

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	PowerPC G2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	200MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	480-LBGA Exposed Pad
Supplier Device Package	480-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=xpc8260czuihbc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Common on-chip processor (COP) test interface
- High-performance (4.4–5.1 SPEC95 benchmark at 200 MHz; 280 Dhrystones MIPS at 200 MHz)
- Supports bus snooping for data cache coherency
- Floating-point unit (FPU)
- Separate power supply for internal logic and for I/O
- Separate PLLs for G2 core and for the CPM
 - G2 core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides 1.5:1, 2:1, 2:5:1, 3:1, 3:5:1, 4:1, 5:1, 6:1 ratios
 - Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3:5:1, 4:1, 5:1, 6:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs
 - Supports single- and four-beat burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
 - Supports data parity or ECC and address parity
- 32-bit data and 18-bit address local bus
 - Single-master bus, supports external slaves
 - Eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE Std 1149.1TM JTAG test access port
- Twelve-bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other userdefinable peripherals
 - Byte write enables and selectable parity generation
 - 32-bit address decodes with programmable bank size
 - Three user programmable machines, general-purpose chip-select machine, and page-mode pipeline SDRAM machine
 - Byte selects for 64 bus width (60x) and byte selects for 32 bus width (local)
 - Dedicated interface logic for SDRAM
- CPU core can be disabled and the device can be used in slave mode to an external core
- Communications processor module (CPM)

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Features

- Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications protocols
- Interfaces to G2 core through on-chip 24-Kbyte dual-port RAM and DMA controller
- Serial DMA channels for receive and transmit on all serial channels
- Parallel I/O registers with open-drain and interrupt capability
- Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
- Three fast communications controllers (two on the MPC8255) supporting the following protocols:
 - 10/100-Mbit Ethernet/IEEE Std 802.3TM CDMA/CS interface through media independent interface (MII)
 - ATM—Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5, AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 16 K external connections
 - Transparent
 - HDLC—Up to T3 rates (clear channel)
- Two multichannel controllers (MCCs) (only MCC2 on the MPC8255)
 - Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each MCC can be split into four subgroups of 32 channels each.
 - Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces up to four TDM interfaces per MCC
- Four serial communications controllers (SCCs) identical to those on the MPC860, supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BISYNC) communications
 - Transparent
- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provide management for BRI devices as general circuit interface (GCI) controllers in timedivision-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One inter-integrated circuit (I²C) controller (identical to the MPC860 I²C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes

Table 2 lists recommended operational voltage conditions.

Table 2. Recommended Operating Conditions¹

Rating	Symbol	2.5-V Device ²	Unit
Core supply voltage	VDD	2.4–2.7	V
PLL supply voltage	VCCSYN	2.4–2.7	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) – 3.465	V
Junction temperature (maximum)	T _j	105	°C

Caution: These are the recommended and tested operating conditions. Proper device operating outside of these conditions is not guaranteed.

NOTE: Core, PLL, and I/O Supply Voltages

VDDH, VCCSYN, and VDD must track each other and both must vary in the same direction—in the positive direction (+5% and +0.1 Vdc) or in the negative direction (-5% and -0.1 Vdc).

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

Figure 2 shows the undershoot and overshoot voltage of the 60x and local bus memory interface of the MPC8280. Note that in PCI mode the I/O interface is different.

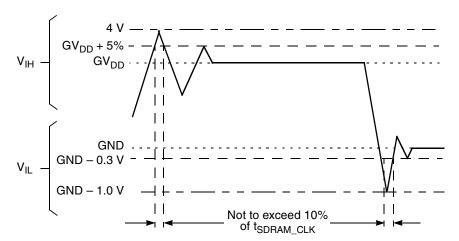


Figure 2. Overshoot/Undershoot Voltage

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

² Parts labeled with an "-HVA" suffix are 2.6-V devices.

