

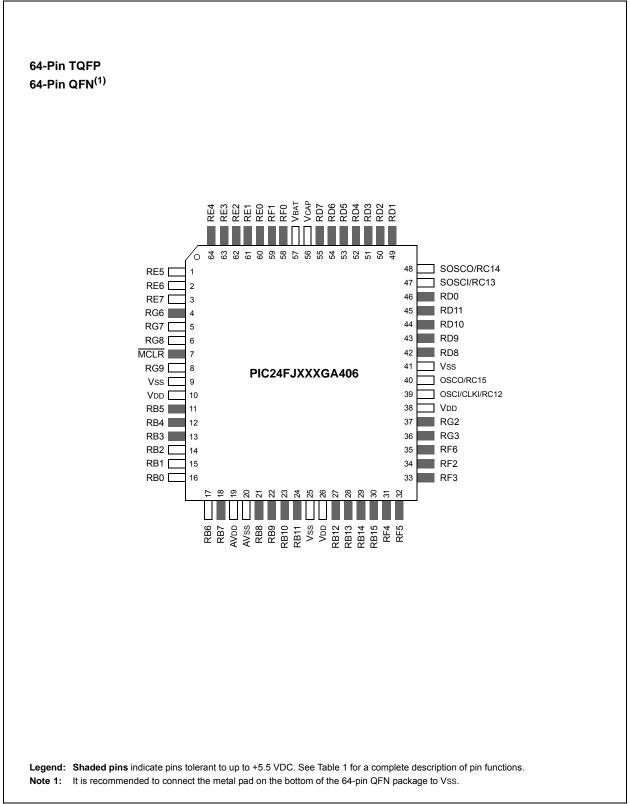
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Betano	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga406-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.4 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GA412/GB412 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes
- Two External Clock modes
- A Phase-Locked Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Fast Internal Oscillator (FRC) nominal 8 MHz output with multiple frequency divider options and automatic frequency self-calibration during run time
- A separate Low-Power Internal RC Oscillator (LPRC) – 31 kHz nominal for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.5 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, while still selecting a Microchip device.

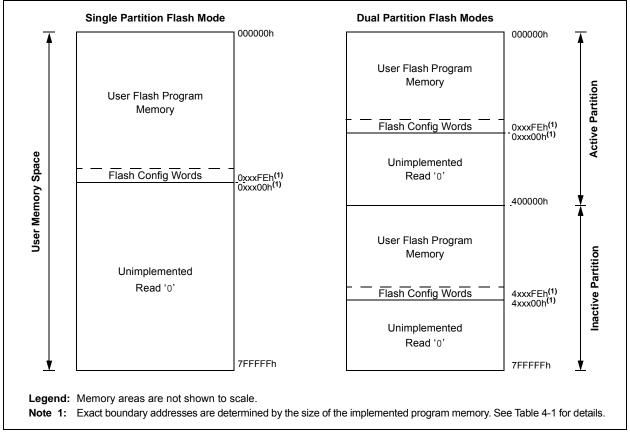
1.2 Cryptographic Engine

The Cryptographic Engine provides a new set of data security options. Using its own free-standing math engine, the module can independently perform NIST standard encryption and decryption of data, independently of the CPU. The Cryptographic Engine supports AES and DES/3DES encryption ciphers in up to 5 modes, and supports key lengths from 128 to 256 bits. Additional features include True Random Number Generation (TRNG) within the engine, multiple encryption/decryption key storage options and secure data handling that prevents data in the engine from being compromised by external reads.

1.3 USB On-The-Go (OTG)

USB On-The-Go provides on-chip functionality as a target device compatible with the USB 2.0 standard, as well as limited stand-alone functionality as a USB embedded host. By implementing USB Host Negotiation Protocol (HNP), the module can also dynamically switch between device and host operation, allowing for a much wider range of versatile USB-enabled applications on a microcontroller platform.

PIC24FJ256GA412/GB412 family devices also incorporate an integrated USB transceiver and precision oscillator, minimizing the required complexity of implementing a complete USB device, embedded host, dual role or On-The-Go application.


