

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga410-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	SEG50/OCM1C/CTED3/IOCG15/RG15	51	SEG12/RP16/USBID/IOCF3/RF3
2	VDD	52	SEG40/ RP30 /IOCF2/RF2
3	LCDBIAS2/IC4/CTED4/PMD5/IOCE5/RE5	53	SEG41/ RP15 /IOCF8/RF8
4	LCDBIAS1/SCL3/IC5/PMD6/IOCE6/RE6	54	VBUS/IOCF7/RF7
5	LCDBIAS0/SDA3/IC6/PMD7/IOCE7/RE7	55	VUSB3V3
6	SEG32/RPI38/OCM1D/IOCC1/RC1	56	D-/IOCG3/RG3
7	SEG51/RPI39/IOCC2/RC2	57	D+/IOCG2/RG2
8	SEG33/RPI40/IOCC3/RC3	58	SEG55/SCL2/IOCA2/RA2
9	SEG52/AN16/RPI41/PMCS2/IOCC4/RC4	59	SEG56/SDA2/PMA20/IOCA3/RA3
10	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/IOCG6/RG6	60	TDI/PMA21/IOCA4/RA4
11	VLCAP1/AN18/C1INC/RP26/OCM1B/PMA4/IOCG7/RG7	61	TDO/SEG28/IOCA5/RA5
12	VLCAP2/AN19/C2IND/RP19/ICM2/OCM2/PMA3/IOCG8/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/IOCC12/RC12
14	SEG1/AN20/C1INC/C2INC/C3INC/ RP27 /DAC1/PMA2/PMALU/ IOCG9/RG9	64	OSCO/CLKO/IOCC15/RC15
15	Vss	65	Vss
16	VDD	66	SEG42/RPI36/SCL1/PMA22/IOCA14/RA14
17	TMS/SEG48/CTED14/IOCA0/RA0	67	SEG43/RPI35/SDA1/PMBE1/IOCA15/RA15
18	SEG34/RPI33/PMCS1/IOCE8/RE8	68	SEG13/CLC4OUT/RP2/RTCC/U6RTS/U6BCLK/ICM5/IOCD8/RD8
19	SEG35/AN21/RPI34/PMA19/IOCE9/RE9	69	SEG14/RP4/PMACK2/IOCD9/RD9
20	PGEC3/SEG2/AN5/C1INA/RP18/ICM3/OCM3/IOCB5/RB5	70	SEG15/C3IND/RP3/PMA15/APMCS2/IOCD10/RD10
21	PGED3/SEG3/AN4/C1INB/RP28/USBOEN/IOCB4/RB4	71	SEG16/C3INC/RP12/PMA14/PMCS/APMCS1/IOCD11/RD11
22	SEG4/AN3/C2INA/IOCB3/RB3	72	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/IOCD0/RD0
23	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/IOCB2/RB2	73	SOSCI/IOCC13/RC13
24	PGEC1/SEG6/VREF-/CVREF-/AN1/AN1-/RP1/CTED12/IOCB1/RB1	74	SOSCO/SCLKI/RPI37/PWRLCLK/IOCC14/RC14
25	PGED1/SEG7/VREF+/CVREF+/DVREF+/AN0/RP0/IOCB0/RB0	75	Vss
26	PGEC2/LCDBIAS3/AN6/RP6/IOCB6/RB6	76	SEG20/RP24/U5TX/ICM4/IOCD1/RD1
27	PGED2/SEG63/AN7/RP7/U6TX/IOCB7/RB7	77	SEG21/ RP23 /PMACK1/IOCD2/RD2
28	SEG36/VREF-/CVREF-/PMA7/IOCA9/RA9	78	SEG22/RP22/ICM7/PMBE0/IOCD3/RD3
29	SEG37/VREF+/CVREF+/DVREF+/PMA6/IOCA10/RA10	79	SEG44/RPI42/PMD12/IOCD12/RD12
30	AVDD	80	SEG45/PMD13/IOCD13/RD13
31	AVss	81	SEG23/RP25/PMWR/PMENB/IOCD4/RD4
32	COM7/SEG31/AN8/RP8/PWRGT/IOCB8/RB8	82	SEG24/ RP20 /PMRD/PMWR/IOCD5/RD5
33	COM6/SEG30/AN9/TMPR/RP9/T1CK/IOCB9/RB9	83	SEG25/C3INB/U5RX/OC4/PMD14/IOCD6/RD6
34	COM5/SEG29/CVREF/AN10/SDO4/PMA13/IOCB10/RB10	84	SEG26/C3INA/U5RTS/U5BCLK/OC5/PMD15/IOCD7/RD7
35	AN11/REFI1/SS4/FSYNC4/PMA12/IOCB11/RB11	85	VCAP
36	Vss	86	VBAT
37	VDD	87	SEG27/U5CTS/OC6/PMD11/IOCF0/RF0
38	TCK/IOCA1/RA1	88	COM4/SEG47/SCK4/PMD10/IOCF1/RF1
39	SEG53/ RP31 /IOCF13/RF13	89	SEG46/PMD9/IOCG1/RG1
40	SEG54/ RPI32 /CTED7/PMA18/IOCF12/RF12	90	SEG49/PMD8/IOCG0/RG0
41	SEG18/AN12/U6RX/CTED2/PMA11/IOCB12/RB12	91	SEG57/AN23/OCM1E/IOCA6/RA6
42	SEG19/AN13/SDI4/CTED1/PMA10/IOCB13/RB13	92	SEG58/AN22/OCM1F/PMA17/IOCA7/RA7
43	SEG8/AN14/ RP14 /CTED5/CTPLS/PMA1/PMALH/IOCB14/RB14	93	COM3/PMD0/IOCE0/RE0
44	SEG9/AN15/RP29/CTED6/PMA0/PMALL/IOCB15/RB15	94	COM2/PMD1/IOCE1/RE1
45	Vss	95	SEG59/CTED11/PMA16/IOCG14/RG14
46	VDD	96	SEG60/IOCG12/RG12
47	SEG38/ RPI43 /IOCD14/RD14	97	SEG61/CTED10/IOCG13/RG13
		-	COM1/PMD2/IOCE2/RE2
	SEG39/ RP5 /IOCD15/RD15	<u>yx</u>	
48	SEG39/ RP5 /IOCD15/RD15 SEG10/ RP10 /PMA9/IOCF4/RF4	98 99	COM0/CTED9/PMD3/IOCE3/RE3

