

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Decans	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga406t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 64-PIN

64GA	12864	PIC24FJXXXGA/GB406								
	64GA 128GA 256GA 64GB 128GB 256G									
	•	DC – 3	32 MHz	·						
64K	128K	256K	64K	128K	256K					
22,016	44,032	88,064	22,016	44,032	88,064					
8K	16	6K	8K	16	δK					
113 (107/6)										
		Ports B, C	, D, E, F, G							
	53			52						
30 (2	9 I/Os, 1 input	t only)	29 (2	8 I/Os, 1 input	only)					
		19	1,2)							
9										
		6	(2)							
		6	(2)							
·										
		1	(2)							
		-								
		4	(2)							
		:	3							
	No			Yes						
		Ye	es							
		Ye	es							
		1	6							
			1							
		;	3							
		Ye	es							
248	(35 SEG x 8 C	COM)	240	(34 SEG x 8 C	COM)					
		Ye	es							
С	MCLR, WE	DT, Illegal Opc Traps, Config	ode, REPEAT juration Word	Instruction,	n,					
7	7 Base Instruc	ctions, Multiple	e Addressing I	Mode Variatior	าร					
		64-Pin TQF	P and QFN							
	30 (2	53 30 (29 I/Os, 1 input	113 (* Ports B, C 53 30 (29 I/Os, 1 input only) 190 61 61 61 61 61 61 61 61 61 61	8K 16K 8K 113 (107/6) Ports B, C, D, E, F, G 53 - 30 (29 I/Os, 1 input only) 29 (2 19 ^(1,2) 9 6(2) 6(2) 6(2) 12) - 6(2) - 6(2) - 6(2) - 6(2) - 6(2) - 12) - - 6(2) - 12) - 3 - - - - - - - - - - - - - - - - - -	8K 16K 8K 16 In the importance of					

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

TABLE 1-4:	1	/Pad Numl				
Pin Function	-			I/O	Input Buffer	Description
	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	1/0	input Buller	Description
OCM1A	4	10	E3	0	DIG	MCCP1 Outputs
OCM1B	5	11	F4	0	DIG	
OCM1C	_	1	B2	0	DIG	
OCM1D	_	6	D1	0	DIG	
OCM1E	—	91	C5	0	DIG	
OCM1F	_	92	B5	0	DIG	
OCM2	6	12	F2	0	DIG	SCCP2 Output
OCM3	11	20	H1	0	DIG	SCCP3 Output
OSCI	39	63	F9	I	ANA/ST	Main Oscillator Input Connection
OSCO	40	64	F11	0	_	Main Oscillator Output Connection
PGEC1	15	24	K1	I	ST	ICSP™ Programming Clock
PGEC2	17	26	L1	I	ST	
PGEC3	11	20	H1	I	ST	
PGED1	16	25	K2	I/O	DIG/ST	ICSP Programming Data
PGED2	18	27	J3	I/O	DIG/ST	
PGED3	12	21	H2	I/O	DIG/ST	
PMA0/PMALL	30	44	L8	I/O	DIG/ST/TTL	Parallel Master Port Address<0>/Address Latch
PMA1/PMALH	29	43	K7	I/O	DIG/ST/TTL	Parallel Master Port Address<1>/Address Latch High
PMA14/PMCS/ APMCS1	45	71	C11	I/O	DIG/ST/TTL	Parallel Master Port Address<14>/Slave Chip Select/Alternate Chip Select 1 Strobe
PMA15/APMCS2	44	70	D11	I/O	DIG/ST/TTL	Parallel Master Port Address<15>/Alternate Chip Select 2 Strobe
PMA6	16	29	K3	0	DIG	Parallel Master Port Address
PMA7	22	28	L2	0	DIG	
PMA8	32	50	L11	I/O	DIG/ST/TTL	Parallel Master Port Address (Demultiplexed
PMA9	31	49	L10	I/O	DIG/ST/TTL	Master mode) or Address/Data (Multiplexed
PMA10	28	42	L7	I/O	DIG/ST/TTL	Master modes)
PMA11	27	41	J7	I/O	DIG/ST/TTL	
PMA12	24	35	K5	I/O	DIG/ST/TTL	
PMA13	23	34	H5	I/O	DIG/ST/TTL	
PMA16	_	95	E16	0	DIG	1
PMA17	_	92	E11	0	DIG	1
PMA18	_	40	K6	0	DIG	1
PMA19	_	10	G2	0	DIG	1
PMA2/PMALU	8	14	F3	0	DIG	Parallel Master Port Address<2>/Address Latch Upper
PMA3	6	12	F2	0	DIG	Parallel Master Port Address
PMA4	5	11	F4	0	DIG	
PMA5	4	10	E3	0	DIG	1
PMA3 PMA20		59	G10	0	DIG	Parallel Master Port Address (Demultiplexed
PMA21		60	G10 G11	0	DIG	Master mode) or Address/Data (Multiplexed
PMA21 PMA22		66	E11	0	DIG	Master modes)
	TTL input buff			0		rigger input buffer