1.4 DMA Controller

PIC24FJ256GA412/GB412 family devices also add a Direct Memory Access (DMA) Controller to the existing PIC24F architecture. The DMA acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Six independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.5 LCD Controller

The versatile on-chip LCD Controller includes many features that make the integration of displays in low-power applications easier. These include an integrated voltage regulator with charge pump and an integrated internal resistor ladder that allows contrast control in software, and display operation above device VDD.

TABLE 4-1:	PROGRAM MEMORY SIZES AND BOUNDARIES
------------	-------------------------------------

	Program Memory	/ Upper Boundary (I			
Device	Single Partition	Dual Partition Flash Mode		Write Blocks ⁽¹⁾	Erase Blocks ⁽¹⁾
	Flash Mode	Active Partition	Inactive Partition		
PIC24FJ256GX4XX	02AFFEh (88K)	0157FEh(44K)	0157FEh(44K)	1376	172
PIC24FJ128GX4XX	0157FEh(44K)	00ABFEh (22K)	00ABFEh (22K)	688	86
PIC24FJ64GX4XX	00AFFEh (22K)	0057FEh (11K)	0057FEh (11K)	352	44

Note 1: One Write Block = 64 Instruction Words; One Erase Block = 512 Instruction Words.

The Boot Sequence Configuration Words (FBTSEQ) determine whether Partition 1 or Partition 2 will be active after Reset. If the part is operating in Dual Partition mode, the partition with the lower boot sequence number will operate as the Active Panel (FBTSEQ is unused in Single Partition mode). The partitions can be switched between Active and Inactive by reprogramming their boot sequence numbers, but the Active Partition will not change until a device Reset is performed. If both boot sequence numbers are the same, or if both are corrupted, the part will use Partition 1 as the Active Partition. If only one boot sequence number is corrupted, the device will use the partition without a corrupted boot sequence number as the Active Partition.

The user can also change which partition is active at run time using the BOOTSWP instruction. Issuing a BOOTSWP instruction does not affect which partition will be the Active Partition after a Reset. Figure 4-4 demonstrates how the relationship between Partitions 1 and 2, shown in red and blue, respectively, and the Active and Inactive Partitions are affected by reprogramming the boot sequence number or issuing a BOOTSWP instruction.

The P2ACTIV bit (NVMCON<10>) can be used to determine which physical partition is the Active Partition. If P2ACTIV = 1, Partition 2 is active; if P2ACTIV = 0, Partition 1 is active.

4.4.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG<9> is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is '0', the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-16 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

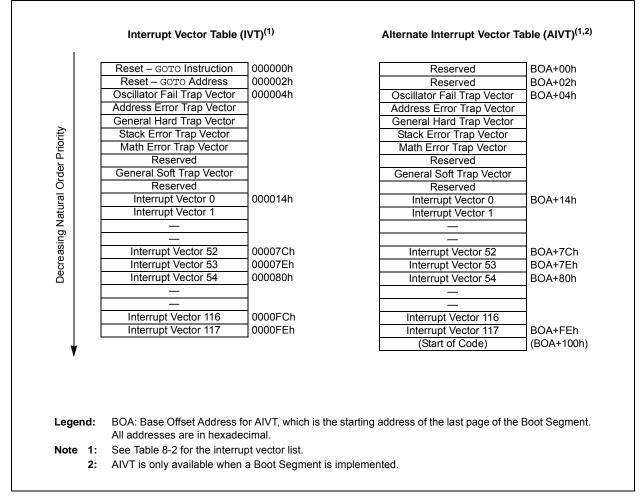
For operations that use PSV, and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

DSRPAGSource Address While(Data Space Read Register)Indirect Addressing		23-Bit EA Pointing to EDS	Comment	
200h		000000h to 007FFEh	Lower words of 4M program	
•		•	instructions; (8 Mbytes) for	
•		•	read operations only	
•		•		
2FFh		7F8000h to 7FFFFEh		
300h	8000h to FFFFh	000001h to 007FFFh	Upper words of 4M program	
•		•	instructions (4 Mbytes remaining,	
•		•	4 Mbytes are phantom bytes); for	
•		•	read operations only	
3FFh		7F8001h to 7FFFFFh		
000h		Invalid Address	Address error trap ⁽¹⁾	


