

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	98
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 42x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk40dn512zvmd10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

Terminology and guidelines

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	Ο°
V _{DD}	3.3 V supply voltage	3.3	V

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	$V_{DD} - 0.5$	—	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	V _{DD} – 0.5	—	—	V	
	Output high voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	—	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -0.6mA	V _{DD} – 0.5	—	_	V	
I _{OHT}	Output high current total for all ports	—		100	mA	
V _{OL}	Output low voltage — high drive strength					2
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3mA	_	—	0.5	V	
	Output low voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 0.6mA	_	—	0.5	v	
I _{OLT}	Output low current total for all ports	_		100	mA	
I _{INA}	Input leakage current, analog pins and digital pins configured as analog inputs					3, 4
	• $V_{SS} \le V_{IN} \le V_{DD}$					
	All pins except EXTAL32, XTAL32, EXTAL XTAL	_	0.002	0.5	μA	
	• EXTAL (PTA18) and XTAL (PTA19)	_	0.004	1.5	μA	
	• EXTAL32, XTAL32	_	0.075	10	μA	
I _{IND}	Input leakage current, digital pins					4, 5
	• $V_{SS} \le V_{IN} \le V_{IL}$					
	All digital pins	_	0.002	0.5	μA	
	• V _{IN} = V _{DD}					
	All digital pins except PTD7	—	0.002	0.5	μA	
	• PTD7	_	0.004	1	μA	
I _{IND}	Input leakage current, digital pins					4, 5, 6
	• V _{IL} < V _{IN} < V _{DD}					
	• V _{DD} = 3.6 V	_	18	26	μA	
	• V _{DD} = 3.0 V	_	12	49	μA	
	• V _{DD} = 2.5 V	_	8	13	μA	
	• V _{DD} = 1.7 V	-	3	6	μA	

Table continues on the next page...

General

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	—	N/A	_	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	—	N/A	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ –40 to 25°C	_	0.59	1.4	mA	
	• @ 70°C	_	2.26	7.9	mA	
	• @ 105°C	_	5.94	19.2	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ -40 to 25°C	_	93	435	μA	
	• @ 70°C	—	520	2000	μA	
	• @ 105°C	—	1350	4000	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9
	 ● -40 to 25°C 	_	4.8	20	μA	
	• @ 70°C	_	28	68	μΑ	
	• @ 105°C	—	126	270	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					9
	• @ –40 to 25°C	—	3.1	8.9	μΑ	
	• @ 70°C	—	17	35	μA	
	• @ 105°C	—	82	148	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	• @ –40 to 25°C	_	2.2	5.4	μΑ	
	• @ 70°C	_	7.1	12.5	μA	
	• @ 105°C	_	41	125	μΑ	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	 ● -40 to 25°C 	_	2.1	7.6	μA	
	• @ 70°C	_	6.2	13.5	μA	
	• @ 105°C	_	30	46	μΑ	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ -40 to 25°C	_	0.33	0.39	υA	
	• @ 70°C	_	0.60	0.78	υA	
	• @ 105°C	_	1.97	2.9	μΑ	

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...

Figure 2. Run mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors as measured on 144LQFP and 144MAPBGA packages

Symbol	Description	Frequency band (MHz)	144LQFP	144MAPBGA	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	23	12	dBµV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	27	24	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	28	27	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	14	11	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	К	К	—	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes	
	Normal run mode					
f _{SYS}	System and core clock	—	100	MHz		
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	—	MHz		
f _{BUS}	Bus clock	—	50	MHz		
FB_CLK	FlexBus clock	—	50	MHz		
f _{FLASH}	Flash clock	_	25	MHz		
f _{LPTMR}	LPTMR clock		25	MHz		

- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

Table 12. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	dependent	MHz
T _{wi}	Low pulse width	2	—	ns
T _{wh}	High pulse width	2		ns
T _r	Clock and data rise time		3	ns
T _f	Clock and data fall time	—	3	ns
Ts	Data setup	3	—	ns
T _h	Data hold	2	—	ns

Figure 3. TRACE_CLKOUT specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)		750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)		250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	—	1	—	ms	

 Table 17. Oscillator frequency specifications (continued)

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz Oscillator Electrical Characteristics

This section describes the module electrical characteristics.