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer

ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

4.1.4 FLASH CONFIGURATION WORDS

In PIC24FJ256GA412/GB412 family devices, the top nine words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the actual Configuration registers, located in configuration space.

The address range of the Flash Configuration Words for devices in the PIC24FJ256GA412/GB412 family are shown in Table 4-2. Their location in the memory map is shown with the other memory vectors in Figure 4-1. Additional details on the device Configuration Words are provided in **Section 33.0 "Special Features"**.

4.1.4.1 Dual Partition Configuration Words

In Dual Partition Flash modes, each partition has its own set of Flash Configuration Words. The full set of Configuration registers in the Active Partition is used to determine the device's configuration; the Configuration Words in the Inactive Partition are used to determine the device's configuration when that partition becomes active. However, some of the Configuration registers in the Inactive Partition (FSEC, FBSLIM and FSIGN) may be used to determine how the Active Partition is able or allowed to access the Inactive Partition.

4.1.5 ONE-TIME-PROGRAMMABLE (OTP) MEMORY

PIC24FJ256GA412/GB412 family devices provide 384 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801380h through 8013FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- · Manufacturing lot numbers

OTP memory may be programmed in any mode, including user RTSP mode, but it cannot be erased. Data is not cleared by a Chip Erase. Once programmed, it cannot be rewritten.

Do not perform repeated write operations on the OTP.

	Program	Configuration Wo	rd Address Range
Device Family	Memory (Words)	Single Partition	Dual Partition ⁽¹⁾
PIC24FJ64GA4XX/GB4XX	22,016	00AF80h:00AFB0h	005780h:0057FCh
PIC24FJ128GA4XX/GB4XX	44,032	015780h:0157B0h	00AB80h:00ABFCh
PIC24FJ256GA4XX/GB4XX	88,065	02AF80h:02AFB0h	015780h:0157FCh

TABLE 4-2: FLASH CONFIGURATION WORDS FOR PIC24FJ256GA412/GB412 FAMILY DEVICES

Note 1: Addresses for the Active Partition are shown. For the Inactive Partitions, add 400000h.

