

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	98
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 42x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk40dn512zvlq10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1 Ord	lering par	ts5		5.4.2	Thermal attributes	23
1.1	Determi	ning valid orderable parts5	6 Per	ipheral of	perating requirements and behaviors	24
2 Par	t identific	ation5	6.1	Core mo	odules	24
2.1	Descrip	tion5		6.1.1	Debug trace timing specifications	24
2.2	Format.	5		6.1.2	JTAG electricals	25
2.3	Fields	5	6.2	System	modules	28
2.4	Example	e6	6.3	Clock m	nodules	28
3 Ter	minology	and guidelines6		6.3.1	MCG specifications	28
3.1	Definition	n: Operating requirement6		6.3.2	Oscillator electrical specifications	30
3.2	Definition	n: Operating behavior7		6.3.3	32 kHz Oscillator Electrical Characteristics	32
3.3	Definition	n: Attribute7	6.4	Memorie	es and memory interfaces	33
3.4	Definition	n: Rating8		6.4.1	Flash electrical specifications	33
3.5	Result o	of exceeding a rating8		6.4.2	EzPort Switching Specifications	37
3.6	Relation	ship between ratings and operating		6.4.3	Flexbus Switching Specifications	38
	requirer	nents8	6.5	Security	and integrity modules	41
3.7	Guidelin	es for ratings and operating requirements9	6.6	Analog.		41
3.8	Definition	n: Typical value9		6.6.1	ADC electrical specifications	41
3.9	Typical	value conditions10		6.6.2	CMP and 6-bit DAC electrical specifications	49
4 Rat	ings	11		6.6.3	12-bit DAC electrical characteristics	51
4.1	Therma	handling ratings11		6.6.4	Voltage reference electrical specifications	54
4.2	Moisture	e handling ratings11	6.7	Timers		55
4.3	ESD ha	ndling ratings11	6.8	Commu	nication interfaces	55
4.4	Voltage	and current operating ratings11		6.8.1	USB electrical specifications	55
5 Ger	neral	12		6.8.2	USB DCD electrical specifications	56
5.1	AC elec	trical characteristics12		6.8.3	USB VREG electrical specifications	56
5.2	Nonswit	ching electrical specifications12		6.8.4	CAN switching specifications	57
	5.2.1	Voltage and current operating requirements13		6.8.5	DSPI switching specifications (limited voltage	
	5.2.2	LVD and POR operating requirements14			range)	57
	5.2.3	Voltage and current operating behaviors14		6.8.6	DSPI switching specifications (full voltage	
	5.2.4	Power mode transition operating behaviors16			range)	58
	5.2.5	Power consumption operating behaviors17		6.8.7	Inter-Integrated Circuit Interface (I2C) timing	60
	5.2.6	EMC radiated emissions operating behaviors20		6.8.8	UART switching specifications	61
	5.2.7	Designing with radiated emissions in mind21		6.8.9	SDHC specifications	61
	5.2.8	Capacitance attributes21		6.8.10	I2S switching specifications	62
5.3	Switchir	ng specifications21	6.9	Human-	machine interfaces (HMI)	65
	5.3.1	Device clock specifications21		6.9.1	TSI electrical specifications	65
	5.3.2	General switching specifications21		6.9.2	LCD electrical characteristics	66
5.4	Therma	specifications22	7 Dim	nensions.		67
	5.4.1	Thermal operating requirements22	7.1	Obtainir	ng package dimensions	67

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK40 and MK40.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K40
А	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	N = Program flash only T = Program flash and FlexMemory

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

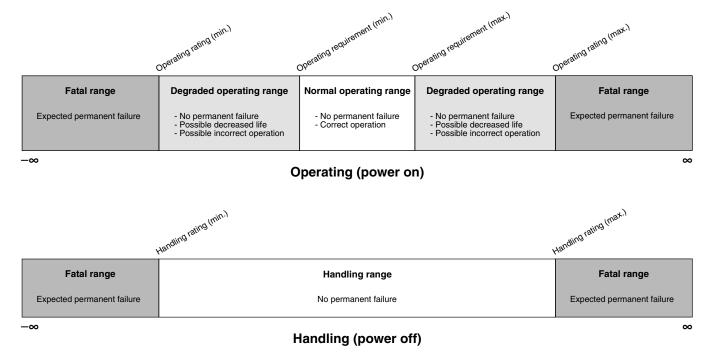
An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute


