
E·XFL

NXP USA Inc. - XPC8260CZUHFBC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	166MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100Mbps (3)
SATA	·
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	· .
Package / Case	480-LBGA Exposed Pad
Supplier Device Package	480-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/xpc8260czuhfbc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1 shows the block diagram for the MPC8260.

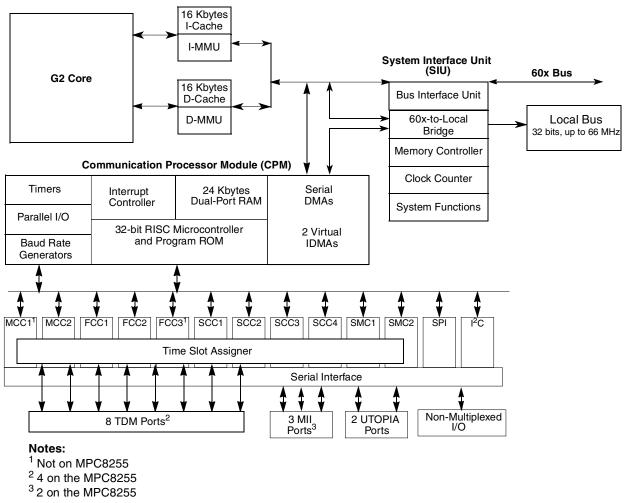


Figure 1. MPC8260 Block Diagram

1 Features

The major features of the MPC8260 are as follows:

- Dual-issue integer core
 - A core version of the EC603e microprocessor
 - System core microprocessor supporting frequencies of 133–200 MHz (150–200 MHz for the MPC8255)
 - Separate 16-Kbyte data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - PowerPC architecture-compliant memory management unit (MMU)

Features

- Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications protocols
- Interfaces to G2 core through on-chip 24-Kbyte dual-port RAM and DMA controller
- Serial DMA channels for receive and transmit on all serial channels
- Parallel I/O registers with open-drain and interrupt capability
- Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
- Three fast communications controllers (two on the MPC8255) supporting the following protocols:
 - 10/100-Mbit Ethernet/IEEE Std 802.3TM CDMA/CS interface through media independent interface (MII)
 - ATM—Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5, AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 16 K external connections
 - Transparent
 - HDLC—Up to T3 rates (clear channel)
- Two multichannel controllers (MCCs) (only MCC2 on the MPC8255)
 - Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each MCC can be split into four subgroups of 32 channels each.
 - Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces up to four TDM interfaces per MCC
- Four serial communications controllers (SCCs) identical to those on the MPC860, supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BISYNC) communications
 - Transparent
- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provide management for BRI devices as general circuit interface (GCI) controllers in timedivision-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One inter-integrated circuit (I^2C) controller (identical to the MPC860 I^2C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes

- Up to eight TDM interfaces (4 on the MPC8255)
 - Supports two groups of four TDM channels for a total of eight TDMs
 - 2,048 bytes of SI RAM
 - Bit or byte resolution
 - Independent transmit and receive routing, frame synchronization
 - Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN primary rate, Freescale interchip digital link (IDL), general circuit interface (GCI), and user-defined TDM serial interfaces
- Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs, SCCs, SMCs, and serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

This section provides AC and DC electrical specifications and thermal characteristics for the MPC8260.

2.1 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MPC8260. Table 1 shows the maximum electrical ratings.

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.75	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.75	V
I/O supply voltage ³	VDDH	-0.3 - 4.0	V
Input voltage ⁴	VIN	GND(-0.3) – 3.6	V
Junction temperature	Тj	120	°C
Storage temperature range	T _{STG}	(-55) – (+150)	٥C

Table 1. Absolute Maximum Ratings¹

Note:

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 2) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V at any time, including during power-on reset.

³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.0 V during normal operation.

⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

Table 2 lists recommended operational voltage conditions.