Table 3. DC Electrical Characteristics¹ (continued)

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 7. <u>0m</u> A	V _{OL}	_	0.4	V
BR				
BG				
ABB/IRQ2				
TS NO 241				
A[0-31]				
TT[0-4] TBST				
TSIZE[0-3]				
AACK				
ARTRY				
DBG				
DBB/IRQ3				
D[0-63]				
DP(0)/RSRV/EXT_BR2				
DP(1)/IRQ1/EXT_BG2				
DP(2)/TLBISYNC/IRQ2/EXT_DBG2				
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT				
DP(4)/IRQ4/EXT_BG3/CORE_SREST				
DP(5)/TBEN/IRQ5/EXT_DBG3				
DP(6)/CSE(0)/IRQ6				
DP(7)/CSE(1)/IRQ7				
PSDVAL TA				
TA TEA				
GBL/IRQ1				
CI/BADDR29/IRQ2				
WT/BADDR30/IRQ3				
L2_HIT/IRQ4				
CPU_BG/BADDR31/IRQ5				
CPU_DBG				
CPU_BR				
IRQ0/NMI_OUT				
IRQ7/INT_OUT/APE				
PORESET				
HRESET				
SRESET				
RSTCONF				
QREQ				

³ Rev C.2 silicon only.

2.2 Thermal Characteristics

Table 4 describes thermal characteristics.

Table 4. Thermal Characteristics

Characteristics	Symbol	Value	Unit	Air Flow
Thermal resistance for TBGA	θ_{JA}	13.07 ¹	°C/W	NC ²
	θ_{JA}	9.55 ¹	°C/W	1 m/s
	θ_{JA}	10.48 ³	°C/W	NC
	$\theta_{\sf JA}$	7.78 ³	°C/W	1 m/s

Note:

- ¹ Assumes a single layer board with no thermal vias
- ² Natural convection
- 3 Assumes a four layer board

2.3 Power Considerations

The average chip-junction temperature, T_I, in °C can be obtained from the following:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA}) \tag{1}$$

where

 T_A = ambient temperature $^{\circ}C$

 $\theta_{\rm JA}$ = package thermal resistance, junction to ambient, °C/W

$$P_D = P_{INT} + P_{I/O}$$

 $P_{INT} = I_{DD} \times V_{DD}$ Watts (chip internal power)

 $P_{I/O}$ = power dissipation on input and output pins (determined by user)

For most applications $P_{I/O} < 0.3$ x P_{INT} . If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is the following:

$$P_D = K/(T_I + 273^{\circ} C)$$
 (2)

Solving equations (1) and (2) for K gives:

$$K = P_D x (T_A + 273^{\circ} C) + \theta_{JA} x P_D^2$$
 (3)

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

2.4 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for the 66 MHz MPC8260 device. Note that AC timings are based on a 50-pf load. Typical output buffer impedances are shown in Table 6.

Table 6. Output Buffer Impedances¹

Output Buffers	Typical Impedance (Ω)
60x bus	40
Local bus	40
Memory controller	40
Parallel I/O	46

Note:

Table 7 lists CPM output characteristics.

Table 7. AC Characteristics for CPM Outputs¹

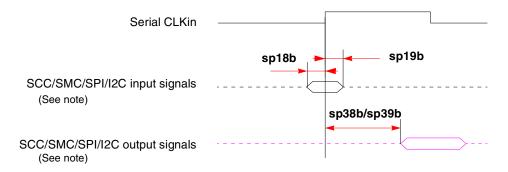
Spec N	lumber	Characteristic	Max Delay (ns)	Min Delay (ns)
Max	Min	Characteristic	66 MHz	66 MHz
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	1
sp36b	sp37b	FCC outputs—external clock (NMSI)	14	2
sp40	sp41	TDM outputs/SI	25	5
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	19	1
sp38b	sp39b	Ex_SCC/SMC/SPI/I2C outputs—external clock (NMSI)	19	2
sp42	sp43	PIO/TIMER/IDMA outputs	14	1

Note:

Table 8 lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

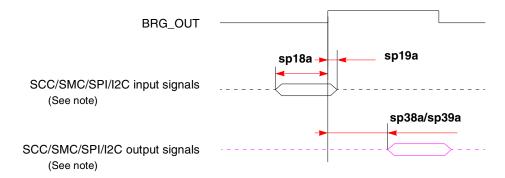
It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.


MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

These are typical values at 65° C. The impedance may vary by ±25% with process and temperature.

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

Figure 5 shows the SCC/SMC/SPI/I²C external clock.

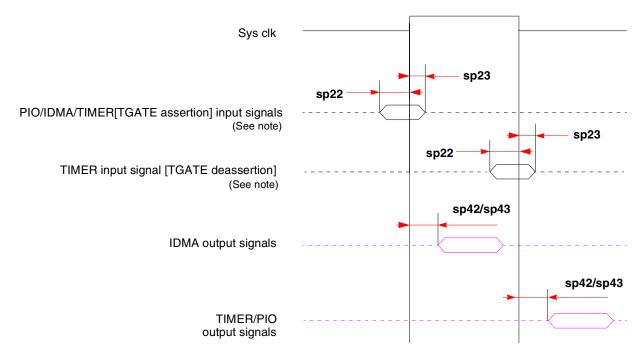


Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

Figure 6 shows the SCC/SMC/SPI/I²C internal clock.


Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

Figure 7 shows PIO, timer, and DMA signals.

Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.

Figure 7. PIO, Timer, and DMA Signal Diagram

Table 9 lists SIU input characteristics.

Table 9. AC Characteristics for SIU Inputs¹

Spec N	lumber	Characteristic	Setup (ns)	Hold (ns)
Setup	Hold	Onaracteristic	66 MHz	66 MHz
sp11	sp10	AACK/ARTRY/TA/TS/TEA/DBG/BG/BR	6	1
sp12	sp10	Data bus in normal mode	5	1
sp13	sp10	Data bus in ECC and PARITY modes	8	1
sp14	sp10	DP pins	8	1
sp14	sp10	All other pins	5	1

Note:

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

Figure 9 shows the interaction of several bus signals.

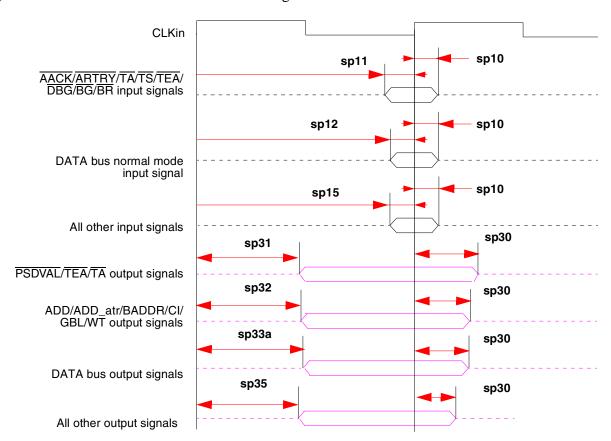


Figure 9. Bus Signals

Figure 10 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).

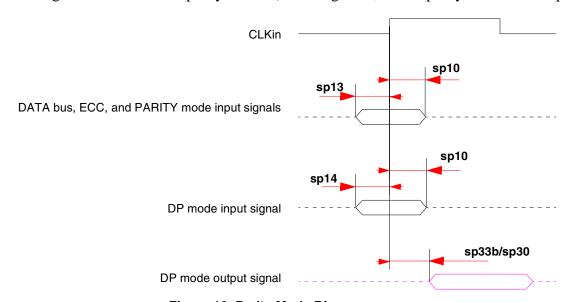


Figure 10. Parity Mode Diagram

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Figure 11 shows signal behavior in MEMC mode.

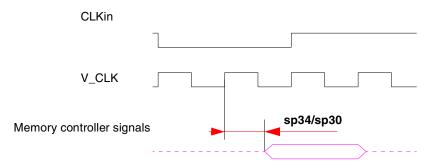


Figure 11. MEMC Mode Diagram

NOTE

Generally, all MPC8260 bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 11.

Table 11. Tick Spacing for Memory Controller Signals

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)			
PLE CIOCK NATIO	T2	Т3	Т4	
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin	
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin	
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin	

Figure 12 is a graphical representation of Table 11.