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGB410 DEVICES

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

	Pir	/Pad Numl	ber			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
AN0	16	25	K2	I	ANA	A/D Analog Inputs
AN1	15	24	K1	I	ANA	
AN1-	15	24	K1	I	ANA	
AN2	14	23	J2	I	ANA	
AN3	13	22	J1	I	ANA	
AN4	12	21	H2	I	ANA	
AN5	11	20	H1	I	ANA	
AN6	17	26	L1	I	ANA	
AN7	18	27	J3	I	ANA	
AN8	21	32	K4	I	ANA	
AN9	22	33	L4	I	ANA	
AN10	23	34	H5	I	ANA	
AN11	24	35	K5	I	ANA	
AN12	27	41	J7	I	ANA	
AN13	28	42	L7	I	ANA	
AN14	29	43	K7	I	ANA	
AN15	30	44	L8	I	ANA	
AN16	_	9	E1	I	ANA	
AN17	_	10	E3	I	ANA	
AN18	_	11	F4	I	ANA	
AN19	_	12	F2	I	ANA	
AN20	_	14	F3	I	ANA	
AN21	_	19	G2	I	ANA	
AN22	_	92	E11	I	ANA	
AN23	—	91	E10	I	ANA	
AVDD	19	30	J4	Р	—	Positive Supply for Analog modules
AVss	20	31	L3	Р	—	Ground Reference for Analog modules
C1INA	11	20	H1	I	ANA	Comparator 1 Input A
C1INB	12	21	H2	Ι	ANA	Comparator 1 Input B
C1INC	5,8	11,14	F4,F3	Ι	ANA	Comparator 1 Input C
C1IND	4	10	E3	I	ANA	Comparator 1 Input D
C2INA	13	22	J1	Ι	ANA	Comparator 2 Input A
C2INB	14	23	J2	I	ANA	Comparator 2 Input B
C2INC	8	14	F3	I	ANA	Comparator 2 Input C
C2IND	6	12	F2	I	ANA	Comparator 2 Input D
C3INA	55	84	C7	I	ANA	Comparator 3 Input A
C3INB	54	83	D7	I	ANA	Comparator 3 Input B
C3INC	8,45	14,71	F3,C11	I	ANA	Comparator 3 Input C
C3IND	44	70	D11	I	ANA	Comparator 3 Input D
CLC3OUT	46	72	D9	0	DIG	CLC3 Output
CLC4OUT	42	68	E9	0	DIG	CLC4 Output