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS70000600). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with up to 118 Vectors
- Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Alternate Interrupt Vector Table (AIVT) for Debug Support
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 source interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ256GA412/GB412 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<8>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application, and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	KEYSTRIF
bit 15	·		-		÷		bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CRYDNIF	INT4IF	INT3IF	_	CCT7IF	MI2C2IF	SI2C2IF	CCT6IF
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Interrupt r	CP1 Capture/C request has occ request has not		ot Flag Status b	it		
bit 14	1 = Interrupt r	Time Clock and equest has occ equest has not		rupt Flag Statu	s bit		
bit 13	1 = Interrupt r	A Channel 5 In equest has occ equest has not		tus bit			
bit 12	SPI3RXIF: SF 1 = Interrupt r	•	errupt Flag Stat curred	us bit			
bit 11	SPI2RXIF: SF 1 = Interrupt r	•	errupt Flag Stat curred	us bit			
bit 10	SPI1RXIF: SF 1 = Interrupt r	-	errupt Flag Stat curred	us bit			
bit 9	SPI4RXIF: SF 1 = Interrupt r	-	errupt Flag Stat curred	us bit			
bit 8	KEYSTRIF: C 1 = Interrupt r	-	ey Store Progra	am Done Interru	upt Flag Status	bit	
bit 7	CRYDNIF: Cr 1 = Interrupt r		peration Done Ir	nterrupt Flag St	atus bit		
bit 6	INT4IF: Exter 1 = Interrupt r	•	Flag Status bit curred				
bit 5	INT3IF: Exter	•	Flag Status bit curred				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3		P7 Timer Inter	rupt Flag Status curred	s bit			
		request has not					

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	NVMIP2	NVMIP1	NVMIP0	—	DMA1IP2	DMA1IP1	DMA1IP0					
oit 15			1				bit					
	D 44/ 4	DAMA	DAMO		DA4/4	DAMA	DAMO					
U-0	R/W-1 AD1IP2	R/W-0 AD1IP1	R/W-0 AD1IP0	U-0	R/W-1 U1TXIP2	R/W-0 U1TXIP1	R/W-0 U1TXIP0					
 bit 7	ADTIFZ	ADTIFT	ADTIFU		UTTAIP2	UTIAIPT	bit					
							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown					
bit 15	Unimplemen	nted: Read as '	n'									
bit 14-11	-	: Flash Memory		n Interrupt Pri	ority bits							
		upt is Priority 7 (-	=								
	•	. , , ,										
	•											
	• 001 = Interrupt is Priority 1											
	000 = Interrupt source is disabled											
bit 7		nted: Read as '										
bit 10-8	-			rioritv bits								
	DMA1IP<2:0>: DMA Channel 1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)											
	•		3	,,								
	•											
	•	unt in Duinvitud										
		upt is Priority 1 upt source is dis	abled									
bit 7		nted: Read as '										
bit 6-4	-	: 12-Bit Pipeline		Priority hits								
		upt is Priority 7 (•	•								
	•			, interrupt)								
	•											
	•											
		upt is Priority 1 upt source is dis	abled									
bit 3		nted: Read as '										
bit 2-0	U1TXIP<2:0>	>: UART1 Trans	smitter Interrup	ot Priority bits								
	111 = Interru	upt is Priority 7 (highest priority	/ interrupt)								
	•											
	•											
	• 001 = Interru	upt is Priority 1										

REGISTER 8-25: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U5RXIP2	U5RXIP1	U5RXIP0	—	RTCTSIP2	RTCTSIP1	RTCTSIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	I2C3BCIP2	I2C3BCIP1	I2C3BCIP0		—		_
bit 7	·				·		bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	U5RXIP<2:0>	: UART5 Rece	eiver Interrupt F	Priority bits			
	111 = Interru	pt is Priority 7 ((highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 1	Unimplemen	ted: Read as '	0'				
bit 10-8	RTCTSIP<2:0	D>: RTCC Time	estamp Interrup	t Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	• 001 = Interru	nt is Priority 1					
		pt source is dis	abled				
		-					

REGISTER 8-49: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27

bit 7

bit 6-4

bit 3-0

Unimplemented: Read as '0'

001 = Interrupt is Priority 1 000 = Interrupt source is disabled

Unimplemented: Read as '0'

I2C3BCIP<2:0>: I2C3 Bus Collision Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as 'd)'				
bit 13-8	RP17R<5:0>:	RP17 Output I	⊃in Mapping b	its			

REGISTER 11-31: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R<5:0>: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-12 for peripheral function numbers).