An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

3.6 Relationship between ratings and operating requirements

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	144 LQFP	144 MAPBGA	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	45	48	°C/W	1
Four-layer (2s2p)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	36	29	°C/W	1
Single-layer (1s)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	36	38	°C/W	1
Four-layer (2s2p)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	30	25	°C/W	1
_	R ₀ JB	Thermal resistance, junction to board	24	16	°C/W	2
_	R _{eJC}	Thermal resistance, junction to case	9	9	°C/W	3
	Ψ _{ЈТ}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	2	°C/W	4

^{1.} Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

Peripheral operating requirements and behaviors

- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*.

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

Table 12. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	dependent	MHz
T _{wl}	Low pulse width	2	_	ns
T _{wh}	High pulse width	2	_	ns
T _r	Clock and data rise time	_	3	ns
T _f	Clock and data fall time	_	3	ns
Ts	Data setup	3	_	ns
T _h	Data hold	2	_	ns

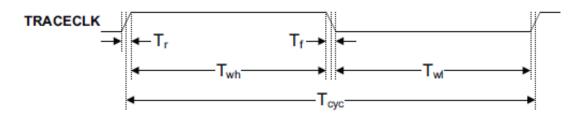


Figure 3. TRACE_CLKOUT specifications

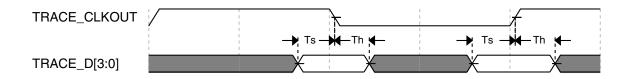


Figure 4. Trace data specifications

Table 15. MCG specifications (continued)

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01)	40	41.94	50	MHz	1
		1280 × f _{fll_ref}					
		Mid-high range (DRS=10)	60	62.91	75	MHz	1
		$1920 \times f_{fll ref}$					
		High range (DRS=11)	80	83.89	100	MHz	1
		$2560 \times f_{fll_ref}$					
dco_t_DMX32	DCO output frequency	Low range (DRS=00) $732 \times f_{\text{fil_ref}}$	_	23.99	_	MHz	4, 5
		Mid range (DRS=01) $1464 \times f_{fil_ref}$	_	47.97	_	MHz	
		Mid-high range (DRS=10) $2197 \times f_{fill ref}$	_	71.99	_	MHz	_
		High range (DRS=11) 2929 × f _{fill ref}	_	95.98	_	MHz	
J _{cyc_fll}	FLL period jitter		180		ps		
-cyc_iii	• f _{VCO} = 48 MI	• f _{VCO} = 48 MHz				P	
	• f _{VCO} = 98 MHz			150			
t _{fll_acquire}	FLL target frequen	— LL	_	1	ms	6	
f _{vco}	VCO operating fre		48.0	_	100	MHz	
I _{pll}	PLL operating curi	<u> </u>	40.0		100		7
·þii	• PLL @ 96 M	Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)	_	1060	_	μΑ	,
I _{pll}	PLL operating curi PLL @ 48 M 2 MHz, VDIV	rent Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 24)	_	600	_	μΑ	7
f _{pll_ref}	PLL reference free	uency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					8
	• f _{vco} = 48 MH	_	120	_	ps		
	• f _{vco} = 100 M	_	50	_	ps		
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)						8
	• f _{vco} = 48 MHz		_	1350	_	ps	
	• f _{vco} = 100 MHz		_	600	_	ps	
D _{lock}	Lock entry frequency tolerance		± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequenc		± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector dete		_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

Table 16. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	ΜΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x , C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	

Table continues on the next page...

K40 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Table 17. Oscillator frequency specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz Oscillator Electrical Characteristics

This section describes the module electrical characteristics.