TABLE 4-16: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

; Set the	EDS page from where the dat	a to be read
	#0x0202, w0	
mov	w0, DSRPAG	;page 0x202, consisting lower words, is selected for read
mov	#0x000A, w1	;select the location (0x0A) to be read
bset	w1, #15	;set the MSB of the base address, enable EDS mode
;Read a by	te from the selected locati	on
mov.b	[w1++], w2	;read Low byte
mov.b	[w1++], w3	;read High byte
;Read a wo	rd from the selected locati	on
mov	[w1], w2	;
;Read Doub	le - word from the selected	location
mov.d	[w1], w2	;two word read, stored in w2 and w3

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLES

TABLE 8-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	BOA+04h	Oscillator Failure
1	000006h	BOA+06h	Address Error
2	000008h	BOA+08h	General Hardware Error
3	00000Ah	BOA+0Ah	Stack Error
4	00000Ch	BOA+0Ch	Math Error
5	00000Eh	BOA+0Eh	Reserved
6	000010h	BOA+10h	General Software Error
7	000012h	BOA+12h	Reserved

Legend: BOA = Base Offset Address for AIVT segment, which is the starting address of the last page of the Boot Segment.

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	KEYSTRIF
bit 15	·		-		÷		bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CRYDNIF	INT4IF	INT3IF	_	CCT7IF	MI2C2IF	SI2C2IF	CCT6IF
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Interrupt r	CP1 Capture/C request has occ request has not		ot Flag Status b	it		
bit 14	1 = Interrupt r	Time Clock and equest has occ equest has not		rupt Flag Statu	s bit		
bit 13	1 = Interrupt r	A Channel 5 In equest has occ equest has not		tus bit			
bit 12	SPI3RXIF: SF 1 = Interrupt r	•	errupt Flag Stat curred	us bit			
bit 11	SPI2RXIF: SF 1 = Interrupt r	•	errupt Flag Stat curred	us bit			
bit 10	SPI1RXIF: SF 1 = Interrupt r	-	errupt Flag Stat curred	us bit			
bit 9	SPI4RXIF: SF 1 = Interrupt r	-	errupt Flag Stat curred	us bit			
bit 8	KEYSTRIF: C 1 = Interrupt r	-	ey Store Progra	am Done Interru	upt Flag Status	bit	
bit 7	CRYDNIF: Cr 1 = Interrupt r		peration Done Ir	nterrupt Flag St	atus bit		
bit 6	INT4IF: Exter 1 = Interrupt r	•	Flag Status bit curred				
bit 5	INT3IF: Exter	•	Flag Status bit curred				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3		P7 Timer Inter	rupt Flag Status curred	s bit			
		request has not					

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CCP4IE	CCP3IE	SPI4TXIE	SPI4IE	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE			
bit 15	•	•					bit 8			
D 444.0	DAALO	DAALO	DAALO	DAVA	D 444.0	DAMA				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
U4ERIE	USB1IE	I2C2BCIE	I2C1BCIFE	U3TXIE	U3RXIE	U3ERIE	—			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			
bit 15		P4 Capture/Co		t Enable bit						
		request is enat request is not e								
bit 14	•	P3 Capture/Co		t Enable bit						
		request is enat								
		request is not e								
bit 13	SPI4TXIE: SPI4 Transmit Interrupt Enable bit									
	1 = Interrupt request is enabled									
	0 = Interrupt request is not enabled									
bit 12	SPI4IE: SPI4 General Interrupt Enable bit									
	 Interrupt request has occurred Interrupt request has not occurred 									
bit 11	SPI3TXIE: SPI3 Transmit Interrupt Enable bit									
	1 = Interrupt request is enabled									
	0 = Interrupt request is not enabled									
bit 10	SPI3IE: SPI3	General Interru	upt Enable bit							
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 									
bit 9	•	T4 Transmitter		le hit						
DIL 9		request is enat								
		request is not e								
bit 8	U4RXIE: UAF	RT4 Receiver Ir	nterrupt Enable	bit						
		request is enat								
	-	request is not e								
bit 7		RT4 Error Interr	-							
		request is enab								
bit 6	0 = Interrupt request is not enabled									
	USB1IE: USB1 (USB OTG) Interrupt Enable bit 1 = Interrupt request is enabled									
	•	request is not e								
bit 5	12C2BCIE: 12	C2 Bus Collisio	n Interrupt Ena	able bit						
	-	request is enat								
	•	request is not e								
bit 4		C1 Bus Collisic request is enat	-	able bit						