Peripheral Output Number n is assigned to pin, RP17 (see Table 11-12 for peripheral function numbers).

REGISTER 11-32: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	e at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-12 for peripheral function numbers).

W-x	U-0	U-0	U-0	U-0	U-0	U-0	W-x
LAST ⁽¹⁾		—	_	—	_	—	TX8
bit 15						·	bit 8
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

REGISTER 19-4: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

bit 15 LAST: Last Byte Indicator for Smart Card Support bit⁽¹⁾

bit 14-9 Unimplemented: Read as '0'

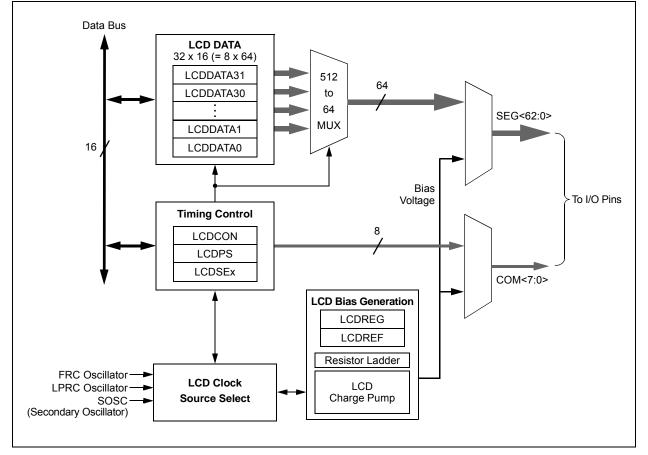
bit 8 **TX8:** Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 **TX<7:0>:** Data of the Transmitted Character bits

Note 1: This bit is only available for UART1 and UART2.

22.0 LIQUID CRYSTAL DISPLAY (LCD) CONTROLLER

Note: This data sheet summarizes the features of the PIC24FJ256GA412/GB412 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Liquid Crystal Display (LCD)" (DS30009740) which is available from the Microchip web site (www.microchip.com).


The Liquid Crystal Display (LCD) Controller generates the data and timing control required to directly drive a static or multiplexed LCD panel. The module can drive up to 8 Commons signals on all devices, and from 34 to 64 Segments, depending on the specific device.

Note: To be driven by the LCD controller, pins must be set as analog inputs. For the port corresponding to the desired Common or Segment pin, set TRISx = 1 and ANSx = 1. The LCD Controller has these features:

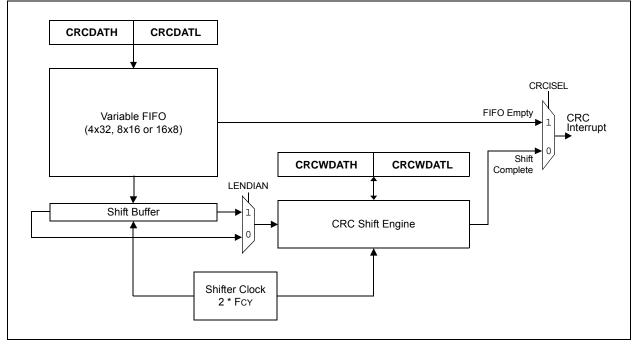
- Direct Driving of LCD Panel
- Three LCD Clock Sources with Selectable
 Prescaler
- Up to Eight Commons:
 - Static (one Common)
 - 1/2 multiplex (two Commons)
 - 1/3 multiplex (three Commons)
 - 1/8 multiplex (eight Commons)
- Ability to Drive up to 34 (in 64-pin USB devices), 35 (64-pin non-USB devices) or up to 64 (all other devices) Segments, depending on the Multiplexing Mode Selected
- Static, 1/2 or 1/3 LCD Bias
- On-Chip Bias Generator with Dedicated Charge Pump to Support a Range of Fixed and Variable Bias Options
- Internal Resistors for Bias Voltage Generation
- Software Contrast Control for LCD using Internal Biasing

A simplified block diagram of the module is shown in Figure 22-1.