6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	_	3.6	V
R _F	Internal feedback resistor	_	100	_	ΜΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation		0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

Table 21. Flash command timing specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{eewr16bers}	Word-write to erased FlexRAM location execution time	_	175	260	μs	
	Word-write to FlexRAM execution time:					
t _{eewr16b32k}	32 KB EEPROM backup	_	385	1800	μs	
t _{eewr16b64k}	64 KB EEPROM backup	_	475	2000	μs	
t _{eewr16b128k}	128 KB EEPROM backup	_	650	2400	μs	
t _{eewr16b256k}	256 KB EEPROM backup	_	1000	3200	μs	
	Longword-write to FlexRA	M for EEPR	OM operation	1		
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time	_	360	540	μs	
	Longword-write to FlexRAM execution time:					
t _{eewr32b32k}	32 KB EEPROM backup	_	630	2050	μs	
t _{eewr32b64k}	64 KB EEPROM backup	_	810	2250	μs	
t _{eewr32b128k}	128 KB EEPROM backup	_	1200	2675	μs	
t _{eewr32b256k}	256 KB EEPROM backup	_	1900	3500	μs	

- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

6.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Prograi	m Flash				
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2
	Data	Flash				
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	_	years	

Table 23.	NVM reliability	y specifications ((continued))
-----------	-----------------	--------------------	-------------	---

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
	FlexRAM a	s EEPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	_	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
	Write endurance					3
n _{nvmwree16}	EEPROM backup to FlexRAM ratio = 16	35 K	175 K	_	writes	
n _{nvmwree128}	EEPROM backup to FlexRAM ratio = 128	315 K	1.6 M	_	writes	
n _{nvmwree512}	EEPROM backup to FlexRAM ratio = 512	1.27 M	6.4 M	_	writes	
n _{nvmwree4k}	EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	_	writes	
n _{nvmwree32k}	EEPROM backup to FlexRAM ratio = 32,768	80 M	400 M	_	writes	

- Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.
- Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_subsystem =
$$\frac{\text{EEPROM} - 2 \times \text{EEESPLIT} \times \text{EEESIZE}}{\text{EEESPLIT} \times \text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycd}}$$

where

 Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)

K40 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Table 24. EzPort switching specifications (continued)

Num	Description	Min.	Max.	Unit
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	_	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid	_	16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

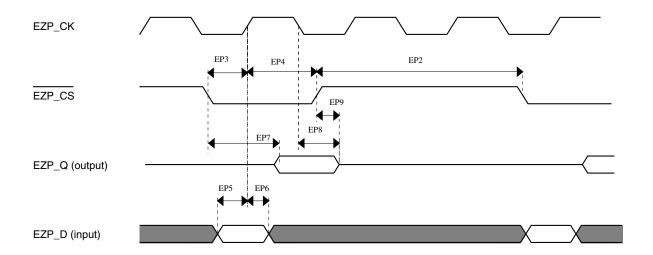


Figure 10. EzPort Timing Diagram

6.4.3 Flexbus Switching Specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Table 25. Flexbus limited voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	20	_	ns	
FB2	Address, data, and control output valid	_	11.5	ns	1
FB3	Address, data, and control output hold	0.5	_	ns	1
FB4	Data and FB_TA input setup	8.5	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

^{1.} Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	13.5	ns	1
FB3	Address, data, and control output hold	0	_	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

^{1.} Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

^{2.} Specification is valid for all FB_AD[31:0] and FB_TA.

^{2.} Specification is valid for all FB_AD[31:0] and FB_TA.

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3.

