

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM926EJ-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	190MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM, SRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD
Ethernet	-
SATA	-
USB	USB 2.0 (2)
Voltage - I/O	3.0V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	217-LFBGA
Supplier Device Package	217-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam9261b-cu-999

Email: info@E-XFL.COM

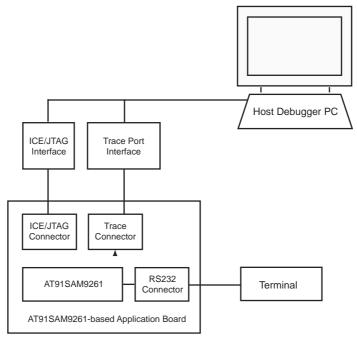
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal Name	Function	Туре	Active Level	Comments
	Reset/7	est		
NRST	Microcontroller Reset	I/O	Low	Pull-up resistor
TST	Test Mode Select	Input		Pull-down resistor
BMS	Boot Mode Select	Input		
	Debug Unit	- DBGU		
DRXD	Debug Receive Data	Input		
DTXD	Debug Transmit Data	Output		
	Advanced Interrupt	Controller	- AIC	
IRQ0–IRQ2	External Interrupt Inputs	Input		
FIQ	Fast Interrupt Input	Input		
	PIO Controller - PIC	A / PIOB /	PIOC	
PA0-PA31	Parallel IO Controller A	I/O		Pulled up input at reset
PB0–PB31	Parallel IO Controller B	I/O		Pulled up input at reset
PC0–PC31	Parallel IO Controller C	I/O		Pulled up input at reset
	External Bus In	erface - EE	BI	
D0–D31	Data Bus	I/O		Pulled up input at reset
A0-A25	Address Bus	Output		0 at reset
NWAIT	External Wait Signal	Input	Low	
	Static Memory Co	ntroller - S	MC	
NCS0-NCS7	Chip Select Lines	Output	Low	
NWR0-NWR3	Write Signal	Output	Low	
NRD	Read Signal	Output	Low	
NWE	Write Enable	Output	Low	
NBS0-NBS3	Byte Mask Signal	Output	Low	
	CompactFlas	h Support		
CFCE1-CFCE2	CompactFlash Chip Enable	Output	Low	
CFOE	CompactFlash Output Enable	Output	Low	
CFWE	CompactFlash Write Enable	Output	Low	
CFIOR	CompactFlash IO Read	Output	Low	
CFIOW	CompactFlash IO Write	Output	Low	
CFRNW	CompactFlash Read Not Write	Output		
CFCS0-CFCS1	CompactFlash Chip Select Lines	Output	Low	
	NAND Flash	Support		
NANDOE	NAND Flash Output Enable	Output	Low	
NANDWE	NAND Flash Write Enable	Output	Low	
NANDCS	NAND Flash Chip Select	Output	Low	

Table 2-1. Signal Description by Peripheral (Continued)

6.4 Peripheral DMA Controller

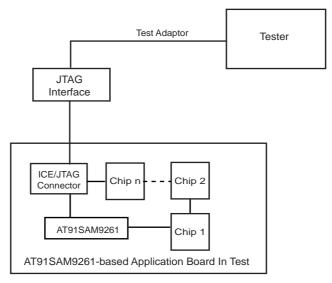
- Transfers from/to peripheral to/from any memory space without intervention of the processor.
- Next Pointer Support, forbids strong real-time constraints on buffer management.
- Nineteen channels
 - Two for each USART
 - Two for the Debug Unit
 - Two for each Serial Synchronous Controller
 - Two for each Serial Peripheral Interface
 - One for the Multimedia Card Interface



11.3 Application Examples

11.3.1 Debug Environment

Figure 11-2 shows a complete debug environment example. The ICE/JTAG interface is used for standard debugging functions, such as downloading code and single-stepping through the program. The Trace Port interface is used for tracing information. A software debugger running on a personal computer provides the user interface for configuring a Trace Port interface utilizing the ICE/JTAG interface.


Figure 11-2. Application Debug and Trace Environment Example

11.3.2 Test Environment

Figure 11-3 shows a test environment example. Test vectors are sent and interpreted by the tester. In this example, the "board in test" is designed using a number of JTAG-compliant devices. These devices can be connected to form a single scan chain.