REGISTER 8-19: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0			
DSEN	—	—	RTCCMD	KEYRAMEN	—	_	_			
bit 15							bit 8			
					D # 44 0					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/C-0, HS			
	—	—		—	WAKEDIS	DSBOR ⁽²⁾	RELEASE			
bit 7							bit (
Legend:		C = Clearable	bit	HS = Hardwar	e Settable bit					
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			
bit 14-13	0 = Enters no	rmal Sleep on	execution of PI							
bit 14-13	-	ted: Read as '								
bit 12		CC Module Di	sable bit							
	 Module is disabled Module power and clock sources are enabled 									
bit 11	•			AM Deep Sleep	Enable bit					
	1 = Power is r	maintained to k	Key RAM during	g Deep Sleep al Ind VBAT modes	nd VBAT modes	i				
bit 10-3		ted: Read as '								
bit 2	WAKEDIS: EX	kternal Wake-u	ip Source Disa	ble bit						
				nd ignored durin Id can be used t	v , ,		an			
bit 1		p Sleep BOR E					γ			
				ent was detecte	d during Deep S	Sleep				
	 1 = The DSBOR was active and a BOR event was detected during Deep Sleep 0 = The DSBOR was not active, or was active, but did not detect a BOR event during Deep Sleep 									
bit 0	RELEASE: 1/0	O Pin State Re	lease bit							
	0 = Releases		their state prev	is maintain their ious to Deep Sle						
	Il register bits ar			POR event outsig	•	•				

REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽¹⁾

2: Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms the POR.

REGISTER	14-6: CCPx	CON3H: CC	Px CONTRO	L 3 HIGH RE	GISTERS					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
OETRIG	OSCNT2	OSCNT1	OSCNT0	—	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹⁾			
bit 7							bit (
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
	-									
bit 15	OETRIG: CC	Px Dead-Time	Select bit							
	 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation 									
bit 14-12		: One-Shot Ev								
				ase periods (8 t	ime base perio	ods total)				
	111 = Extends one-shot event by 7 time base periods (8 time base periods total)110 = Extends one-shot event by 6 time base periods (7 time base periods total)									
	101 = Extends one-shot event by 5 time base periods (6 time base periods total)									
	100 = Extends one-shot event by 4 time base periods (5 time base periods total) 011 = Extends one-shot event by 3 time base periods (4 time base periods total)									
	010 = Extends one-shot event by 3 time base periods (4 time base periods total) 010 = Extends one-shot event by 2 time base periods (3 time base periods total)									
			ent by 1 time ba		me base period	ds total)				
			shot trigger eve	ent						
bit 11	-	ted: Read as '		(1)						
bit 10-8	OUTM<2:0>: PWMx Output Mode Control bits ⁽¹⁾									
	111 = Reserv 110 = Output									
		DC Output mo	de. forward							
		DC Output mo								
	011 = Reserved									
	010 = Half-Bridge Output mode 001 = Push-Pull Output mode									
	001 = Push-Puil Output mode 000 = Steerable Single Output mode									
bit 7-6		ted: Read as '								
bit 5	POLACE: CC	Px Output Pin	s, OCMx, OCM	lxA, OCMxC a	nd OCMxE, Po	larity Control b	it			
	POLACE: CCPx Output Pins, OCMx, OCMxA, OCMxC and OCMxE, Polarity Control bit 1 = Output pin polarity is active-low									
	0 = Output pi	n polarity is ac	tive-high							
bit 4	POLBDF: CC	Px Output Pin	s, OCxB, OCxE	D and OCxF, Po	olarity Control	bit ⁽¹⁾				
		n polarity is ac n polarity is ac								
bit 3-2	PSSACE<1:0	>: PWMx Outp	ut Pins, OCMx,	OCMxA, OCM	xC and OCMxE	E, Shutdown Sta	ate Control bits			
	11 = Pins are	driven active	when a shutdow	vn event occur	s					
			e when a shutd		urs					
1.1.4.0			n a shutdown e							
bit 1-0		-				n State Control	bits			
			when a shutdow e when a shutdo							
			edance state wh							