FIGURE 22-1: LCD CONTROLLER MODULE BLOCK DIAGRAM

REGISTER 22-6: LCDREF: LCD REFERENCE LADDER CONTROL REGISTER

				TROL REGIS		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	LCDCST2	LCDCST1	LCDCST0	VLCD3PE	VLCD2PE	VLCD1PE
						bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
			_		I	LRLAT0
						bit
e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared					x = Bit is unkr	iown
1 = Internal L 0 = Internal L	.CD reference i .CD reference i	s enabled and s disabled		ne internal con	trast control cir	cuit
-						
100 = Resisto 011 = Resisto 010 = Resisto 001 = Resisto	or ladder is at 4 or ladder is at 3 or ladder is at 2 or ladder is at 1	/7th of maximu /7th of maximu /7th of maximu /7th of maximu	im resistance im resistance im resistance im resistance	dder is shorted	d	
VLCD3PE: LO	CD Bias 3 Pin E	nable bit				
				63		
VLCD2PE: LO	CD Bias 2 Pin E	nable bit				
				62		
VLCD1PE: LO	CD Bias 1 Pin E	nable bit				
				51		
LRLAP<1:0>	: LCD Reference	e Ladder A Tir	ne Power Cont	rol bits		
Durina Time I	nton (ol A)					
11 = Internal 10 = Internal 01 = Internal	LCD reference LCD reference LCD reference	ladder is powe	ered in High-Po ered in Medium ered in Low-Pov ered down and i	Power mode ver mode		
11 = Internal 10 = Internal 01 = Internal 00 = Internal	LCD reference LCD reference LCD reference LCD reference	ladder is powe ladder is powe ladder is powe	ered in Medium ered in Low-Pov	Power mode ver mode unconnected		
11 = Internal 10 = Internal 01 = Internal 00 = Internal LRLBP<1:0> During Time I 11 = Internal 10 = Internal 01 = Internal	LCD reference LCD reference LCD reference LCD reference : LCD Reference : LCD Reference LCD reference LCD reference LCD reference	ladder is powe ladder is powe ladder is powe e Ladder B Tir ladder is powe ladder is powe ladder is powe	ered in Medium ered in Low-Pov ered down and u	Power mode ver mode unconnected rol bits wer mode Power mode ver mode		
	R/W-0 LRLAP0 LRLAP0 LCDIRE: LCE 1 = Internal L 0 = Internal L 0 = Internal L Unimplemen LCDCST<2:0 Selects the R 111 = Resiste 100 = Resiste 101 = Resiste 101 = Resiste 011 = Resiste 010 = Resiste 010 = Resiste 011 = Resiste 011 = Resiste 011 = Resiste 010 = Resiste 010 = Resiste 011 = Resiste 011 = Resiste 011 = Resiste 010 = Resiste 010 = Resiste 011	— LCDCST2 R/W-0 R/W-0 LRLAP0 LRLBP1 e bit W = Writable I POR '1' = Bit is set LCDIRE: LCD Internal Refer 1 = Internal LCD reference i 0 = Internal LCD reference i 0 = Internal LCD reference i Unimplemented: Read as 'C LCDCST<2:0>: LCD Contrast Selects the Resistance of the 111 = Resistor ladder is at 6 101 = Resistor ladder is at 5 100 = Resistor ladder is at 3 010 = Resistor ladder is at 4 011 = Resistor ladder is at 3 010 = Resistor ladder is at 4 011 = Resistor ladder is at 1 000 = Minimum resistance (r VLCD3PE: LCD Bias 3 Pin E 1 = Bias 3 level is connected 0 = Bias 2 level is connected 0 = Bias 2 level is connected 0 = Bias 1 level is connected 0 = Bias 1 level is connected 0 = Bias 1 level is internal (ii		- LCDCST2 LCDCST1 LCDCST0 R/W-0 R/W-0 R/W-0 U-0 LRLAP0 LRLBP1 LRLBP0 e bit W = Writable bit U = Unimplement POR '1' = Bit is set '0' = Bit is cleat LCDIRE: LCD Internal Reference Enable bit 1 = Internal LCD reference is enabled and connected to th 0 = Internal LCD reference is disabled Unimplemented: Read as '0' LCDCST<2:0>: LCD Contrast Control bits Selects the Resistance of the LCD Contrast Control Resist 111 = Resistor ladder is at 6/7th of maximum resistance 101 = Resistor ladder is at 5/7th of maximum resistance 102 = Resistor ladder is at 3/7th of maximum resistance 103 = Resistor ladder is at 1/7th of maximum resistance 104 = Resistor ladder is at 1/7th of maximum resistance 105 = Resistor ladder is at 1/7th of maximum resistance 106 = Resistor ladder is at 1/7th of maximum resistance 107 = Resistor ladder is at 1/7th of maximum resistance 108 = Resistor ladder is at 1/7th of maximum resistance 109 = Resistor ladder is at 1/7th of maximum resistance 101 = Resistor ladder is at 1/7th of maximum resistance 102 = Resistor ladder is at 1/7th of maximum resistance		- LCDCST2 LCDCST1 LCDCST0 VLCD3PE VLCD2PE R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 LRLAP0 LRLBP1 LRLBP0 - LRLAT2 LRLAT1 e bit W = Writable bit U = Unimplemented bit, read as '0' :