Rating	Symbol 2.5-V Device ²		Unit
Core supply voltage	VDD 2.4–2.7		V
PLL supply voltage	VCCSYN 2.4–2.7		V
I/O supply voltage	VDDH 3.135 – 3.465		V
Input voltage	VIN GND (-0.3) – 3.465		V
Junction temperature (maximum)	Тj	105	°C

Table 2. Recommended Operating Conditions¹

¹ **Caution:** These are the recommended and tested operating conditions. Proper device operating outside of these conditions is not guaranteed.

² Parts labeled with an "-HVA" suffix are 2.6-V devices.

NOTE: Core, PLL, and I/O Supply Voltages

VDDH, VCCSYN, and VDD must track each other and both must vary in the same direction—in the positive direction (+5% and +0.1 Vdc) or in the negative direction (-5% and -0.1 Vdc).

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

Figure 2 shows the undershoot and overshoot voltage of the 60x and local bus memory interface of the MPC8280. Note that in PCI mode the I/O interface is different.

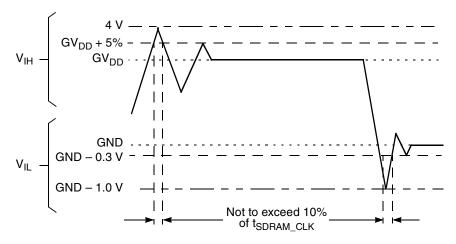


Figure 2. Overshoot/Undershoot Voltage

Table 3 shows DC electrical characteristics.

Characteristic	Symbol	Min	Max	Unit
Input high voltage, all inputs except CLKIN	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ²	I _{IN}	—	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	Ι _{ΟΖ}	—	10	μA
Signal low input current, V _{IL} = 0.8 V	ΙL	—	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	—	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except XFC, UTOPIA mode, and open drain pins In UTOPIA mode: $I_{OH} = -8.0 \text{mA}$	V _{OH}	2.4	_	V
PA[0-31] PB[4-31] PD[4-31] PD[4-31]				
In UTOPIA mode: I _{OL} = 8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31]	V _{OL}	_	0.5	V

Table 3. DC Electrical Characteristics¹

³ Rev C.2 silicon only.

2.2 Thermal Characteristics

Table 4 describes thermal characteristics.

Characteristics	Symbol	Value	Unit	Air Flow
Thermal resistance for TBGA	θ_{JA}	13.07 ¹	°C/W	NC ²
	θ_{JA}	9.55 ¹	°C/W	1 m/s
	θ_{JA}	10.48 ³	°C/W	NC
	θ_{JA}	7.78 ³	°C/W	1 m/s

Table 4. Thermal Characteristics

Note:

¹ Assumes a single layer board with no thermal vias

² Natural convection

³ Assumes a four layer board

2.3 **Power Considerations**

The average chip-junction temperature, T_I, in °C can be obtained from the following:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$

where

 $T_A = ambient \ temperature \ ^{\circ}C$

 θ_{JA} = package thermal resistance, junction to ambient, °C/W

 $P_{\rm D} = P_{\rm INT} + P_{\rm I/O}$

 $P_{INT} = I_{DD} \times V_{DD}$ Watts (chip internal power)

 $P_{I/O}$ = power dissipation on input and output pins (determined by user)

For most applications $P_{I/O} < 0.3 \times P_{INT}$. If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is the following:

$$P_{\rm D} = K/(T_{\rm J} + 273^{\circ} \,\rm C) \tag{2}$$

Solving equations (1) and (2) for K gives:

$$\mathbf{K} = \mathbf{P}_{\mathrm{D}} \mathbf{x} \left(\mathbf{T}_{\mathrm{A}} + 273^{\circ} \,\mathrm{C} \right) + \boldsymbol{\theta}_{\mathrm{JA}} \,\mathbf{x} \,\mathbf{P}_{\mathrm{D}}^{2} \tag{3}$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

(1)

Figure 3 shows the FCC external clock.