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION

Legend: TTL = TTL input buffer

ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

	1	n/Pad Numb				
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
RPI32	_	40	K6	I	ST	Remappable Peripherals (Input only)
RPI33	—	18	G1	I	ST	
RPI34	—	19	G2	I	ST	
RPI35	_	67	E8	I	ST	
RPI36	—	66	E11	I	ST	
RPI37	48	74	B11	I	ST	
RPI38	_	6	D1	I	ST	
RPI39	_	7	E4	I	ST	
RPI40	_	8	E2	I	ST	
RPI41	_	9	E1	I	ST	
RPI42	_	79	A9	I	ST	
RPI43	—	47	L9	I	ST	
RTCC	42	68	E9	0	DIGMV	Real-Time Clock Alarm/Seconds Pulse Output
SCK4	59	88	A6	I/O	DIG/ST	SPI4 Clock
SCL1	37	57	H10	I/O	DIG/I ² C/SMB	I2C1 Synchronous Serial Clock Input/Output
SCL2	32	58	H11	I/O	DIG/I ² C/SMB	I2C2 Synchronous Serial Clock Input/Output
SCL3	2	4	C1	I/O	DIG/I ² C/SMB	I2C3 Synchronous Serial Clock Input/Output
SDA1	36	56	J11	I/O	DIG/I ² C/SMB	I2C1 Data Input/Output
SDA2	31	59	G10	I/O	DIG/I ² C/SMB	I2C2 Data Input/Output
SDA3	3	5	D2	I/O	DIG/I ² C/SMB	I2C3 Data Input/Output
SDI4	28	42	L7	I	ST	SPI4 Data Input
SDO4	23	34	H5	0	DIG	SPI4 Data Output
Legend: TTL =	TTL input buf	fer			ST = Schmitt T	rigger input buffer

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus

ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

	1				1	
Din Eurotian		n/Pad Numl	1	I/O	Innut Duffer	Description
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	1/0	Input Buffer	Description
IOCC1	_	6	D1	I	ST	PORTC Interrupt-on-Change
IOCC2	_	7	E4	I	ST	
IOCC3	_	8	E2	I	ST	
IOCC4	_	9	E!	I	ST	
IOCC12	39	63	F9	I	ST	
IOCC13	47	73	C10	I	ST	
IOCC14	48	74	B11	I	ST	
IOCC15	40	64	F11	I	ST	
IOCD0	46	72	D9	I	ST	PORTD Interrupt-on-Change
IOCD1	49	76	A11	I	ST	1
IOCD2	50	77	A10	I	ST	1
IOCD3	51	78	B9	I	ST	
IOCD4	52	81	C8	I	ST	
IOCD5	53	82	B8	I	ST	
IOCD6	54	83	D7	I	ST	
IOCD7	55	84	C7	I	ST	
IOCD8	42	68	E9	I	ST	
IOCD9	43	69	E10	I	ST	
IOCD10	44	70	D11	I	ST	
IOCD11	45	71	C11	I	ST	
IOCD12	_	79	A9	I	ST	
IOCD13	_	80	D8	I	ST	
IOCD14	_	47	L9	I	ST	
IOCD15	-	48	K9	I	ST	1
IOCE0	60	93	A4	I	ST	PORTE Interrupt-on-Change
IOCE1	61	94	B4	I	ST	1
IOCE2	62	98	B3	I	ST	1
IOCE3	63	99	A2	I	ST	1
IOCE4	64	100	A1	I	ST	
IOCE5	1	3	D3	I	ST]
IOCE6	2	4	C1	I	ST	1
IOCE7	3	5	D2	I	ST]
IOCE8	_	18	G1	I	ST]
IOCE9	_	19	G2	I	ST	1