REGISTER 14-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

Note 1: These bits are implemented in MCCPx modules only.

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 9	SMP: SPIx Data Input Sample Phase bit
	<u>Master Mode:</u> 1 = Input data is sampled at the end of data output time
	0 = Input data is sampled at the middle of data output time
	Slave Mode:
	Input data is always sampled at the middle of data output time, regardless of the SMP setting.
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾
	 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	1 = REFO is used by the BRG 0 = Fosc/2 is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1: 2:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value. When $FRMEN = 1$ SSEN is not used

- EN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_		_	_	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	0-0	N/W-0		LENGTH<4:0>		FV/VV-0
	_	_		VVI	LENGTH<4:0>	(-, - ,	
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-5	Unimplemen	nted: Read as '	0'				
bit 4-0	=	4:0>: Variable		ito(1,2)			
DIL 4-0			word Length b	115 7			
	11111 = 32- 11110 = 31-						
	11101 = 30 -						
	11100 = 29 -						
	1100 = 29-bit data						
	11010 = 27-						
	11001 = 26 -						
	11000 = 25-bit data						
	10111 = 24 -	bit data					
	10110 = 23 -						
	10101 = 22-						
	10100 = 21 -						
	10011 = 20-						
	10010 = 19-						
	10001 = 18 - 10000 = 17 -						
	01111 = 16 -						
	01110 = 15-						
	01101 = 14 -						
	01100 = 13 -	bit data					
	01011 = 12 -	bit data					
	01010 = 11-	bit data					
	01001 = 10-	bit data					
	01000 = 9-b						
	00111 = 8-bit data						
	00110 = 7 -bi						
	00101 = 6-bi						
	00100 = 5-b i 00011 = 4-b i						
	00011 = 4-bi 00010 = 3-bi						
	00010 = 3-bi						
		e MODE<32,16	> bits in SPIxC	ON1L<11:10>			

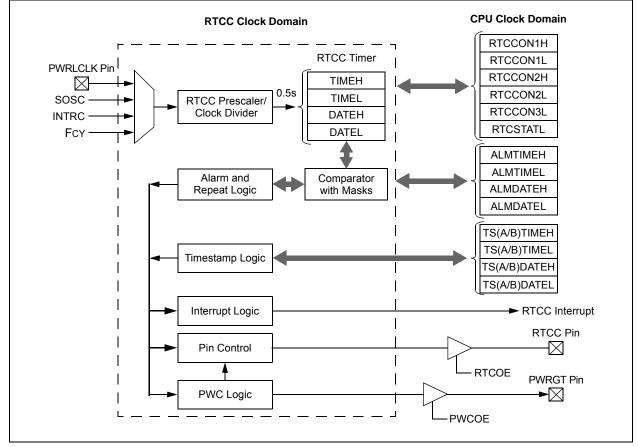
- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