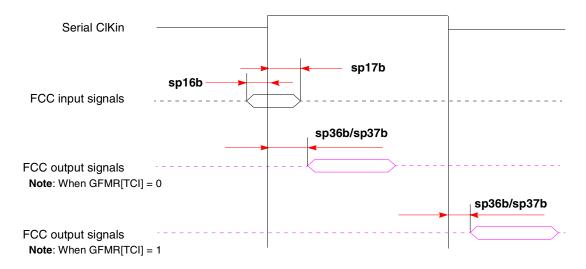


Figure 3. FCC External Clock Diagram

Figure 4 shows the FCC internal clock.

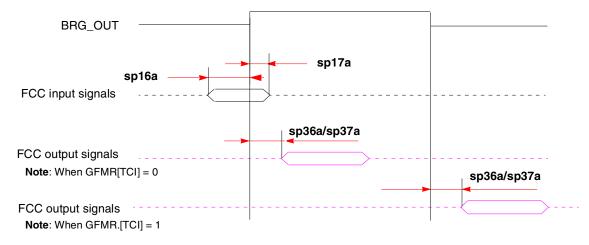
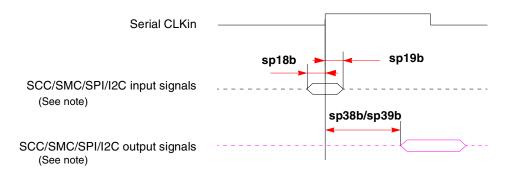
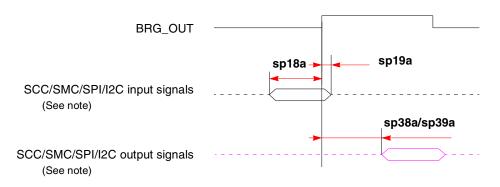



Figure 4. FCC Internal Clock Diagram

Figure 5 shows the SCC/SMC/SPI/I²C external clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

Figure 6 shows the SCC/SMC/SPI/I²C internal clock.

Note: There are four possible timing conditions for SCC and SPI:

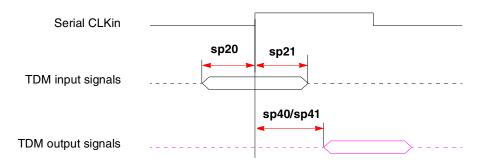
- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

Table 10 lists SIU output characteristics.

Spec N	lumber	Characteristic	Max Delay (ns)	Min Delay (ns)
Max	Min		66 MHz	66 MHz
sp31	sp30	PSDVAL/TEA/TA	10	0.5
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	0.5
sp33a	sp30	Data bus	8	0.5
sp33b	sp30	DP	12	0.5
sp34	sp30	memc signals/ALE	6	0.5
sp35	sp30	all other signals	7.5	0.5

Table 10. AC Characteristics for SIU Outputs¹


Note:

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing. When data pipelining is activated, sp12 can be used for data bus setup even when ECC or PARITY are used. Also, sp33a can be used as the AC specification for DP signals.

Figure 8 shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 8. TDM Signal Diagram

Figure 9 shows the interaction of several bus signals.

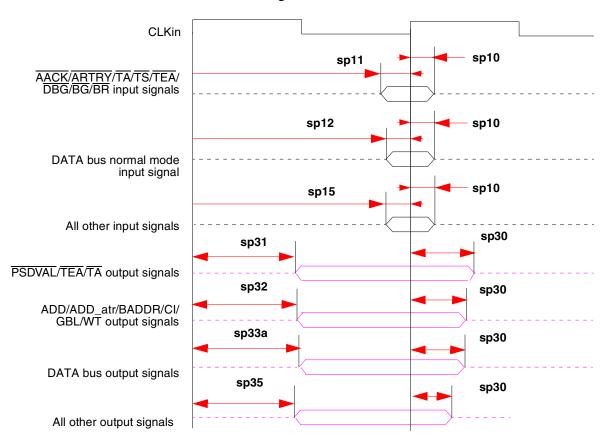


Figure 9. Bus Signals

Figure 10 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).