TABLE 1-5: PIC24FJ256GB412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend:

TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

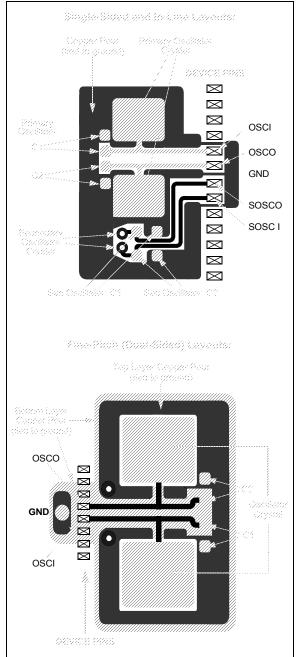
2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP6IE	CCP5IE	—	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea	•	x = Bit is unkn	own
iii valao at		1 Dicio dec		o Ditio dici			own
bit 15	U2TXIE: UAF	RT2 Transmitter	r Interrupt Enab	ole bit			
		request is enal	-				
	0 = Interrupt	request is not e	enabled				
bit 14			nterrupt Enable	bit			
	•	request is enal request is not e					
bit 13		nal Interrupt 2					
		request is enal					
		request is not e					
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
		request is enal					
		request is not e					
bit 11		Interrupt Enab					
	•	request is enal request is not e					
bit 10	•	•	annel 4 Interru	ot Enable bit			
	•	request is enal	-				
	0 = Interrupt	request is not e	enabled				
bit 9	•	•	annel 3 Interru	pt Enable bit			
		request is enal request is not e					
bit 8	•	•	terrupt Flag En	ahla hit			
		request is enal					
		request is not e					
bit 7	CCP6IE: SCO	CP6 Capture/C	ompare Interru	ot Enable bit			
		request is enal					
	-	request is not e					
bit 6		-	ompare Interru	ot Enable bit			
		request is enal request is not e					
bit 5	-	ted: Read as '					
bit 4	INT1IE: Exter	nal Interrupt 1	Enable bit ⁽¹⁾				
	1 = Interrupt	request is enal request is not e	bled				

pin. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

REGISTER 8-15: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

© 2015-2016 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U6TXIP2	U6TXIP1	U6TXIP0	—	U6RXIP2	U6RXIP1	U6RXIP0
bit 15	÷		•			•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U5ERIP2	U5ERIP1	U5ERIP0	_	U5TXIP2	U5TXIP1	U5TXIP0
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown
bit 15	Unimplement	ted: Read as '	o'				
oit 14-12	-	: UART6 Trans		t Priority bits			
		ot is Priority 7 (•			
	•						
	•						
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled				
bit 11	Unimplement	ted: Read as '	o'				
bit 10-8	U6RXIP<2:0>	: UART6 Rece	eiver Interrupt F	Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1 ot source is dis	ablod				
bit 7		ted: Read as '					
bit 6-4	-	UART5 Error		itv bits			
		ot is Priority 7 (-	-			
	•						
	•						
	001 = Interrup						
		ot source is dis					
bit 3	-	ted: Read as '					
bit 2-0		: UART5 Trans		•			
	•	pt is Priority 7 (ingriest priority	(interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					