Figure 11-3. Application Test Environment Example

Bit Number	Pin Name	Pin Type	Associated BSR Cells
360			INPUT
359	PC25	IN/OUT	OUTPUT
358		-	CONTROL
357		internal	
356			INPUT
355	PC26	IN/OUT	OUTPUT
354			CONTROL
353		internal	
352			INPUT
351	PC27	IN/OUT	OUTPUT
350			CONTROL
349		internal	
348			INPUT
347	PC28	IN/OUT	OUTPUT
346		-	CONTROL
345		internal	
344			INPUT
343	PC29	IN/OUT	OUTPUT
342			CONTROL
341		internal	
340			INPUT
339	PC0	IN/OUT	OUTPUT
338		-	CONTROL
337		internal	
336			INPUT
335	PC1	IN/OUT	OUTPUT
334		-	CONTROL
333		internal	
332			INPUT
331	PC2	IN/OUT	OUTPUT
330			CONTROL
329		internal	
328			INPUT
327	PC3	IN/OUT	OUTPUT
326			CONTROL
325		internal	

 Table 11-3.
 SAM9261 JTAG Boundary Scan Register (Continued)

16.6 Functional Description

The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU and manages wakeup input pins and one output pin, SHDN.

A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter providing the main power supplies of the system, and especially VDDCORE and/or VDDIO. The wakeup inputs (WKUP0) connect to any push-buttons or signal that wake up the system.

The software is able to control the pin SHDN by writing the Shutdown Control Register (SHDW_CR) with the bit SHDW at 1. The shutdown is taken into account only 2 slow clock cycles after the write of SHDW_CR. This register is password-protected and so the value written should contain the correct key for the command to be taken into account. As a result, the system should be powered down.

A level change on WKUP0 is used as wakeup. Wakeup is configured in the Shutdown Mode Register (SHDW_MR). The transition detector can be programmed to detect either a positive or negative transition or any level change on WKUP0. The detection can also be disabled. Programming is performed by defining WKMODE0.

Moreover, a debouncing circuit can be programmed for WKUP0. The debouncing circuit filters pulses on WKUP0 shorter than the programmed number of 16 SLCK cycles in CPTWK0 of the SHDW_MR. If the programmed level change is detected on a pin, a counter starts. When the counter reaches the value programmed in the corresponding field, CPTWK0, the SHDN pin is released. If a new input change is detected before the counter reaches the corresponding value, the counter is stopped and cleared. WAKEUP0 of the Status Register (SHDW_SR) reports the detection of the programmed events on WKUP0 with a reset after the read of SHDW_SR.

The Shutdown Controller can be programmed so as to activate the wakeup using the RTT alarm (the detection of the rising edge of the RTT alarm is synchronized with SLCK). This is done by writing the SHDW_MR using the RTTWKEN fields. When enabled, the detection of the RTT alarm is reported in the RTTWK bit of the SHDW_SR Status register. It is reset after the read of SHDW_SR. When using the RTT alarm to wake up the system, the user must ensure that the RTT alarm status flag is cleared before shutting down the system. Otherwise, no rising edge of the status flag may be detected and the wakeup fails.

25.4 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default Watchdog is running at reset, i.e., at powerup. The user must either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset resets it. Writing the WDT_MR reloads the timer with the newly programmed mode parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The WDT_CR is write-protected. As a result, writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur, the "wdt_fault" signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register (WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the Watchdog must occur while the Watchdog counter is within a window between 0 and WDD, WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the WDT_SR and the "wdt_fault" signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit WDFIEN is set in the mode register. The signal "wdt_fault" to the reset controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset controller programmer Datasheet. In that case, the processor and the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the "wdt_fault" signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

Atmel

25.5.2 Watchdog Timer Mode Register

Name: Address:	WDT_MR 0xFFFFD44						
Access:	Read-write Once	е					
31	30	29	28	27	26	25	24
		WDIDLEHLT	WDDBGHLT		WI	DD	
23	22	21	20 WI	19 DD	18	17	16
15	14	13	12	11	10	9	8
WDDIS	WDRPROC	WDRSTEN	WDFIEN		W	DV	
7	6	5	4 WI	3 DV	2	1	0

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit Watchdog Counter.