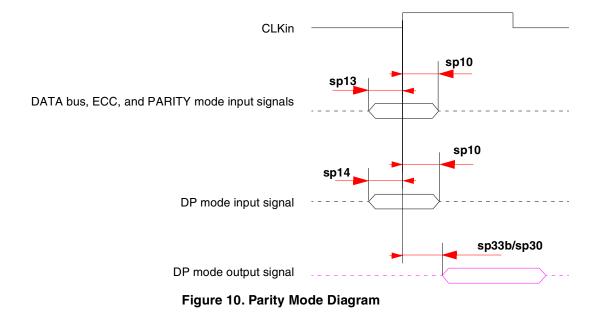


Figure 11 shows signal behavior in MEMC mode.

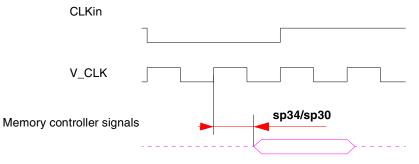


Figure 11. MEMC Mode Diagram

NOTE

Generally, all MPC8260 bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 11.

Table 11. Tick Spacing for Memory Controller Signals	Table 11.	Tick Spacing for Memory	Controller Signals
--	-----------	-------------------------	--------------------

PLL Clock Ratio	Tick Spacing (T	1 Occurs at the Rising	g Edge of CLKin)
FLE CIOCK Natio	T2	ТЗ	Т4
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin

Figure 12 is a graphical representation of Table 11.

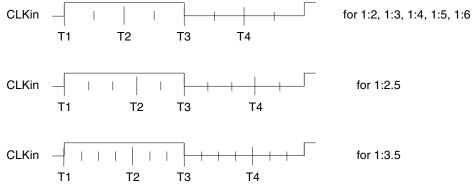


Figure 12. Internal Tick Spacing for Memory Controller Signals

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

3 Clock Configuration Modes

To configure the main PLL multiplication factor and the core, CPM, and 60x bus frequencies, the MODCK[1–3] pins are sampled while HRESET is asserted. Table 12 shows the eight basic configuration modes. Another 49 modes are available by using the configuration pin (RSTCONF) and driving four pins on the data bus.

NOTE

Clock configurations change only after \overline{POR} is asserted.

3.1 Local Bus Mode

Table 12 describes default clock modes for the MPC8260.

MODCK[1-3]	Input Clock Frequency	CPM Multiplication Factor	CPM Frequency	Core Multiplication Factor	Core Frequency
000	33 MHz	3	100 MHz	4	133 MHz
001	33 MHz	3	100 MHz	5	166 MHz
010	33 MHz	4	133 MHz	4	133 MHz
011	33 MHz	4	133 MHz	5	166 MHz
100	66 MHz	2	133 MHz	2.5	166 MHz
101	66 MHz	2	133 MHz	3	200 MHz
110	66 MHz	2.5	166 MHz	2.5	166 MHz
111	66 MHz	2.5	166 MHz	3	200 MHz

 Table 12. Clock Default Modes

Table 13 describes all possible clock configurations when using the hard reset configuration sequence. Note also that basic modes are shown in boldface type.

Table 13. Clock Configuration Modes¹

MODCK_H-MODCK[1-3]	Input Clock Frequency ^{2,3,4}	CPM Multiplication Factor ^{2, 5}	CPM Frequency ²	Core Multiplication Factor ^{2, 6}	Core Frequency ²
0001_000	33 MHz	2	66 MHz	4	133 MHz
0001_001	33 MHz	2	66 MHz	5	166 MHz
0001_010	33 MHz	2	66 MHz	6	200 MHz
0001_011	33 MHz	2	66 MHz	7	233 MHz
0001_100	33 MHz	2	66 MHz	8	266 MHz