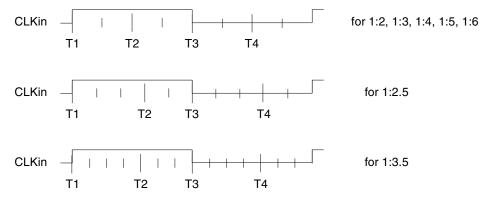


Figure 12. Internal Tick Spacing for Memory Controller Signals

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 13. Clock Configuration Modes¹ (continued)

MODCK_H-MODCK[1-3]	Input Clock Frequency ^{2,3,4}	CPM Multiplication Factor ^{2, 5}	CPM Frequency ²	Core Multiplication Factor ^{2, 6}	Core Frequency ²
0001_101	33 MHz	3	100 MHz	4	133 MHz
0001_110	33 MHz	3	100 MHz	5	166 MHz
0001_111	33 MHz	3	100 MHz	6	200 MHz
0010_000	33 MHz	3	100 MHz	7	233 MHz
0010_001	33 MHz	3	100 MHz	8	266 MHz
0010_010	33 MHz	4	133 MHz	4	133 MHz
0010_011	33 MHz	4	133 MHz	5	166 MHz
0010_100	33 MHz	4	133 MHz	6	200 MHz
0010_101	33 MHz	4	133 MHz	7	233 MHz
0010_110	33 MHz	4	133 MHz	8	266 MHz
	1		-		!
0010_111	33 MHz	5	166 MHz	4	133 MHz
0011_000	33 MHz	5	166 MHz	5	166 MHz
0011_001	33 MHz	5	166 MHz	6	200 MHz
0011_010	33 MHz	5	166 MHz	7	233 MHz
0011_011	33 MHz	5	166 MHz	8	266 MHz
0011_100	33 MHz	6	200 MHz	4	133 MHz
0011_101	33 MHz	6	200 MHz	5	166 MHz
0011_110	33 MHz	6	200 MHz	6	200 MHz
0011_111	33 MHz	6	200 MHz	7	233 MHz
0100_000	33 MHz	6	200 MHz	8	266 MHz
0100_001			Reserved		
0100_010					
0100_011					
0100_100					
0100_101					
0100_110					

Clock Configuration Modes

Table 13. Clock Configuration Modes¹ (continued)

MODCK_H-MODCK[1-3]	Input Clock Frequency ^{2,3,4}	CPM Multiplication Factor ^{2, 5}	CPM Frequency ²	Core Multiplication Factor ^{2, 6}	Core Frequency ²
0100_111			Reserved		L
0101_000	1				
0101_001					
0101_010					
0101_011					
0101_100	1				
0101_101	66 MHz	2	133 MHz	2	133 MHz
0101_110	66 MHz	2	133 MHz	2.5	166 MHz
0101_111	66 MHz	2	133 MHz	3	200 MHz
0110_000	66 MHz	2	133 MHz	3.5	233 MHz
0110_001	66 MHz	2	133 MHz	4	266 MHz
0110_010	66 MHz	2	133 MHz	4.5	300 MHz
			-1		!
0110_011	66 MHz	2.5	166 MHz	2	133 MHz
0110_100	66 MHz	2.5	166 MHz	2.5	166 MHz
0110_101	66 MHz	2.5	166 MHz	3	200 MHz
0110_110	66 MHz	2.5	166 MHz	3.5	233 MHz
0110_111	66 MHz	2.5	166 MHz	4	266 MHz
0111_000	66 MHz	2.5	166 MHz	4.5	300 MHz
			1		l
0111_001	66 MHz	3	200 MHz	2	133 MHz
0111_010	66 MHz	3	200 MHz	2.5	166 MHz
0111_011	66 MHz	3	200 MHz	3	200 MHz
0111_100	66 MHz	3	200 MHz	3.5	233 MHz
0111_101	66 MHz	3	200 MHz	4	266 MHz
0111_110	66 MHz	3	200 MHz	4.5	300 MHz
0111_111	66 MHz	3.5	233 MHz	2	133 MHz
1000_000	66 MHz	3.5	233 MHz	2.5	166 MHz
1000_001	66 MHz	3.5	233 MHz	3	200 MHz
1000_010	66 MHz	3.5	233 MHz	3.5	233 MHz
1000_011	66 MHz	3.5	233 MHz	4	266 MHz
1000_100	66 MHz	3.5	233 MHz	4.5	300 MHz

Note:

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

4.1 Pin Assignments

Figure 13 shows the pinout of the MPC8260 480 TBGA package as viewed from the top surface.