26.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

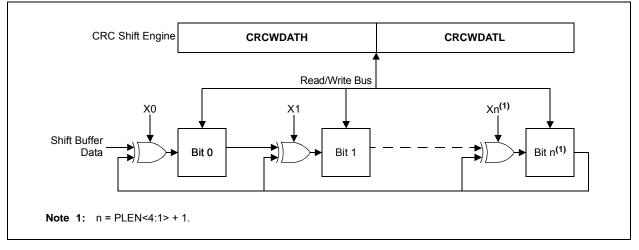

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- · Configurable Interrupt Output
- Data FIFO

Figure 26-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 26-2.

FIGURE 26-1: CRC MODULE BLOCK DIAGRAM

FIGURE 26-2: CRC SHIFT ENGINE DETAIL

© 2015-2016 Microchip Technology Inc.

27.4 Registers

The 12-bit A/D Converter is controlled through a total of 13 registers:

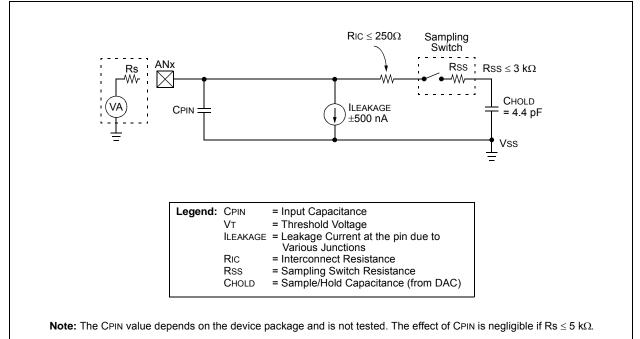
- AD1CON1 through AD1CON5 (Register 27-1 through Register 27-5)
- AD1CHS (Register 27-6)
- AD1CHITH and AD1CHITL (Register 27-8 and Register 27-9)
- AD1CSSH and AD1CSSL (Register 27-10 and Register 27-11)
- AD1CTMENH and AD1CTMENL (Register 27-12 and Register 27-13)
- AD1DMBUF (not shown) The 16-bit conversion buffer for Extended Buffer mode

In addition, the ANCFG register (Register 27-7) controls the band gap voltage resources for the A/D Converter, as well as other modules.