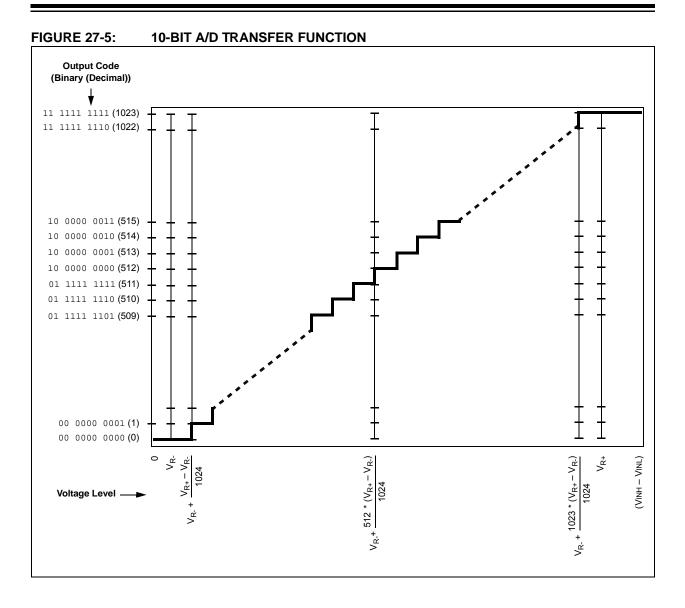
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
PMEN		PSIDL	ADRMUX1	ADRMUX0		MODE1	MODE0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
CSF1	CSF0	ALP	ALMODE	0-0	BUSKEEP	IRQM1	IRQM0				
bit 7	0010		ALIVIODE		BUSKELI		bit (
							bit (
Legend:											
R = Readab		W = Writable			nented bit, read						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN				
bit 15	PMEN: Paral	lel Master Port	Enable bit								
	1 = EPMP is	enabled									
	0 = EPMP is	disabled									
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	PSIDL: Paral	lel Master Port	Stop in Idle Mo	ode bit							
			peration when o		lle mode						
1.1.40.44			ation in Idle mo								
bit 12-11	ADRMUX<1:0>: Address/Data Multiplexing Selection bits										
		 11 = Lower address bits are multiplexed with data bits using 3 address phases 10 = Lower address bits are multiplexed with data bits using 2 address phases 									
	10 = Lower address bits are multiplexed with data bits using 2 address phases 01 = Lower address bits are multiplexed with data bits using 1 address phase										
			ear on separate		0						
bit 10	Unimplemen	ted: Read as '	0'								
bit 9-8	MODE<1:0>: Parallel Port Mode Select bits										
	11 = Master										
	10 = Enhanced PSP; pins used are PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>										
	01 = Buffered PSP; pins used are PMRD, PMWR, PMCS and PMD<7:0> 00 = Legacy Parallel Slave Port; pins used are PMRD, PMWR, PMCS and PMD<7:0>										
bit 7-6	CSF<1:0>: Chip Select Function bits										
	11 = Reserve	•									
	10 = PMA15	10 = PMA15 is used for Chip Select 2, PMA14 is used for Chip Select 1									
	01 = PMA15 is used for Chip Select 2, PMCS1 is used for Chip Select 1 00 = PMCS2 is used for Chip Select 2, PMCS1 is used for Chip Select 1										
L:1 F				CS1 is used to	r Chip Select 1						
bit 5		s Latch Polarity									
	1 = Active-high (PMALL, PMALH and PMALU) 0 = Active-low (PMALL, PMALH and PMALU)										
bit 4		ddress Latch S									
				n address phas	e is only prese	nt if the current	access would				
	1 = Enables "smart" address strobes (each address phase is only present if the current access would cause a different address in the latch than the previous address)										
		"smart" addres									
bit 3	•	ted: Read as '	0'								
bit 2		Bus Keeper bit									
			value when not pedance state			h					
bit 1-0		Interrupt Requ	•	when not active	cry being anver						
			vhen Read Buff	er 3 is read or V	Vrite Buffer 3 is	written (Buffere	d PSP mode)				
			peration when I								
	10 = Reserve	ed									
			at the end of a	read/write cycle	9						
	00 = No inter	rupt is generat	ea								

REGISTER 21-1: PMCON1: EPMP CONTROL REGISTER 1

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC) WITH TIMESTAMP

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with Timestamp" (DS70005193). The information in this data sheet supersedes the information in the FRM.