• WDFIEN: Watchdog Fault Interrupt Enable

- 0: A Watchdog fault (underflow or error) has no effect on interrupt.
- 1: A Watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable

- 0: A Watchdog fault (underflow or error) has no effect on the resets.
- 1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

• WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

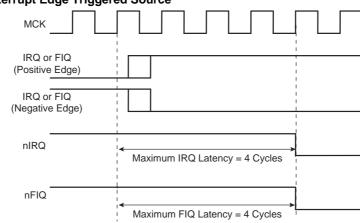
If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer. If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

• WDDBGHLT: Watchdog Debug Halt

0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

• WDIDLEHLT: Watchdog Idle Halt


- 0: The Watchdog runs when the system is in idle mode.
- 1: The Watchdog stops when the system is in idle state.

This section addresses only the hardware resynchronizations. It gives details of the latency times between the event on an external interrupt leading in a valid interrupt (edge or level) or the assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the processor. The resynchronization time depends on the programming of the interrupt source and on its type (internal or external). For the standard interrupt, resynchronization times are given assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt sources.

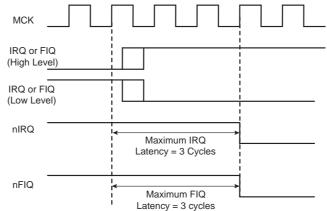

26.7.2.1 External Interrupt Edge Triggered Source

Figure 26-6. External Interrupt Edge Triggered Source

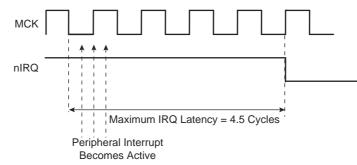

26.7.2.2 External Interrupt Level Sensitive Source

Figure 26-7. External Interrupt Level Sensitive Source

26.7.2.3 Internal Interrupt Edge Triggered Source

Figure 26-8. Internal Interrupt Edge Triggered Source

26.8.18 AIC Fast Forcing Disable Register

Name:	AIC_FFDR								
Address:	0xFFFF144								
Access:	Write-only								
31	30	29	28	27	26	25	24		
PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24		
23	22	21	20	19	18	17	16		
PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16		
15	14	13	12	11	10	9	8		
PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8		
7	6	5	4	3	2	1	0		
PID7	PID6	PID5	PID4	PID3	PID2	SYS	—		

• SYS, PID2-PID31: Fast Forcing Disable

0: No effect.

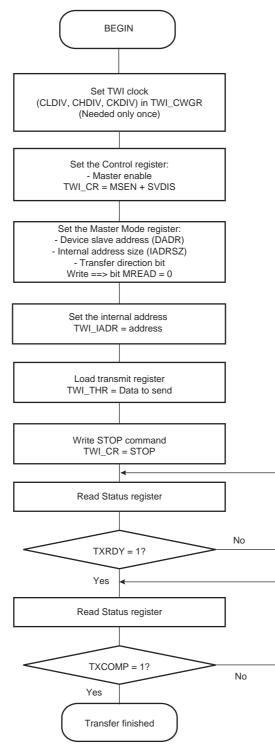
1: Disables the Fast Forcing feature on the corresponding interrupt.

28.6.1 PIO Controller PIO Enable Register

Name: PIO_PER

Address: 0xFFFFF400 (PIOA), 0xFFFFF600 (PIOB), 0xFFFFF800 (PIOC)

Access: Write-only


31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: PIO Enable

0: No effect.

1: Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

Figure 30-16. TWI Write Operation with Single Data Byte and Internal Address

Atmel

30.10.5.4 Clock Synchronization

In both read and write modes, it may happen that TWI_THR/TWI_RHR buffer is not filled /emptied before the emission/reception of a new character. In this case, to avoid sending/receiving undesired data, a clock stretching mechanism is implemented.

Clock Synchronization in Read Mode

The clock is tied low if the shift register is empty and if a STOP or REPEATED START condition was not detected. It is tied low until the shift register is loaded.

Figure 30-28 describes the clock synchronization in Read mode.