REGISTER 8-50: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
bit 7							bit C
Legend:	. 1 . 1 4					1 (0)	
R = Readal		W = Writable	DIt	•	nented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
		tad. Daad as W	,				
bit 15-7	-	ted: Read as '					
bit 6	1 = Module is	CP7 Module D	isable bit				
		ower and clock	sources are e	enabled			
bit 5	•	CP6 Module D					
	1 = Module is						
	0 = Module p	ower and clock	sources are e	enabled			
bit 4	CCP5MD: SC	CP5 Module D	isable bit				
	1 = Module is	s disabled					
	•	ower and clock		enabled			
bit 3	CCP4MD: SC	CP4 Module D	isable bit				
	1 = Module is						
		ower and clock		enabled			
bit 2		CP3 Module D	isable bit				
	1 = Module is 0 = Module p	s disabled		nahled			
bit 1		CP2 Module D					
	1 = Module is						
		ower and clock	sources are e	enabled			
bit 0	CCP1MD: MO	CCP1 Module E	Disable bit				
	1 = Module is						
		<i>uisubicu</i>					

REGISTER 10-8: PMD5: PERIPHERAL MODULE DISABLE REGISTER 5

11.3 I/O Ports Register Maps

TABLE 11-2: PORTA REGISTER MAP⁽¹⁾

ster ne	Range									Bits							
Register Name	Bit Ra	15	14	13	12	11	10	10 9 8 7 6 5 4 3 2 1 0									
ANSA	15:0	ANSA<	15:14>	_	_	_	ANSA	A<10:9>	—		ANSA<7:5	>	_	ANSA	<3:2>	_	ANSA0
TRISA	15:0								TF	RISA<15:0>							
PORTA	15:0		PORTA<15:0>														
LATA	15:0		LATA<15:0>														
ODCA	15:0								0	DCA<15:0>							
IOCPA	15:0	IOCPA<	:15:14>	_	_	—	IOCP/	A<10:9>	—				IOC	:PA<7:0>			
IOCNA	15:0	IOCNA<	<15:14>	_	_	_	IOCN	A<10:9>	—				IOC	NA<7:0>			
IOCFA	15:0	IOCFA<	IOCFA<15:14> IOCFA<10:9> IOCFA<7:0>														
IOCPUA	15:0	IOCPUA	IOCPUA<15:14> — — — IOCPUA<10:9> — IOCPUA<7:0>														
IOCPDA	15:0	IOCPDA	<15:14>	_	-	_	IOCPD	A<10:9>	—				IOCF	PDA<7:0>			

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

TABLE 11-3: PORTB REGISTER MAP⁽¹⁾

ster ne	ange									Bits							
Register Name	Bit Ra	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ANSB	15:0								A	NSB<15:0>							
TRISB	15:0								TF	RISB<15:0>							
PORTB	15:0		PORTB<15:0>														
LATB	15:0		LATB<15:0>														
ODCB	15:0		ODCB<15:0>														
IOCPB	15:0		IOCPB<15:0>														
IOCNB	15:0		IOCNB<15:0>														
IOCFB	15:0		IOCFB<15:0>														
IOCPUB	15:0		IOCPUB<15:0>														
IOCPDB	15:0								100	PDB<15:0>	>						

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

DS30010089D-page 217

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

REGISTER 11-17: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-18: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TXCKR5	TXCKR4	TXCKR3	TXCKR2	TXCKR1	TXCKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TXCKR<5:0>: Assign General Timer External Input (TMRCK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

NOTES:

REGISTER 14-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS⁽¹⁾

-n = Value at POR '1' = Bit is set			'0' = Bit is clear	ed	x = Bit is unkr	nown	
R = Readable	e bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
Legend:							
bit 7							bit (
	—			DT<5	:0>		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	—	—	—	—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