MODCK_H-MODCK[1-3]	Input Clock Frequency ^{2,3,4}	CPM Multiplication Factor ^{2, 5}	CPM Frequency ²	Core Multiplication Factor ^{2, 6}	Core Frequency ²
			1		
0001_101	33 MHz	3	100 MHz	4	133 MHz
0001_110	33 MHz	3	100 MHz	5	166 MHz
0001_111	33 MHz	3	100 MHz	6	200 MHz
0010_000	33 MHz	3	100 MHz	7	233 MHz
0010_001	33 MHz	3	100 MHz	8	266 MHz
0010_010	33 MHz	4	133 MHz	4	133 MHz
0010_011	33 MHz	4	133 MHz	5	166 MHz
0010_100	33 MHz	4	133 MHz	6	200 MHz
0010_101	33 MHz	4	133 MHz	7	233 MHz
0010_110	33 MHz	4	133 MHz	8	266 MHz
0010_111	33 MHz	5	166 MHz	4	133 MHz
0011_000	33 MHz	5	166 MHz	5	166 MHz
0011_001	33 MHz	5	166 MHz	6	200 MHz
0011_010	33 MHz	5	166 MHz	7	233 MHz
0011_011	33 MHz	5	166 MHz	8	266 MHz
0011_100	33 MHz	6	200 MHz	4	133 MHz
0011_101	33 MHz	6	200 MHz	5	166 MHz
0011_110	33 MHz	6	200 MHz	6	200 MHz
0011_111	33 MHz	6	200 MHz	7	233 MHz
0100_000	33 MHz	6	200 MHz	8	266 MHz
	T				
0100_001	_		Reserved		
0100_010					
0100_011					
0100_100					
0100_101					
0100_110					

Table 13. Clock Configuration Modes¹ (continued)

Figure 14 shows the side profile of the TBGA package to indicate the direction of the top surface view.

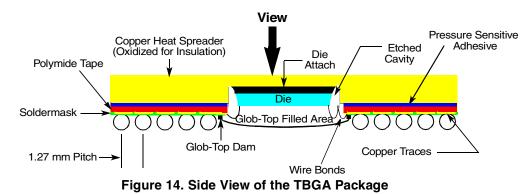


Table 14 shows the pinout list of the MPC8260. Table 15 defines conventions and acronyms used in Table 14.

Pin Name	Ball
BR	W5
BG	F4
ABB/IRQ2	E2
TS	E3
AO	G1
A1	H5
A2	H2
A3	H1
A4	J5
A5	J4
A6	J3
A7	J2
A8	J1
A9	К4
A10	КЗ
A11	К2
A12	К1
A13	L5
A14	L4
A15	L3
A16	L2
A17	L1

Table 14. Pinout Lis	st
----------------------	----

Table 14. Pinout List (continued)

Pin Name	Ball
D7	B5
D8	A20
D9	E17
D10	B15
D11	B13
D12	A11
D13	E9
D14	B7
D15	B4
D16	D19
D17	D17
D18	D15
D19	C13
D20	B11
D21	A8
D22	A5
D23	C5
D24	C19
D25	C17
D26	C15
D27	D13
D28	C11
D29	B8
D30	A4
D31	E6
D32	E18
D33	B17
D34	A15
D35	A12
D36	D11
D37	C8
D38	E7
D39	A3
D40	D18
D41	A17

Table 14. Pinout List (continued)