REGISTER 27-1: AD1CON1: A/D CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0	—	ASAM	SAMP	DONE
bit 7						•	bit 0

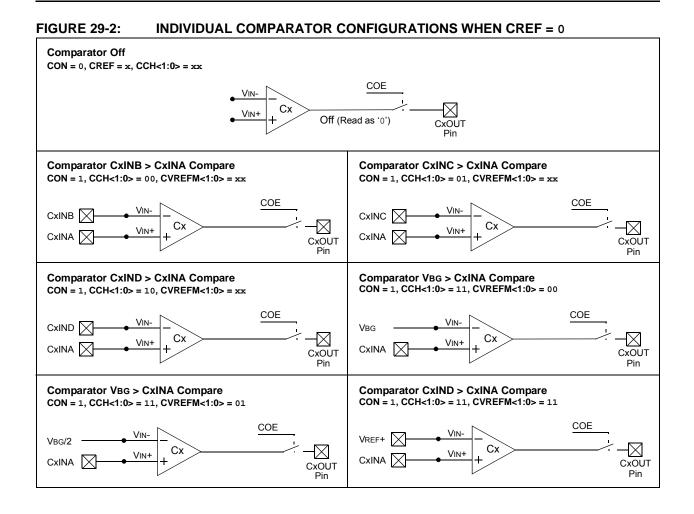

Legend:	C = Clearable bit	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown		

bit 15	ADON: A/D Operating Mode bit	
	1 = A/D Converter module is operating 0 = A/D Converter is off	
bit 14	Unimplemented: Read as '0'	
bit 13	ADSIDL: A/D Stop in Idle Mode bit	
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 	
bit 12	DMABM: Extended DMA Buffer Mode Select bit ⁽¹⁾	
	 1 = Extended Buffer mode: Buffer address is defined by the DMADSTn register 0 = PIA mode: Buffer addresses are defined by the DMA Controller and AD1CON4<2:0> 	
bit 11	DMAEN: Extended DMA/Buffer Enable bit	
	1 = Extended DMA and buffer features are enabled	
	0 = Extended features are disabled	
bit 10	MODE12: 12-Bit Operation Mode bit	
	1 = 12-bit A/D operation	
	0 = 10-bit A/D operation	
bit 9-8	FORM<1:0>: Data Output Format bits	
	11 = Fractional result, signed, left justified	
	10 = Absolute fractional result, unsigned, left justified	
	01 = Decimal result, signed, right justified	
	00 = Absolute decimal result, unsigned, right justified	
Note 1:	This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).	

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
ASEN	LPEN	CTMREQ	BGREQ			ASINT1	ASINT0			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	_	_	WM1	WM0	CM1	CM0			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	ASEN: Auto-	Scan Enable bit	:							
	1 = Auto-scar 0 = Auto-scar									
bit 14	LPEN: Low-F	ower Enable bi	t							
	•	er is enabled aft r is enabled aft								
bit 13	-	FMU Request b								
		enabled when t not enabled by		oled and active						
bit 12	BGREQ: Band Gap Request bit									
	• •	is enabled whe		nabled and acti	ve					
bit 11-10		ted: Read as 'o	-							
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detect	t) Interrupt Mod	e bits					
	10 = Interrup	t after valid com t after Threshol	pare has occu	ence has compl ırred ence has compl		compare has c	occurred			
bit 7-4	Unimplemen	ted: Read as 'd)'							
bit 3-2	WM<1:0>: W	rite Mode bits								
	11 = Reserved									
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a value match occurs, as defined by the CMx and ASINTx bits)									
	01 = Convert and save (conversion results are saved to locations as determined by the register bits									
		when a match occurs, as defined by the CMx bits) 00 = Legacy operation (conversion data is saved to a location determined by the buffer register bits)								
bit 1-0	CM<1:0>: Compare Mode bits									
	 11 = Outside Window mode (valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair) 									
	10 = Inside V		alid match occ	curs if the conve	ersion result is	inside the wind	low defined by			
		Than mode (va		rs if the result is	s greater than t	he value in the	corresponding			
		an mode (valid	match occurs i	f the result is lea	ss than the valu	ue in the corres	ponding buffe			