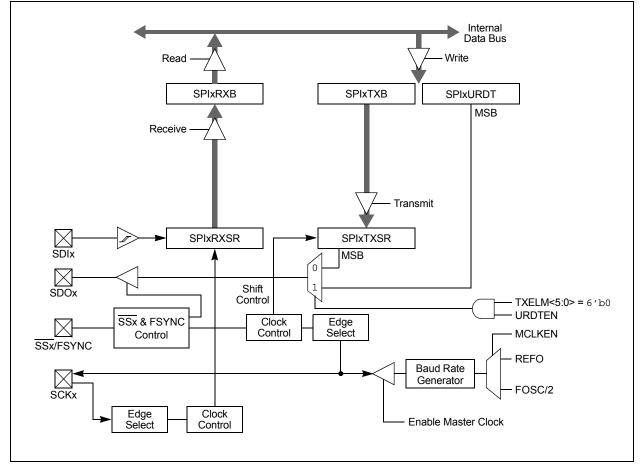
ιP

bit 5-0 DT<5:0>: CCPx Dead-Time Select bits 111111 = Inserts 63 dead-time delay periods between complementary output signals 111110 = Inserts 62 dead-time delay periods between complementary output signals . . . 000010 = Inserts 2 dead-time delay periods between complementary output signals 000001 = Inserts 1 dead-time delay period between complementary output signals 000000 = Dead-time logic is disabled

Note 1: This register is implemented in MCCPx modules only.

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - $11010 = \text{Comparator } 3^{(2)}$
 - 11001 = Comparator $2^{(2)}$ 11000 = Comparator $1^{(2)}$
 - 10111 = SCCP5 capture/compare
 - 10110 = SCCP4 capture/compare
 - 10110 = SCCP3 capture/compare
 - 10100 = SCCP2 capture/compare
 - 10011 = MCCP1 capture/compare
 - 10010 = Input Capture 3⁽²⁾
 - 10001 =Input Capture 2⁽²⁾
 - 10000 =Input Capture 1⁽²⁾
 - 01111 = SCCP7 capture/compare
 - 01110 = SCCP6 capture/compare
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = SCCP7 sync/trigger
 - 01001 = SCCP6 sync/trigger
 - 01000 = SCCP5 sync/trigger
 - 00111 = SCCP4 sync/trigger
 - 00110 = SCCP3 sync/trigger
 - 00101 = SCCP2 sync/trigger
 - 00100 = MCCP1 sync/trigger 00011 = Output Compare 5⁽¹⁾
 - 00011 = Output Compare 5(1)
 - 00010 = Output Compare 3⁽¹⁾ 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).


To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

FIGURE 17-1: SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)

REGISTER 20-8: U1CON: USB CONTROL REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	_	—
bit 15							bit 8

R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	JSTATE: Live Differential Receiver J-State Flag bit
	 1 = J-state (differential '0' in low speed, differential '1' in full speed) is detected on the USB 0 = No J-state is detected
bit 6	SE0: Live Single-Ended Zero Flag bit
	1 = Single-ended zero is active on the USB bus0 = No single-ended zero is detected
bit 5	TOKBUSY: Token Busy Status bit
	1 = Token is being executed by the USB module in On-The-Go state0 = No token is being executed
bit 4	USBRST: USB Module Reset bit
	1 = USB Reset has been generated for a software Reset; application must set this bit for 50 ms, then clear it
	0 = USB Reset is terminated
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling is activated; software must set bit for 10 ms and then clear to enable remote wake-up
	0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	1 = Resets all Ping-Pong Buffer Pointers to the even BD banks
	0 = Ping-Pong Buffer Pointers are not reset
bit 0	SOFEN: Start-of-Frame Enable bit
	 1 = Start-of-Frame token is sent every one 1 ms 0 = Start-of-Frame token is disabled