6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	—	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	—	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	† _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	times			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity				-0.3 to 0.5		
		 <12-bit modes 	—	±0.2			
INL	Integral non-	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
	linearity				-0.7 to +0.5		
		 <12-bit modes 	—	±0.5			
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA}
	a						5
EQ	Quantization	16-bit modes	_	-1 to 0	-	LSB ⁴	
		 ≤13-bit modes 	_	_	±0.5		
ENOB	Effective number	16-bit differential mode					6
	of bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	10.0	10.0		b 14 -	
		• Avg = 4	12.2	13.9	_	DIts	
	Cirral to raise		11.4	13.1		DItS	
SINAD	plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	—	-94	—	dB	
		16-bit single-ended mode					
		• Avg = 32	_	-85	-	dB	
		7.vg = 02					
SFDR	Spurious free	16-bit differential mode					7
	- Julian o rango	• Avg = 32	82	95	-	dB	
		16-bit single-ended mode	_			.—	
		• Avg = 32	78	90		dB	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Table continues on the next page...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
ENOB	Effective number	Gain=1, Average=4	11.6	13.4	_	bits	16-bit
	of bits	Gain=64, Average=4	7.2	9.6	—	bits	differential
		 Gain=1, Average=32 	12.8	14.5	—	bits	
		 Gain=2, Average=32 	11.0	14.3	—	bits	
		Gain=4, Average=32	7.9	13.8	—	bits	
		Gain=8, Average=32	7.3	13.1	—	bits	
		Gain=16, Average=32	6.8	12.5	—	bits	
		• Gain=32, Average=32	6.8	11.5	—	bits	
		• Gain=64, Average=32	7.5	10.6	—	bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 30. 16-bit ADC with PGA characteristics (continued)

1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.

- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 31. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage		_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	 CR0[HYSTCTR] = 01 	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	—	mV
	 CR0[HYSTCTR] = 11 	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	—	V
V _{CMPOI}	Output low	_	—	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns

Table continues on the next page...

Figure 19. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 34.	VREF full-range	operating	requirements
-----------	-----------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71 3.6		V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	1(00	nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Figure 20. DSPI classic SPI timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}		ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid		10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0		ns
DS13	DSPI_SIN to DSPI_SCK input setup	2		ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven		14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		14	ns

Table 41. Slave mode DSPI timing (limited voltage range)

Figure 21. DSPI classic SPI timing — slave mode

Characteristic	Symbol	Standa	rd Mode	Fast Mode		Unit
		Minimum	Maximum	Minimum	Maximum	
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁵	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4		0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

 Table 44.
 I²C timing (continued)

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 3. Input signal Slew = 10ns and Output Load = 50pf
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode l²C bus device can be used in a Standard mode l2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{max} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode l²C bus specification) before the SCL line is released.
- 6. C_b = total capacitance of the one bus line in pF.

Figure 24. Timing definition for fast and standard mode devices on the I²C bus

6.8.8 UART switching specifications

See General switching specifications.

6.8.9 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Num	Symbol	Description	Min.	Max.	Unit
		Card input clock			
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	—	ns
SD4	t _{TLH}	Clock rise time	—	3	ns
SD5	t _{THL}	Clock fall time	—	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	•
SD6	t _{OD}	SDHC output delay (output valid)	-5	8.3	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT ((reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5	—	ns
SD8	t _{IH}	SDHC input hold time	0	_	ns

Table 45. SDHC switching specifications

Figure 25. SDHC timing

- 3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.
- 4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.
- 5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: lext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, I_{ref} = 16 μA, REFCHRG = 15, C_{ref} = 1.0 pF. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it's the smallest number). The minimum sensitivity parameter is based on the following configuration: I_{ext} = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, I_{ref} = 32 μA, REFCHRG = 31, C_{ref} = 0.5 pF
- 11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15.
- 12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency	28	30	58	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	—	100	_	nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	_	100	_	nF	1
C _{Glass}	LCD glass capacitance	_	2000	8000	pF	2
V _{IREG}	V _{IREG}					3
	 HREFSEL=0, RVTRIM=1111 	_	1.11	_	V	
	HREFSEL=0, RVTRIM=1000	_	1.01	_	v	
	HREFSEL=0, RVTRIM=0000	_	0.91	_	v	
			1 84		v	
	HREFSEL=1, RVTRIM=1111		1.69		v v	
	HREFSEL=1, RVTRIM=1000		1.03			
	• HREFSEL=1, RVTRIM=0000		1.54		v	
Δ _{RTRIM}	V _{IREG} TRIM resolution			3.0	% V _{IREG}	
_	V _{IREG} ripple					
	• HREFSEL = 0	_	_	30	mV	
	• HREFSEL = 1	_	_	50	mV	
I _{VIREG}	V _{IREG} current adder — RVEN = 1		1		μA	4
I _{RBIAS}	RBIAS current adder		10		uА	
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	1	_	μΑ	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 					

6.9.2 LCD electrical characteristics Table 51. LCD electricals

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
R _{RBIAS}	RBIAS resistor values					
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	0.28	—	MΩ	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 	_	2.98	—	MΩ	
VLL2	VLL2 voltage					
	• HREFSEL = 0	2.0 – 5%	2.0	—	V	
	• HREFSEL = 1	3.3 – 5%	3.3	—	V	
VLL3	VLL3 voltage					
	• HREFSEL = 0	3.0 – 5%	3.0	—	V	
	• HREFSEL = 1	5 – 5%	5		V	

Table 51. LCD electricals (continued)

1. The actual value used could vary with tolerance.

2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.