Figure 30-28. Clock Synchronization in Read Mode

- Notes: 1. TXRDY is reset when data has been written in the TWI_THR to the shift register and set when this data has been acknowledged or non acknowledged.
 - 2. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from SADR.
 - 3. SCLWS is automatically set when the clock synchronization mechanism is started.

30.11.1 TWI Control Register

Name:	TWI_CR						
Address:	0xFFFAC000						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	—	—	—	_	_	_	—
	-		-				
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
	-	-	-	-		-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
SWRST	QUICK	SVDIS	SVEN	MSDIS	MSEN	STOP	START

• START: Send a START Condition

0: No effect.

1: A frame beginning with a START bit is transmitted according to the features defined in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).

• STOP: Send a STOP Condition

0: No effect.

1: STOP Condition is sent just after completing the current byte transmission in master read mode.

- In single data byte master read, the START and STOP must both be set.
- In multiple data bytes master read, the STOP must be set after the last data received but one.
- In master read mode, if a NACK bit is received, the STOP is automatically performed.
- In master data write operation, a STOP condition will be sent after the transmission of the current data is finished.

MSEN: TWI Master Mode Enabled

0: No effect.

1: If MSDIS = 0, the master mode is enabled.

Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1.

MSDIS: TWI Master Mode Disabled

0: No effect.

1: The master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are transmitted in case of write operation. In read operation, the character being transferred must be completely received before disabling.

SVEN: TWI Slave Mode Enabled

0: No effect.

1: If SVDIS = 0, the slave mode is enabled.

Note: Switching from Master to Slave mode is only permitted when TXCOMP = 1.

• PAR: Parity Type

	7 7		
	Value		Parity Type
0	0	0	Even parity
0	0	1	Odd parity
0	1	0	Parity forced to 0 (Space)
0	1	1	Parity forced to 1 (Mark)
1	0	х	No parity
1	1	х	Multidrop mode

• NBSTOP: Number of Stop Bits

Va	lue	Asynchronous (SYNC = 0)	Synchronous (SYNC = 1)	
0	0	1 stop bit	1 stop bit	
0	1	1.5 stop bits	Reserved	
1	0	2 stop bits	2 stop bits	
1	1	Reserved	Reserved	

• CHMODE: Channel Mode

Value		Mode Description
0	0	Normal Mode
0	1	Automatic Echo. Receiver input is connected to the TXD pin.
1	0	Local Loopback. Transmitter output is connected to the Receiver Input.
1	1	Remote Loopback. RXD pin is internally connected to the TXD pin.

• MSBF: Bit Order

0: Least Significant Bit is sent/received first.

1: Most Significant Bit is sent/received first.

• MODE9: 9-bit Character Length

0: CHRL defines character length.

1: 9-bit character length.

CLKO: Clock Output Select

0: The USART does not drive the SCK pin.

1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

OVER: Oversampling Mode

0: 16x Oversampling.

1: 8x Oversampling.

INACK: Inhibit Non Acknowledge

0: The NACK is generated.

1: The NACK is not generated.

32.8.14 SSC Interrupt Enable Register

Name:	SSC_IER								
Address:	0xFFFBC044 (0), 0xFFFC0044 (1), 0xFFFC4044 (2)								
Access:	Write-only								
31	30	29	28	27	26	25	24		
-	-	-	-	-	-	-	—		
23	22	21	20	19	18	17	16		
-	-	-	-	-	-	-	-		
15	14	13	12	11	10	9	8		
-	-	-	-	RXSYN	TXSYN	CP1	CP0		
7	6	5	4	3	2	1	0		
RXBUFF	ENDRX	OVRUN	RXRDY	TXBUFE	ENDTX	TXEMPTY	TXRDY		

• TXRDY: Transmit Ready Interrupt Enable

0: 0: No effect.

1: Enables the Transmit Ready Interrupt.

• TXEMPTY: Transmit Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Empty Interrupt.

• ENDTX: End of Transmission Interrupt Enable

- 0: No effect.
- 1: Enables the End of Transmission Interrupt.

• TXBUFE: Transmit Buffer Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Buffer Empty Interrupt

• RXRDY: Receive Ready Interrupt Enable

0: No effect.

1: Enables the Receive Ready Interrupt.

OVRUN: Receive Overrun Interrupt Enable

0: No effect.

1: Enables the Receive Overrun Interrupt.