REGISTER 27-5: AD1CON5: A/D CONTROL REGISTER 5

FIGURE 27-3: 10-BIT A/D CONVERTER ANALOG INPUT MODEL



EQUATION 27-1: A/D CONVERSION CLOCK PERIOD

$$TAD = TCY (ADCS + 1)$$

$$ADCS = \frac{TAD}{TCY} - 1$$

Note: Based on TCY = 2/FOSC; Doze mode and PLL are disabled.

REGISTER 33-10: FDEVOPT1: DEVICE OPTIONS CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—		—	_		—	_
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—		—	_		—	—
bit 15							bit 8
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1
	—	—	ALTVREF ⁽¹⁾	TMPRWIPE	TMPRPIN	ALTCMPI ⁽²⁾	_
bit 7							bit 0

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-5	Unimplemented: Read as '1'
bit 4	ALTVREF: Alternate External Voltage Reference Location Select bit ⁽¹⁾
	 1 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RA10 and RA9, respectively 0 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RB0 and RB1, respectively
bit 3	TMPRWIPE: Erase Key RAM on Tamper Event Enable Pin bit
	1 = Cryptographic Engine Key RAM is not erased on $\overline{\text{TMPR}}$ pin events 0 = Cryptographic Engine Key RAM is erased when a TMPR pin event is detected
bit 2	TMPRPIN: Tamper Pin Disable bit
	$1 = \overline{\text{TMPR}}$ pin is disabled
	0 = TMPR pin is enabled
bit 1	ALTCMPI: Alternate Comparator Input Location Select bit ⁽²⁾
	1 = C1INC, C2INC and C3INC are mapped to their default pin locations
	0 = C1INC, C2INC and C3INC are all mapped to RG9
bit 0	Unimplemented: Read as '1'
Note 1	I inimplemented on 64-pin devices: maintain this bit as '0' in those devices

- **Note 1:** Unimplemented on 64-pin devices; maintain this bit as '0' in those devices.
 - 2: Unimplemented in PIC24FJXXXGAXXX devices.

35.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 35-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 35-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

DC CHARACTERISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions	
Power-Dov	vn Current (IPD)					
DC60	3.24	—	μA	-40°C			
	4.08	22	μA	+25°C	2.01/		
	7.81		μA	+60°C	2.0V		
	23.25	40	μA	+85°C			
	3.20		μA	-40°C			
	4.07	25	μΑ	+25°C	3.3V		
	7.94	_	μA	+60°C			
	19.85	42	μΑ	+85°C			
DC61	0.07	_	μA	-40°C	2.0V		
	0.07	_	μA	+25°C			
	3.54	_	μA	+60°C		– Low-Voltage Sleep ⁽³⁾	
	15.30	—	μA	+85°C			
	0.10	_	μA	-40°C			
	0.06	—	μA	+25°C	3.3V		
	3.68	—	μA	+60°C			
	15.65		μA	+85°C			
DC70	120	—	nA	-40°C			
	80	800	nA	+25°C	2.0V		
	620	—	nA	+60°C	2.00		
	1.13	5	μA	+85°C		Deep Sleep, capacitor on VCAP is	
	110	—	nA	-40°C	3.3V	fully discharged	
	110	1500	nA	+25°C			
	830		nA	+60°C			
	3.67	10	μA	+85°C			
DC74	0.6	3	μA	-40°C to +85°C	0V	RTCC with VBAT mode (LPRC/SOSC) ⁽⁴	

TABLE 36-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The low-voltage/retention regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (FPOR<2>) = 1.

3: The low-voltage/retention regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (FPOR<2>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1157-4