Pin Name	Ball
WT/BADDR30/IRQ3	U3
L2_HIT/IRQ4	Y4
CPU_BG/BADDR31/IRQ5	U4
CPU_DBG	R2
CPU_BR	Y3
CSO	F25
CS1	C29
CS2	E27
CS3	E28
CS4	F26
CS5	F27
CS6	F28
CS7	G25
CS8	D29
CS9	E29
CS10/BCTL1	F29
CS11/AP0	G28
BADDR27	T5
BADDR28	U1
ALE	T2
BCTL0	A27
PWE0/PSDDQM0/PBS0	C25
PWE1/PSDDQM1/PBS1	E24
PWE2/PSDDQM2/PBS2	D24
PWE3/PSDDQM3/PBS3	C24
PWE4/PSDDQM4/PBS4	B26
PWE5/PSDDQM5/PBS5	A26
PWE6/PSDDQM6/PBS6	B25
PWE7/PSDDQM7/PBS7	A25
PSDA10/PGPL0	E23
PSDWE/PGPL1	B24
POE/PSDRAS/PGPL2	A24
PSDCAS/PGPL3	B23
PGTA/PUPMWAIT/PGPL4/PPBS	A23
PSDAMUX/PGPL5	D22

Pinout

Table 14. Pinout List (continued)

Pin Name	Ball
LWE0/LSDDQM0/LBS0	H28
LWE1/LSDDQM1/LBS1	H27
LWE2/LSDDQM2/LBS2	H26
LWE3/LSDDQM3/LBS3	G29
LSDA10/LGPL0	D27
LSDWE/LGPL1	C28
LOE/LSDRAS/LGPL2	E26
LSDCAS/LGPL3	D25
LGTA/LUPMWAIT/LGPL4/LPBS	C26
LGPL5/LSDAMUX ¹	B27
LWR	D28
L_A14	N27
L_A15/SMI	T29
L_A16	R27
L_A17/CKSTP_OUT	R26
L_A18	R29
L_A19	R28
L_A20	W29
L_A21	P28
L_A22	N26
L_A23	AA27
L_A24	P29
L_A25	AA26
L_A26	N25
L_A27	AA25
L_A28/CORE_SRESET	AB29
L_A29	AB28
L_A30	P25
L_A31	AB27
LCL_D0	H29
LCL_D1	J29
LCL_D2	J28
LCL_D3	J27
LCL_D4	J26
LCL_D5	J25

Table 14. Pinout List (continued)