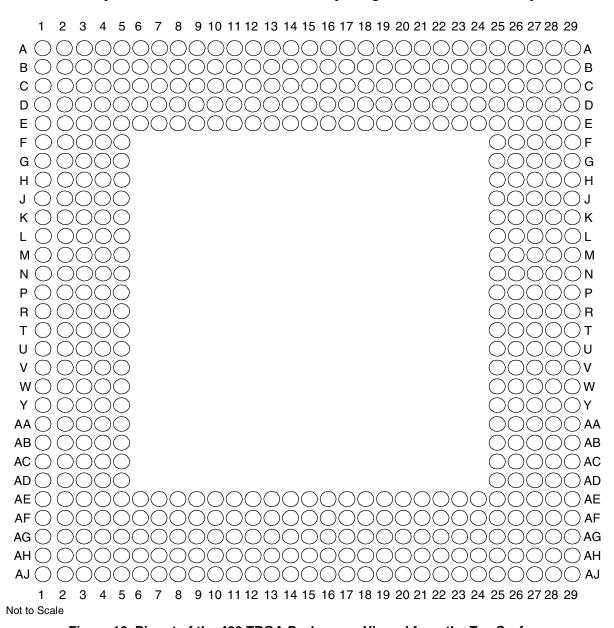


Figure 13. Pinout of the 480 TBGA Package as Viewed from the Top Surface

 ${\bf MPC8260\ PowerQUICC\ II\ Integrated\ Communications\ Processor\ Hardware\ Specifications,\ Rev.\ 2}$

Figure 14 shows the side profile of the TBGA package to indicate the direction of the top surface view.

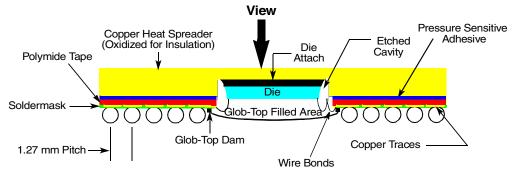


Figure 14. Side View of the TBGA Package

Table 14 shows the pinout list of the MPC8260. Table 15 defines conventions and acronyms used in Table 14.

Table 14. Pinout List

Pin Name	Ball
BR	W5
BG	F4
ABB/IRQ2	E2
TS	E3
A0	G1
A1	H5
A2	H2
A3	H1
A4	J5
A5	J4
A6	J3
A7	J2
A8	J1
A9	K4
A10	К3
A11	K2
A12	K1
A13	L5
A14	L4
A15	L3
A16	L2
A17	L1

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball
A18	M5
A19	N5
A20	N4
A21	N3
A22	N2
A23	N1
A24	P4
A25	P3
A26	P2
A27	P1
A28	R1
A29	R3
A30	R5
A31	R4
тто	F1
TT1	G4
TT2	G3
TT3	G2
TT4	F2
TBST	D3
TSIZ0	C1
TSIZ1	E4
TSIZ2	D2
TSIZ3	F5
AACK	F3
ARTRY	E1
DBG	V1
DBB/IRQ3	V2
D0	B20
D1	A18
D2	A16
D3	A13
D4	E12
D5	D9
D6	A6