The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- Time (Hours, Minutes and Seconds) in 24-Hour (Military Time) Format
- Calendar (Weekday, Date, Month and Year)
- Year range from 2000 to 2099 with automatic Leap Year correction

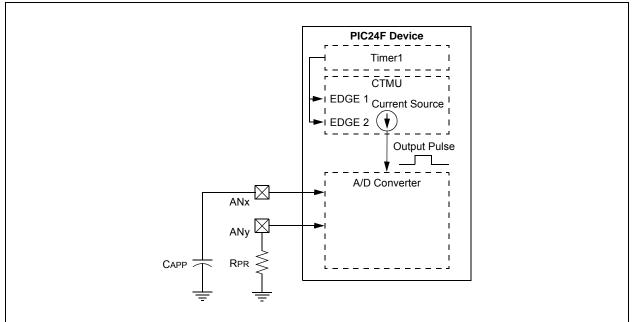
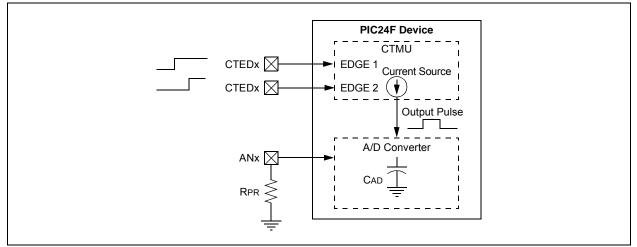

- Alarm with Configurable Mask and Repeat
 Options
- BCD Format for Compact Firmware
- Optimized for Low-Power Operation
- Multiple Clock Input Options, Including:
- 32.768 kHz crystal
- External Real-Time Clock (RTC)
- 50/60 Hz power line clock
- 31.25 kHz LPRC clock
- System clock, up to 32 MHz
- User Calibration with a Range of 2 ppm when using 32 kHz Source
- · Interrupt on Alarm and Timestamp Events
- Optional Timestamp Capture for Tamper Pin or Other Events
- User-Configurable Power Control with Dedicated Output Pin to Periodically Wake External Devices

FIGURE 24-1: RTCC HIGH-LEVEL BLOCK DIAGRAM

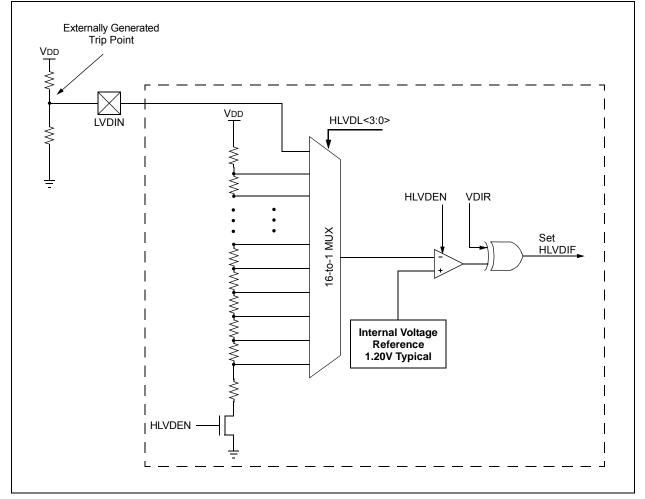

FIGURE 31-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

31.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 31-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 31-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

NOTES:


32.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725). The information in this data sheet supersedes the information in the FRM. The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 32-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 32-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

REGISTER 33-13: DEVID: DEVICE ID REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—		—	—	_
bit 23							bit 16
R	R	R	R	R	R	R	R
FAMID7	7 FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15	·		•	•			bit 8
R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0
Legend:	R = Readable bit			U = Unimplem	ented bit		
bit 23-16	Unimplement	ted: Read as ':	1'				
bit 15-8	FAMID<7:0>:	Device Family	Identifier bits				
	0110 0001 =	PIC24FJ2560	GA412/GB412	Family			
bit 7-0	DEV<7:0>: In	dividual Device	e Identifier bits				
	0000 0000 =	PIC24FJ64G	4406	000	0100 = PIC	24FJ64GB406	
	0000 0001 =	PIC24FJ64G	4410	000	0101 = PIC	24FJ64GB410	
	0000 0010 =	PIC24FJ64G	4412	000	0 0110 = PIC	24FJ64GB412	
	0000 1000 =	PIC24FJ1280	GA406	000	0 1100 = PIC	24FJ128GB40	6
	0000 1001 =	PIC24FJ1280	GA410	000	0 1101 = PIC	24FJ128GB41	0
	0000 1010 =	PIC24FJ1280	GA412	000	0 1110 = PIC	24FJ128GB41	2
	0001 0000 =	PIC24FJ2560	GA406	000	1 0100 = PIC	24FJ256GB40	6
		PIC24FJ2560				24FJ256GB41	-
	0001 0010 =	PIC24FJ2560	GA412	000	1 0110 = PIC	24FJ256GB41	2