Pin Name	Ball
PA22/FCC1_UT8_TXD3/FCC1_UT16_TXD11	AF12 ²
PA23/FCC1_UT8_TXD2/FCC1_UT16_TXD10	AG11 ²
PA24/FCC1_UT8_TXD1/FCC1_UT16_TXD9/MSNUM1	AH9 ²
PA25/FCC1_UT8_TXD0/FCC1_UT16_TXD8/MSNUM0	AJ8 ²
PA26/FCC1_UTM_RXCLAV/FCC1_UTS_RXCLAV/FCC1_MII_RX_ER	AH7 ²
PA27/FCC1_UT_RXSOC/FCC1_MII_RX_DV	AF7 ²
PA28/FCC1_UTM_RXENB/FCC1_UTS_RXENB/FCC1_MII_TX_EN	AD5 ²
PA29/FCC1_UT_TXSOC/FCC1_MII_TX_ER	AF1 ²
PA30/FCC1_UTM_TXCLAV/FCC1_UTS_TXCLAV/FCC1_MII_CRS/FCC1_RTS	AD3 ²
PA31/FCC1_UTM_TXENB/FCC1_UTS_TXENB/FCC1_MII_COL	AB5 ²
PB4/FCC3_TXD3/FCC2_UT8_RXD0/L1RSYNCA2/FCC3_RTS	AD28 ²
PB5/FCC3_TXD2/FCC2_UT8_RXD1/L1TSYNCA2/L1GNTA2	AD26 ²
PB6/FCC3_TXD1/FCC2_UT8_RXD2/L1RXDA2/L1RXD0A2	AD25 ²
PB7/FCC3_TXD0/FCC3_TXD/FCC2_UT8_RXD3/L1TXDA2/L1TXD0A2	AE26 ²
PB8/FCC2_UT8_TXD3/FCC3_RXD0/FCC3_RXD/TXD3/L1RSYNCD1	AH27 ²
PB9/FCC2_UT8_TXD2/FCC3_RXD1/L1TXD2A2/L1TSYNCD1/L1GNTD1	AG24 ²
PB10/FCC2_UT8_TXD1/FCC3_RXD2/L1RXDD1	AH24 ²
PB11/FCC3_RXD3/FCC2_UT8_TXD0/L1TXDD1	AJ24 ²
PB12/FCC3_MII_CRS/L1CLKOB1/L1RSYNCC1/TXD2	AG22 ²
PB13/FCC3_MII_COL/L1RQB1/L1TSYNCC1/L1GNTC1/L1TXD1A2	AH21 ²
PB14/FCC3_MII_TX_EN/RXD3/L1RXDC1	AG20 ²
PB15/FCC3_MII_TX_ER/RXD2/L1TXDC1	AF19 ²
PB16/FCC3_MII_RX_ER/L1CLKOA1/CLK18	AJ18 ²
PB17/FCC3_MII_RX_DV/L1RQA1/CLK17	AJ17 ²
PB18/FCC2_UT8_RXD4/FCC2_RXD3/L1CLKOD2/L1RXD2A2	AE14 ²
PB19/FCC2_UT8_RXD5/FCC2_RXD2/L1RQD2/L1RXD3A2	AF13 ²
PB20/FCC2_UT8_RXD6/FCC2_RXD1/L1RSYNCD2/L1TXD1A1	AG12 ²
PB21/FCC2_UT8_RXD7/FCC2_RXD0/FCC2_RXD/L1TSYNCD2/L1GNTD2/ L1TXD2A1	AH11 ²
PB22/FCC2_UT8_TXD7/FCC2_TXD0/FCC2_TXD/L1RXD1A1/L1RXDD2	AH16 ²
PB23/FCC2_UT8_TXD6/FCC2_TXD1/L1RXD2A1/L1TXDD2	AE15 ²
PB24/FCC2_UT8_TXD5/FCC2_TXD2/L1RXD3A1/L1RSYNCC2	AJ9 ²
PB25/FCC2_UT8_TXD4/FCC2_TXD3/L1TSYNCC2/L1GNTC2/L1TXD3A1	AE9 ²
PB26/FCC2_MII_CRS/FCC2_UT8_TXD1/L1RXDC2	AJ7 ²
PB27/FCC2_MII_COL/FCC2_UT8_TXD0/L1TXDC2	AH6 ²

Table 14. Pinout List (continued)