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball			
D42	A14			
D43	B12			
D44	A10			
D45	D8			
D46	B6			
D47	C4			
D48	C18			
D49	E16			
D50 B14				
D51	C12			
D52	B10			
D53	A7			
D54	C6			
D55	D5			
D56	B18			
D57	B16			
D58	E14			
D59	D12			
D60	C10			
D61	E8			
D62	D6			
D63	C2			
DP0/RSRV/EXT_BR2	B22			
IRQ1/DP1/EXT_BG2	A22			
IRQ2/DP2/TLBISYNC/EXT_DBG2	E21			
IRQ3/DP3/CKSTP_OUT/EXT_BR3	D21			
IRQ4/DP4/CORE_SRESET/EXT_BG3	C21			
ĪRQ5/DP5/TBEN/EXT_DBG3	B21			
ĪRQ6/DP6/CSE0	A21			
ĪRQ7/DP7/CSE1	E20			
PSDVAL	V3			
TA	C22			
TEA	V5			
GBL/IRQ1	W1			
CI/BADDR29/IRQ2	U2			

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball
LCL_D6	K25
LCL_D7	L29
LCL_D8	L27
LCL_D9	L26
LCL_D10	L25
LCL_D11	M29
LCL_D12	M28
LCL_D13	M27
LCL_D14	M26
LCL_D15	N29
LCL_D16	T25
LCL_D17	U27
LCL_D18	U26
LCL_D19	U25
LCL_D20	V29
LCL_D21	V28
LCL_D22	V27
LCL_D23	V26
LCL_D24	W27
LCL_D25	W26
LCL_D26	W25
LCL_D27	Y29
LCL_D28	Y28
LCL_D29	Y25
LCL_D30	AA29
LCL_D31	AA28
LCL_DP0	L28
LCL_DP1	N28
LCL_DP2	T28
LCL_DP3	W28
IRQ0/NMI_OUT	T1
IRQ7/INT_OUT/APE	D1
TRST	AH3
TCK	AG5
TMS	AJ3

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball	
PB28/FCC2_MII_RX_ER/FCC2_RTS/L1TSYNCB2/L1GNTB2/TXD1	AE3 ²	
PB29/FCC2_UTM_RXCLAV/FCC2_UTS_RXCLAV/L1RSYNCB2/ FCC2_MII_TX_EN	AE2 ²	
PB30/FCC2_MII_RX_DV/FCC2_UT_TXSOC/L1RXDB2	AC5 ²	
PB31/FCC2_MII_TX_ER/FCC2_UT_RXSOC/L1TXDB2	AC4 ²	
PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2	AB26 ²	
PC1/DREQ2/BRGO6/L1RQA2	AD29 ²	
PC2/FCC3_CD/FCC2_UT8_TXD3/DONE2	AE29 ²	
PC3/FCC3_CTS/FCC2_UT8_TXD2/DACK2/CTS4	AE27 ²	
PC4/FCC2_UTM_RXENB/FCC2_UTS_RXENB/SI2_L1ST4/FCC2_CD	AF27 ²	
PC5/FCC2_UTM_TXCLAV/FCC2_UTS_TXCLAV/SI2_L1ST3/FCC2_CTS	AF24 ²	
PC6/FCC1_CD/L1CLKOC1/FCC1_UTM_RXADDR2/FCC1_UTS_RXADDR2/FCC1_UTM_RXCLAV1	AJ26 ²	
PC7/FCC1_CTS/L1RQC1/FCC1_UTM_TXADDR2/FCC1_UTS_TXADDR2/FCC1_UTM_TXCLAV1	AJ25 ²	
PC8/CD4/RENA4/FCC1_UT16_TXD0/SI2_L1ST2/CTS3	AF22 ²	
PC9/CTS4/CLSN4/FCC1_UT16_TXD1/SI2_L1ST1/L1TSYNCA2/L1GNTA2	AE21 ²	
PC10/CD3/RENA3/FCC1_UT16_TXD2/SI1_L1ST4/FCC2_UT8_RXD3	AF20 ²	
PC11/CTS3/CLSN3/L1CLKOD1/L1TXD3A2/FCC2_UT8_RXD2	AE19 ²	
PC12/CD2/RENA2/SI1_L1ST3/FCC1_UTM_RXADDR1/FCC1_UTS_RXADDR1	AE18 ²	
PC13/CTS2/CLSN2/L1RQD1/FCC1_UTM_TXADDR1/FCC1_UTS_TXADDR1	AH18 ²	
PC14/CD1/RENA1/FCC1_UTM_RXADDR0/FCC1_UTS_RXADDR0	AH17 ²	
PC15/CTS1/CLSN1/SMTXD2/FCC1_UTM_TXADDR0/FCC1_UTS_TXADDR0	AG16 ²	
PC16/CLK16/TIN4	AF15 ²	
PC17/CLK15/TIN3/BRGO8	AJ15 ²	
PC18/CLK14/TGATE2	AH14 ²	
PC19/CLK13/BRGO7/SPICLK	AG13 ²	
PC20/CLK12/TGATE1	AH12 ²	
PC21/CLK11/BRGO6	AJ11 ²	
PC22/CLK10/DONE1	AG10 ²	
PC23/CLK9/BRGO5/DACK1	AE10 ²	
PC24/FCC2_UT8_TXD3/CLK8/TOUT4	AF9 ²	
PC25/FCC2_UT8_TXD2/CLK7/BRGO4	AE8 ²	
PC26/CLK6/TOUT3/TMCLK	AJ6 ²	
PC27/FCC3_TXD/FCC3_TXD0/CLK5/BRGO3	AG2 ²	
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2	AF3 ²	