• ENDRX: End of Reception Interrupt Enable

- 0: No effect.
- 1: Enables the End of Reception Interrupt.

33.7.5 TC Channel Mode Register: Waveform Mode

Name: TC_CMRx [x=0..2] (WAVE = 1)

Address: 0xFFFA0004 (0)[0], 0xFFFA0044 (0)[1], 0xFFFA0084 (0)[2]

Access: Read/Write

31	30	29	28	27	26	25	24
BSV	BSWTRG		BEEVT		BCPC		PB
23	22	21	20	19	18	17	16
ASV	/TRG	AEEVT		ACPC		ACPA	
15	14	13	12	11	10	9	8
WAVE	WAV	'SEL	ENETRG	EEVT		EEVTEDG	
7	6	5	4	3	2	1	0
CPCDIS	CPCSTOP	BURST		CLKI		TCCLKS	

• TCCLKS: Clock Selection

TCCLKS		ĸs	Clock Selected
0	0	0	TIMER_CLOCK1
0	0	1	TIMER_CLOCK2
0	1	0	TIMER_CLOCK3
0	1	1	TIMER_CLOCK4
1	0	0	TIMER_CLOCK5
1	0	1	XC0
1	1	0	XC1
1	1	1	XC2

• CLKI: Clock Invert

0: Counter is incremented on rising edge of the clock.

1: Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

Value		Description				
0	0	The clock is not gated by an external signal.				
0	1	XC0 is ANDed with the selected clock.				
1	0	XC1 is ANDed with the selected clock.				
1	1	XC2 is ANDed with the selected clock.				

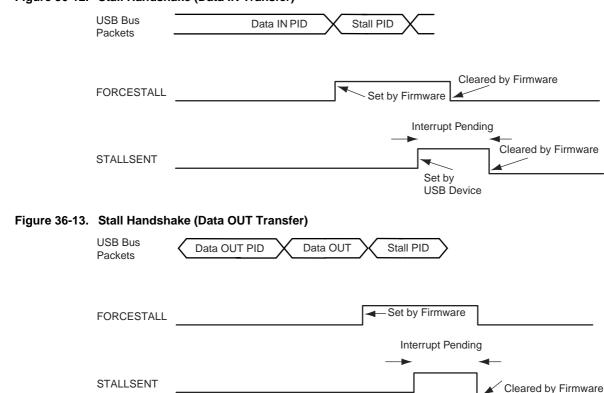
• CPCSTOP: Counter Clock Stopped with RC Compare

0: Counter clock is not stopped when counter reaches RC.

1: Counter clock is stopped when counter reaches RC.

• CPCDIS: Counter Clock Disable with RC Compare

- 0: Counter clock is not disabled when counter reaches RC.
- 1: Counter clock is disabled when counter reaches RC.



34.10.9 MCI Transmit Data Register

Name:	MCI_TDR								
Address:	0xFFFA8034								
Access:	Write-only								
31	30	29	28	27	26	25	24		
	DATA								
23	22	21	20	19	18	17	16		
	DATA								
15	14	13	12	11	10	9	8		
	DATA								
7	6	5	4	3	2	1	0		
	DATA								

• DATA: Data to Write

Atmel

Figure 36-12. Stall Handshake (Data IN Transfer)

STALLSENT

Set by USB Device

36.6.2.9 Transmit Data Cancellation

Some endpoints have dual-banks whereas some endpoints have only one bank. The procedure to cancel transmission data held in these banks is described below.

To see the organization of dual-bank availability refer to Table 36-1 "USB Endpoint Description".

36.6.2.10Endpoints Without Dual-Banks

There are two possibilities: In one case, TXPKTRDY field in UDP_CSR has already been set. In the other instance, TXPKTRDY is not set.

- TXPKTRDY is not set:
 - Reset the endpoint to clear the FIFO (pointers). (See Section 36.7.9 "UDP Reset Endpoint Register".)
- TXPKTRDY has already been set:
 - Clear TXPKTRDY so that no packet is ready to be sent _
 - Reset the endpoint to clear the FIFO (pointers). (See Section 36.7.9 "UDP Reset Endpoint Register".) _

36.6.2.11Endpoints With Dual-Banks

There are two possibilities: In one case, TXPKTRDY field in UDP_CSR has already been set. In the other instance, TXPKTRDY is not set.