The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 29 and Table 30.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

6.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V_{DDA}	V_{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V_{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 * VREFH	V	
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	
		8-bit / 10-bit / 12-bit modes	_	4	5		
R _{ADIN}	Input resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion rate	≤ 13-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000	_	818.330	Ksps	5

Table 27. 16-bit ADC operating conditions (continued)

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
Tate	ADC conversion rate	16-bit mode No ADC hardware averaging	37.037	_	461.467	Ksps	5
		Continuous conversions enabled, subsequent conversion time					

- 1. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

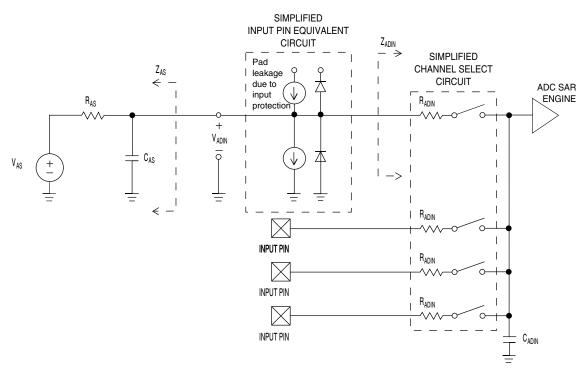


Figure 13. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 28. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3

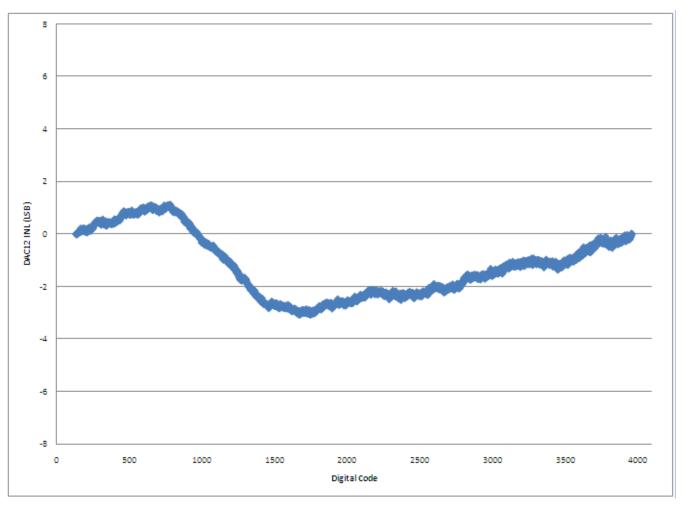


Figure 18. Typical INL error vs. digital code

Peripheral operating requirements and behaviors

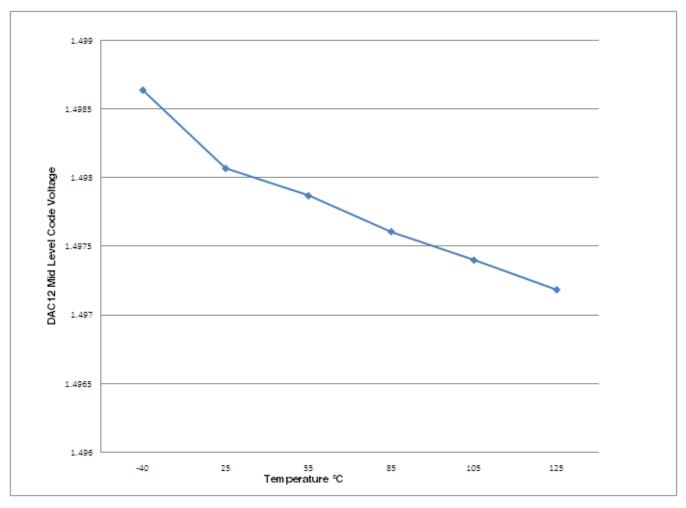


Figure 19. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 34. VREF full-range operating requirements

Symbol	Description Min. Max.		Unit	Notes	
V_{DDA}	Supply voltage	1.71 3.6		V	
T _A	Temperature	Operating temperature range of the device		°C	
C _L	Output load capacitance	100		nF	1, 2

- C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- 2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

6.8.10 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Num	Description	Min.	Max.	Unit	
	Operating voltage	2.7	3.6	V	
S1	I2S_MCLK cycle time	2 x t _{SYS}		ns	
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period	
S3	I2S_BCLK cycle time	5 x t _{SYS}	_	ns	
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period	
S5	I2S_BCLK to I2S_FS output valid	_	15	ns	
S6	I2S_BCLK to I2S_FS output invalid	-2.5	_	ns	
S7	I2S_BCLK to I2S_TXD valid	_	15	ns	
S8	I2S_BCLK to I2S_TXD invalid	-3	_	ns	
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	20	_	ns	
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	_	ns	