REGISTER 33-14: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—			—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—			—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
—	—	—	—	REV<3:0>				
bit 7							bit 0	
Legend: R =	Legend: R = Readable bit U = Unimplemented bit							

bit 23-4 Unimplemented: Read as '0'

bit 3-0 REV<3:0>: Device Revision Identifier bits

Μ

Ρ

Packaging	
Details	
Marking	
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	
Configuration Control	
Considerations for Use	
Input Mapping	
Mapping Exceptions	
Output Mapping	
Peripheral Priority	
Registers	
Selectable Input Sources	
Selectable Output Sources	
Pin Descriptions	
PIC24FJXXXGA406 Devices	4
PIC24FJXXXGA410 Devices	8
PIC24FJXXXGA412 Devices	12
PIC24FJXXXGB406 Devices	6
PIC24FJXXXGB410 Devices	10
PIC24FJXXXGB412 Devices	15
Pinout Descriptions	
PIC24FJ256GA412 Family	27
PIC24FJ256GB412 Family	
Power-Saving Features	
Clock Frequency and Clock Switching	
Deep Sleep WDT	
Doze Mode	
Hardware-Based Modes	199

Instruction-Based Modes	198
Deep Sleep	200
I/O Pins	201
Idle	199
Sleep	199
Low-Voltage/Retention Sleep	199
Overview of Modes	
Power-on Resets (PORs)	202
Selective Peripheral Control	
VBAT Mode	203
Product Identification System	554
Program Memory	
Access Using Table Instructions	91
Address Construction	89
Address Space	
Dual Partition Configuration Words	73
Flash Configuration Words	73
Hard Memory Vectors	
Organization	
OTP Memory	73
Reading from Program Memory Using EDS	92
Single and Dual Partition Memory Organization.	70
Program Memory Maps	
Default for PIC24FJ256GA412/GB412 Family	69
Single and Dual Partition Flash Modes	71
Pull-ups and Pull-Downs (I/O)	222
Pulse-Width Modulation (PWM) Mode	
Pulse-Width Modulation. See PWM.	
PWM	
Duty Cycle and Period	284
R	
••	
Real-Time Clock and Calendar (RTCC) with	
Timestamp	391
Real-Time Clock and Calendar. See RTCC.	
Register Maps	
PORTA	
PORTB	
PORTC	
PORTD	
PORTE	
PORTF	
PORTG	
PORTH	
PORTJ	221
Registers	
AD1CHITH (A/D Scan Compare Hit,	
High Word)	439
AD1CHITL (A/D Scan Compare Hit,	

/ B ronnie (/ P oban obinparo nit,	
Low Word)	439
AD1CHS (A/D Sample Select)	437
AD1CON1 (A/D Control 1)	431
AD1CON2 (A/D Control 2)	433
AD1CON3 (A/D Control 3)	434
AD1CON4 (A/D Control 4)	435
AD1CON5 (A/D Control 5)	436
AD1CSSH (A/D Input Scan Select, High Word)	440
AD1CSSL (A/D Input Scan Select, Low Word)	440
AD1CTMENH (A/D CTMU Enable, High Word)	441
AD1CTMENL (A/D CTMU Enable, Low Word)	441
ANCFG (A/D Band Gap Reference	
Configuration)	438
BDnSTAT Prototype (Buffer Descriptor n Status,	
CPU Mode)	335
BDnSTAT Prototype (Buffer Descriptor n Status,	
USB Mode)	334