- TXPKTRDY is not set: .
 - Reset the endpoint to clear the FIFO (pointers). (See Section 36.7.9 "UDP Reset Endpoint Register".) _
- TXPKTRDY has already been set:
 - Clear TXPKTRDY and read it back until actually read at 0.
 - Set TXPKTRDY and read it back until actually read at 1. _
 - Clear TXPKTRDY so that no packet is ready to be sent.
 - Reset the endpoint to clear the FIFO (pointers). (See Section 36.7.9 "UDP Reset Endpoint Register".)

37.10.27 LCD Interrupt Disable Register

Name:	LCD_IDR						
Address:	0x0060084C						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	_	_	_	_	-	_
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	MERID	OWRID	UFLWID	-	EOFID	LSTLNID	LNID

• LNID: Line interrupt disable

- 0: No effect
- 1: Disable each line interrupt

• LSTLNID: Last line interrupt disable

- 0: No effect
- 1: Disable last line interrupt

• EOFID: DMA End of frame interrupt disable

- 0: No effect
- 1: Disable End Of Frame interrupt

• UFLWID: FIFO underflow interrupt disable

- 0: No effect
- 1: Disable FIFO underflow interrupt

• OWRID: FIFO overwrite interrupt disable

- 0: No effect
- 1: Disable FIFO overwrite interrupt

• MERID: DMA Memory error interrupt disable

- 0: No effect
- 1: Disable DMA Memory error interrupt

42.1.10.4 SPI: Chip Select and fixed mode

In FIXED Mode, if a transfer is performed through a PDC on a Chip Select different from the Chip Select 0, the output spi_size sampled by the PDC will depend on the field SPI_CSR0.BITS, whatever the selected Chip Select is. For example if SPI_CSR0 is configured for a 10-bit transfer whereas the SPI_CSR1 is configured for an 8-bit transfer, when a transfer is performed in Fixed mode through the PDC on Chip Select 1, the transfer is considered as a halfword transfer.

Problem Fix/Workaround

If a PDC transfer has to be performed in 8 bits, on a Chip select y (y different from 0), the field SPI_CSR0.BITS must be configured in 8 bits in the same way as the field BITS of the CSRy Register.

42.1.10.5 SPI: Baud rate set to 1

When SPI_CSRx.SCBR (baud rate) = 1 (i.e., when serial clock frequency equals the system clock frequency), and when the field BITS (number of bits to be transmitted) equals an ODD value (in this case 9, 11, 13 or 15), an additional pulse is generated on output SPCK. No problem occurs if BITS field equals 8, 10, 12, 14 or 16 and SCBR (baud rate) = 1.

Problem Fix/Workaround

None.

42.1.10.6 SPI: Software Reset

If the Software reset command is performed at the same clock cycle as an event for TXRDY occurs, there is no reset.

Problem Fix/Workaround

Perform another software reset.

42.1.10.7 SPI: Software Reset Must be Written Twice

If a software reset (SWRST in the SPI Control Register) is performed, the SPI may not work properly (the clock is enabled before the chip select).

Problem Fix/Workaround

The field SPI_CR.SWRST needs to be written twice to be correctly set.

42.1.10.8 SPI: Bad Serial Clock Generation on 2nd Chip Select

Bad Serial clock generation on the 2nd chip select when SSPI_CSRx.SCBR = 1, SPI_CSRx.CPOL = 1 and SPI_CSRx.NCPHA = 0.

This occurs using SPI with the following conditions:

- Master Mode
- CPOL = 1 and NCPHA = 0
- Multiple chip selects are used with one transfer with SCBR (baud rate) = 1 (i.e., when serial clock frequency equals the system clock frequency) and the other transfers set with SCBR are not equal to 1.
- Transmitting with the slowest chip select and then with the fastest one, then an additional pulse is generated on output SPCK during the second transfer.

Problem Fix/Workaround

Do not use a multiple Chip Select configuration where at least one SPI_CSRx is configured with SCBR = 1 and the others differ from 1 if NCPHA = 0 and CPOL = 1.

If all chip selects are configured with SCBR (baud rate) = 1, the issue does not appear.