Table 46. I²S master mode timing (limited voltage range)

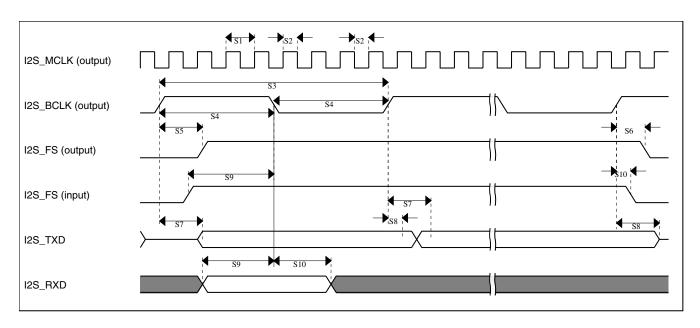


Figure 26. I²S timing — master mode

Pinout

144 LQFP	144 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
50	J5	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSIO_CH1	PTA0	UARTO_CTS_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
51	J6	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UARTO_RX	FTM0_CH6				JTAG_TDI	EZP_DI
52	K6	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSIO_CH3	PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
53	K7	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UARTO_RTS_ b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
54	L7	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
55	M8	PTA5	DISABLED		PTA5		FTM0_CH2		CMP2_OUT	I2S0_RX_ BCLK	JTAG_TRST	
56	E7	VDD	VDD	VDD								
57	G7	VSS	VSS	VSS								
58	J7	PTA6	DISABLED		PTA6		FTM0_CH3		FB_CLKOUT		TRACE_ CLKOUT	
59	J8	PTA7	ADC0_SE10	ADC0_SE10	PTA7		FTM0_CH4		FB_AD18		TRACE_D3	
60	K8	PTA8	ADC0_SE11	ADC0_SE11	PTA8		FTM1_CH0		FB_AD17	FTM1_QD_ PHA	TRACE_D2	
61	L8	PTA9	DISABLED		PTA9		FTM1_CH1		FB_AD16	FTM1_QD_ PHB	TRACE_D1	
62	M9	PTA10	DISABLED		PTA10		FTM2_CH0		FB_AD15	FTM2_QD_ PHA	TRACE_D0	
63	L9	PTA11	DISABLED		PTA11		FTM2_CH1		FB_OE_b	FTM2_QD_ PHB		
64	К9	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CANO_TX	FTM1_CH0		FB_CS5_b/ FB_TSIZ1/ FB_BE23_16_ b	12S0_TXD	FTM1_QD_ PHA	
65	J9	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CANO_RX	FTM1_CH1		FB_CS4_b/ FB_TSIZ0/ FB_BE31_24_ b	12S0_TX_FS	FTM1_QD_ PHB	
66	L10	PTA14	DISABLED		PTA14	SPI0_PCS0	UARTO_TX		FB_AD31	I2S0_TX_ BCLK		
67	L11	PTA15	DISABLED		PTA15	SPI0_SCK	UARTO_RX		FB_AD30	I2S0_RXD		
68	K10	PTA16	DISABLED		PTA16	SPI0_SOUT	UARTO_CTS_ b		FB_AD29	12S0_RX_FS		
69	K11	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UARTO_RTS_ b		FB_AD28	I2S0_MCLK	I2SO_CLKIN	
70	E8	VDD	VDD	VDD								
71	G8	VSS	VSS	VSS								
72	M12	PTA18	EXTAL	EXTAL	PTA18		FTM0_FLT2	FTM_CLKIN0				
73	M11	PTA19	XTAL	XTAL	PTA19		FTM1_FLT0	FTM_CLKIN1		LPT0_ALT1		
74	L12	RESET_b	RESET_b	RESET_b								

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

FreescaleTM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2011-2013 Freescale Semiconductor, Inc.

Document Number: K40P144M100SF2

Rev. 7, 02/2013