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

Table 14. Pinout List (continued)

Pin Name	Ball
VCCSYN1	В9
GNDSYN	AB1
SPARE1 ³	AE11
SPARE4 ³	U5
SPARE5 ⁴	AF25
SPARE6 ³	V4
THERMAL0 ⁵	AA1
THERMAL1 ⁵	AG4
I/O power	AG21, AG14, AG8, AJ1, AJ2, AH1, AH2, AG3, AF4, AE5, AC27, Y27, T27, P27, K26, G27, AE25, AF26, AG27, AH28, AH29, AJ28, AJ29, C7, C14, C16, C20, C23, E10, A28, A29, B28, B29, C27, D26, E25, H3, M4, T3, AA4, A1, A2, B1, B2, C3, D4, E5
Core Power	U28, U29, K28, K29, A9, A19, B19, M1, M2, Y1, Y2, AC1, AC2, AH19, AJ19, AH10, AJ10, AJ5
Ground	AA5, AF21, AF14, AF8, AE7, AF11, AE17, AE23, AC26, AB25, Y26, V25, T26, R25, P26, M25, K27, H25, G26, D7, D10, D14, D16, D20, D23, C9, E11, E13, E15, E19, E22, B3, G5, H4, K5, M3, P5, T4, Y5, AA2, AC3

Note:

Symbols used in Table 14 are described in Table 15.

Table 15. Symbol Legend

Symbol	Meaning
OVERBAR	Signals with overbars, such as TA, are active low
UТM	Indicates that a signal is part of the UTOPIA master interface

MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2

¹ Only on Rev C.2 silicon.

² The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.

³ Must be pulled down or left floating.

⁴ Must be pulled down or left floating. However, if compatibility with HiP4 silicon is required, this pin must be pulled up or left floating.

⁵ For information on how to use this pin, refer to *MPC8260 PowerQUICC II Thermal Resistor Guide* available at www.freescale.com.

Document Revision History

Table 17. Document Revision History (continued)

Rev. Number	Date	Substantive Change(s)
1.0	3/2002	 Table 14: modified notes to pins AE11 and AF25. Table 14: added note to pins AA1 and AG4 (Therm0 and Therm1).
0.9	2/2002	Table 14: additional note added to AE11
0.8	2/2002	 Table 7, Table 8, Table 9, and Table 10: revision 0.7 of this document incorrectly included values for 83 MHz. 83 MHz is not supported on the MPC8260. Table 14: notes added to pins at AE11, AF25, U5, and V4.
0.7	11/2001	 Revision of Table 5, "Power Dissipation" Modifications to Figure 9, Table 2, Table 10, Table 11 Additional revisions to text and figures throughout
0.6	5/2001	Corrected the thermal values in Table 3, "Thermal Characteristics."
0.2-0.5	_	Temporary revisions
0.1	1/2000	
0	_	Initial version