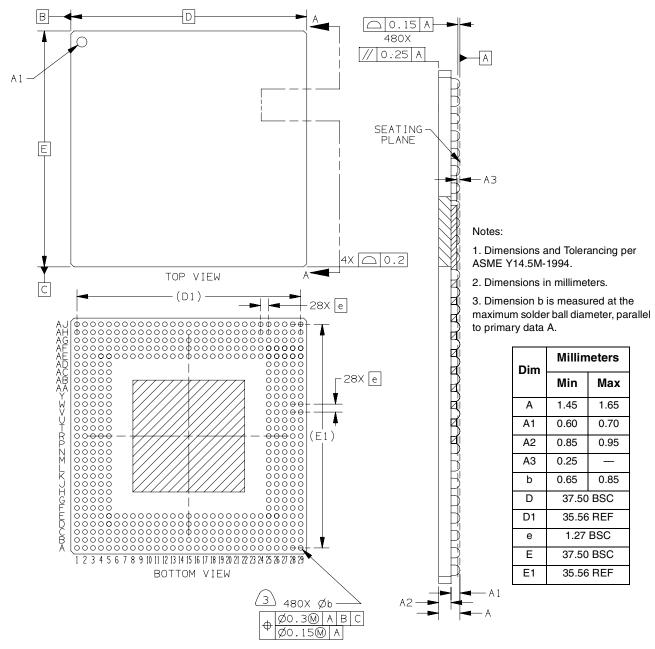


Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Document Revision History

Table 17. Document Revision History (continued)

Rev. Number	Date	Substantive Change(s)
1.0	3/2002	 Table 14: modified notes to pins AE11 and AF25. Table 14: added note to pins AA1 and AG4 (Therm0 and Therm1).
0.9	2/2002	Table 14: additional note added to AE11
0.8	2/2002	 Table 7, Table 8, Table 9, and Table 10: revision 0.7 of this document incorrectly included values for 83 MHz. 83 MHz is not supported on the MPC8260. Table 14: notes added to pins at AE11, AF25, U5, and V4.
0.7	11/2001	 Revision of Table 5, "Power Dissipation" Modifications to Figure 9, Table 2, Table 10, Table 11 Additional revisions to text and figures throughout
0.6	5/2001	Corrected the thermal values in Table 3, "Thermal Characteristics."
0.2-0.5	_	Temporary revisions
0.1	1/2000	
0	_	Initial version

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICCare trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine, is a trademarksof Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE 1149.1 and 802.3 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© 2010 Freescale Semiconductor, Inc.

Document Number: MPC8260EC

Rev. 2 05/2010