Pin Name	Ball
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1	AF2 ²
PC30/FCC2_UT8_TXD3/CLK2/TOUT1	AE1 ²
PC31/CLK1/BRGO1	AD1 ²
PD4/BRGO8/L1TSYNCD1/L1GNTD1/FCC3_RTS/SMRXD2	AC28 ²
PD5/FCC1_UT16_TXD3/DONE1	AD27 ²
PD6/FCC1_UT16_TXD4/DACK1	AF29 ²
PD7/SMSYN1/FCC1_UTM_TXADDR3/FCC1_UTS_TXADDR3/ FCC1_UTM_TXADDR4/FCC1_TXCLAV2	AF28 ²
PD8/SMRXD1/FCC2_UT_TXPRTY/BRGO5	AG25 ²
PD9/SMTXD1/FCC2_UT_RXPRTY/BRGO3	AH26 ²
PD10/L1CLKOB2/FCC2_UT8_RXD1/L1RSYNCB1/BRGO4	AJ27 ²
PD11/L1RQB2/FCC2_UT8_RXD0/L1TSYNCB1/L1GNTB1	AJ23 ²
PD12/SI1_L1ST2/L1RXDB1	AG23 ²
PD13/SI1_L1ST1/L1TXDB1	AJ22 ²
PD14/FCC1_UT16_RXD0/L1CLKOC2/I2CSCL	AE20 ²
PD15/FCC1_UT16_RXD1/L1RQC2/I2CSDA	AJ20 ²
PD16/FCC1_UT_TXPRTY/L1TSYNCC1/L1GNTC1/SPIMISO	AG18 ²
PD17/FCC1_UT_RXPRTY/BRGO2/SPIMOSI	AG17 ²
PD18/FCC1_UTM_RXADDR4/FCC1_UTS_RXADDR4/FCC1_UTM_RXCLAV3/ SPICLK/FCC2_UTM_RXADDR3/FCC2_UTS_RXADDR0	AF16 ²
PD19/FCC1_UTM_TXADDR4/FCC1_UTS_TXADDR4/FCC1_UTM_TXCLAV3/ SPISEL/BRG01/FCC2_UTM_TXADDR3/FCC2_UTS_TXADDR0	AH15 ²
PD20/RTS4/TENA4/FCC1_UT16_RXD2/L1RSYNCA2	AJ14 ²
PD21/TXD4/FCC1_UT16_RXD3/L1RXD0A2/L1RXDA2	AH13 ²
PD22/RXD4/FCC1_UT16_TXD5/L1TXD0A2/L1TXDA2	AJ12 ²
PD23/RTS3/TENA3/FCC1_UT16_RXD4/L1RSYNCD1	AE12 ²
PD24/TXD3/FCC1_UT16_RXD5/L1RXDD1	AF10 ²
PD25/RXD3/FCC1_UT16_TXD6/L1TXDD1	AG9 ²
PD26/RTS2/TENA2/FCC1_UT16_RXD6/L1RSYNCC1	AH8 ²
PD27/TXD2/FCC1_UT16_RXD7/L1RXDC1	AG7 ²
PD28/RXD2/FCC1_UT16_TXD7/L1TXDC1	AE4 ²
PD29/RTS1/TENA1/FCC1_UTM_RXADDR3/FCC1_UTS_RXADDR3/ FCC1_UTM_RXCLAV2/FCC2_UTM_RXADDR4/FCC2_UTS_RXADDR1	AG1 ²
PD30/FCC2_UTM_TXENB/FCC2_UTS_TXENB/TXD1	AD4 ²
PD31/RXD1	AD2 ²
VCCSYN	AB3

Pinout

Table 14. Pinout List (continued)

Pin Name	Ball
VCCSYN1	B9
GNDSYN	AB1
SPARE1 ³	AE11
SPARE4 ³	U5
SPARE5 ⁴	AF25
SPARE6 ³	V4
THERMAL0 ⁵	AA1
THERMAL1 ⁵	AG4
I/O power	AG21, AG14, AG8, AJ1, AJ2, AH1, AH2, AG3, AF4, AE5, AC27, Y27, T27, P27, K26, G27, AE25, AF26, AG27, AH28, AH29, AJ28, AJ29, C7, C14, C16, C20, C23, E10, A28, A29, B28, B29, C27, D26, E25, H3, M4, T3, AA4, A1, A2, B1, B2, C3, D4, E5
Core Power	U28, U29, K28, K29, A9, A19, B19, M1, M2, Y1, Y2, AC1, AC2, AH19, AJ19, AH10, AJ10, AJ5
Ground	AA5, AF21, AF14, AF8, AE7, AF11, AE17, AE23, AC26, AB25, Y26, V25, T26, R25, P26, M25, K27, H25, G26, D7, D10, D14, D16, D20, D23, C9, E11, E13, E15, E19, E22, B3, G5, H4, K5, M3, P5, T4, Y5, AA2, AC3

Note:

¹ Only on Rev C.2 silicon.

² The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.

³ Must be pulled down or left floating.

⁴ Must be pulled down or left floating. However, if compatibility with HiP4 silicon is required, this pin must be pulled up or left floating.

⁵ For information on how to use this pin, refer to *MPC8260 PowerQUICC II Thermal Resistor Guide* available at www.freescale.com.

Symbols used in Table 14 are described in Table 15.

Table 15. Symbol Legend

Symbol	Meaning
OVERBAR	Signals with overbars, such as \overline{TA} , are active low
UTM	Indicates that a signal is part of the UTOPIA master interface