3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} - 0.15 V

4. 2000 pF load LCD, 32 Hz frame frequency

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
144-pin LQFP	98ASS23177W
144-pin MAPBGA	98ASA00222D

8 Pinout

Pinout

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LQFP	MAP Bga											
100	D9	PTB21	LCD_P17	LCD_P17	PTB21	SPI2_SCK				CMP1_OUT	LCD_P17	
101	C12	PTB22	LCD_P18	LCD_P18	PTB22	SPI2_SOUT				CMP2_OUT	LCD_P18	
102	C11	PTB23	LCD_P19	LCD_P19	PTB23	SPI2_SIN	SPI0_PCS5				LCD_P19	
103	B12	PTC0	LCD_P20/ ADC0_SE14/ TSI0_CH13	LCD_P20/ ADC0_SE14/ TSI0_CH13	PTC0	SPI0_PCS4	PDB0_EXTRG	I2S0_TXD			LCD_P20	
104	B11	PTC1/ LLWU_P6	LCD_P21/ ADC0_SE15/ TSI0_CH14	LCD_P21/ ADC0_SE15/ TSI0_CH14	PTC1/ LLWU_P6	SPI0_PCS3	UART1_RTS_ b	FTM0_CH0			LCD_P21	
105	A12	PTC2	LCD_P22/ ADC0_SE4b/ CMP1_IN0/ TSI0_CH15	LCD_P22/ ADC0_SE4b/ CMP1_IN0/ TSI0_CH15	PTC2	SPI0_PCS2	UART1_CTS_ b	FTM0_CH1			LCD_P22	
106	A11	PTC3/ LLWU_P7	LCD_P23/ CMP1_IN1	LCD_P23/ CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2			LCD_P23	
107	H8	VSS	VSS	VSS								
108	C10	VLL3	VLL3	VLL3								
109	C9	VLL2	VLL2	VLL2								
110	B9	VLL1	VLL1	VLL1								
111	B10	VCAP2	VCAP2	VCAP2								
112	A10	VCAP1	VCAP1	VCAP1								
113	A9	PTC4/ LLWU_P8	LCD_P24	LCD_P24	PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT	LCD_P24	
114	D8	PTC5/ LLWU_P9	LCD_P25	LCD_P25	PTC5/ LLWU_P9	SPI0_SCK		LPT0_ALT2		CMP0_OUT	LCD_P25	
115	C8	PTC6/ LLWU_P10	LCD_P26/ CMP0_IN0	LCD_P26/ CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_EXTRG				LCD_P26	
116	B8	PTC7	LCD_P27/ CMP0_IN1	LCD_P27/ CMP0_IN1	PTC7	SPI0_SIN					LCD_P27	
117	A8	PTC8	LCD_P28/ ADC1_SE4b/ CMP0_IN2	LCD_P28/ ADC1_SE4b/ CMP0_IN2	PTC8		I2S0_MCLK	I2S0_CLKIN			LCD_P28	
118	D7	PTC9	LCD_P29/ ADC1_SE5b/ CMP0_IN3	LCD_P29/ ADC1_SE5b/ CMP0_IN3	PTC9			I2S0_RX_ BCLK		FTM2_FLT0	LCD_P29	
119	C7	PTC10	LCD_P30/ ADC1_SE6b/ CMP0_IN4	LCD_P30/ ADC1_SE6b/ CMP0_IN4	PTC10	I2C1_SCL		12S0_RX_FS			LCD_P30	
120	B7	PTC11/ LLWU_P11	LCD_P31/ ADC1_SE7b	LCD_P31/ ADC1_SE7b	PTC11/ LLWU_P11	I2C1_SDA		12S0_RXD			LCD_P31	
121	A7	PTC12	LCD_P32	LCD_P32	PTC12		UART4_RTS_ b				LCD_P32	
122	D6	PTC13	LCD_P33	LCD_P33	PTC13		UART4_CTS_ b				LCD_P33	
123	C6	PTC14	LCD_P34	LCD_P34	PTC14		UART4_RX				LCD_P34	
124	B6	PTC15	LCD_P35	LCD_P35	PTC15		UART4_TX				LCD_P35	

Revision History

	1	2	3	4	5	6	7	8	9	10	11	12	
A	PTD7	PTD6	PTD5	PTD4	PTD0	PTC16	PTC12	PTC8	PTC4	VCAP1	PTC3	PTC2	A
в	PTD12	PTD11	PTD10	PTD3	PTC19	PTC15	PTC11	PTC7	VLL1	VCAP2	PTC1	PTC0	в
с	PTD15	PTD14	PTD13	PTD2	PTC18	PTC14	PTC10	PTC6	VLL2	VLL3	PTB23	PTB22	с
D	PTE2	PTE1	PTE0	PTD1	PTC17	PTC13	PTC9	PTC5	PTB21	PTB20	PTB19	PTB18	D
E	PTE6	PTE5	PTE4	PTE3	VDD	VDD	VDD	VDD	PTB17	PTB16	PTB11	PTB10	E
F	PTE10	PTE9	PTE8	PTE7	VDD	VSS	VSS	VDD	PTB9	PTB8	PTB7	PTB6	F
G	VOUT33	VREGIN	PTE12	PTE11	VREFH	VREFL	VSS	VSS	PTB5	PTB4	PTB3	PTB2	G
н	USB0_DP	USB0_DM	VSS	PTE28	VDDA	VSSA	VSS	VSS	PTB1	PTB0	PTA29	PTA28	н
J	ADC0_DP1	ADC0_DM1	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	PTE27	PTA0	PTA1	PTA6	PTA7	PTA13	PTA27	PTA26	PTA25	J
к	ADC1_DP1	ADC1_DM1	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	PTE26	PTE25	PTA2	PTA3	PTA8	PTA12	PTA16	PTA17	PTA24	к
L	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC1_OUT/ CMP2_IN3/ ADC1_SE23	RESERVED	VBAT	PTA4	PTA9	PTA11	PTA14	PTA15	RESET_b	L
м	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	PTE24	NC	EXTAL32	XTAL32	PTA5	PTA10	VSS	PTA19	PTA18	м
ļ	1	2	3	4	5	6	7	8	9	10	11	12	J

Figure 29. K40 144 MAPBGA Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

 Table 52.
 Revision History

Rev. No.	Date	Substantial Changes
1	11/2010	Initial public revision

Table continues on the next page...

Rev. No.	Date	Substantial Changes	
2	3/2011	Many updates throughout	
3	3/2011	Added sections that were inadvertently removed in previous revision	
4	3/2011	Reworded IIC footnote in "Voltage and Current Operating Requirements" table.	
		Added paragraph to "Peripheral operating requirements and behaviors" section.	
		Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.	
5	6/2011	 Changed supported part numbers per new part number scheme Changed <i>DC injection current</i> specs in "Voltage and current operating requirements" table Changed <i>Input leakage current</i> and <i>internal pullup/pulldown resistor</i> specs in "Voltage and current operating behaviors" table Split <i>Low power stop mode current</i> specs by temperature range in "Power consumption operating behaviors" table Changed <i>Input leakage process</i> to "Device clock specifications" table Added LPTMR clock specs to "Device clock specifications" table Added LPTMR clock specs to "Device clock specifications" table Changed <i>Minimum external reset pulse width</i> in "General switching specifications" table Changed <i>Input leakage current</i> in "MCG specifications" table Changed <i>Supply current</i> in "Oscillator DC electrical specifications" table Changed <i>Operating voltage</i> in "EzPort switching specifications" table Changed <i>Operating voltage</i> in "EzPort switching specifications" table Changed <i>ADC asynchronous clock source</i> specs in "16-bit ADC characteristics" table Changed <i>ADC asynchronous clock source</i> specs in "16-bit ADC with PGA characteristics" table Changed <i>Input Offset voltage</i> and <i>ENOB</i> notes field in "16-bit ADC with PGA characteristics" table Changed <i>Code-to-code settling time, DAC output voltage range low,</i> and <i>Temperature coefficient offset voltage</i> in "12-bit DAC operating behaviors" table Changed <i>Code-to-code settling time, DAC output voltage range low,</i> and <i>Temperature coefficient offset voltage</i> in "12-bit DAC operating behaviors" table Changed <i>Code-to-code settling time, DAC output voltage range low,</i> and <i>Temperature coefficient offset voltage</i> in "12-bit DAC operating behaviors" table Changed <i>Code-to-code</i> settling time, <i>DAC output voltage range low,</i> and <i>Temperature coefficient offset voltage</i> in "12-bit DAC operating behaviors" table Changed <i>C</i>	

Table 52. Revision History (continued)

Table continues on the next page ...