Pin Name (Alternate Function)	Туре	Description
PMA<22:16>	0	Address Bus bits<22:16>
	0	Address Bus bit 15
PMA15	I/O	Data Bus bit 15 (16-bit port with Multiplexed Addressing)
(APMCS2)	0	Chip Select 2 (alternate location)
PMA14	0	Address Bus bit 14
PIVIA 14	I/O	Data Bus bit 14 (16-bit port with Multiplexed Addressing)
(APMCS1)	0	Chip Select 1 (alternate location)
DMA <12:0>	0	Address Bus bits<13:8>
PMA<13:8>	I/O	Data Bus bits<13:8> (16-bit port with Multiplexed Addressing)
PMA<7:3>	0	Address Bus bits<7:3>
PMA2	0	Address Bus bit 2
(PMALU)	0	Address Latch Upper Strobe for Multiplexed Address
PMA1	I/O	Address Bus bit 1
(PMALH)	0	Address Latch High Strobe for Multiplexed Address
PMA0	I/O	Address Bus bit 0
(PMALL)	0	Address Latch Low Strobe for Multiplexed Address
PMD<15:8>	I/O	Data Bus bits<15:8> (Demultiplexed Addressing)
	I/O	Data Bus bits<7:4>
PMD<7:4>	0	Address Bus bits<7:4> (4-bit port with 1-Phase Multiplexed Addressing)
PMD<3:0>	I/O	Data Bus bits<3:0>
(1)	I/O	Chip Select 1
(1)	0	Chip Select 2
PMWR	I/O	Write Strobe ⁽²⁾
(PMENB)	I/O	Enable Signal ⁽²⁾
PMRD	I/O	Read Strobe ⁽²⁾
(PMRD/PMWR)	I/O	Read/Write Signal ⁽²⁾
PMBE1	0	Byte Indicator
PMBE0	0	Nibble or Byte Indicator
PMACK1	I	Acknowledgment Signal 1
PMACK2	I	Acknowledgment Signal 2

2: Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).

REGISTER 33-10: FDEVOPT1: DEVICE OPTIONS CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—		—			—	_
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1 U-1		U-1
—	—		—	— —		—	—
bit 15							bit 8
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1
	—	—	ALTVREF ⁽¹⁾	TMPRWIPE TMPRPIN		ALTCMPI ⁽²⁾	_
bit 7							bit 0

Legend:	PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

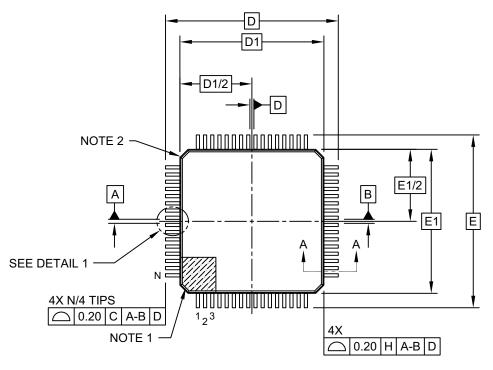
bit 23-5	Unimplemented: Read as '1'					
bit 4	ALTVREF: Alternate External Voltage Reference Location Select bit ⁽¹⁾					
	 1 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RA10 and RA9, respectively 0 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RB0 and RB1, respectively 					
bit 3	TMPRWIPE: Erase Key RAM on Tamper Event Enable Pin bit					
	1 = Cryptographic Engine Key RAM is not erased on $\overline{\text{TMPR}}$ pin events 0 = Cryptographic Engine Key RAM is erased when a TMPR pin event is detected					
bit 2	TMPRPIN: Tamper Pin Disable bit					
	$1 = \overline{\text{TMPR}}$ pin is disabled					
	0 = TMPR pin is enabled					
bit 1	ALTCMPI: Alternate Comparator Input Location Select bit ⁽²⁾					
	1 = C1INC, C2INC and C3INC are mapped to their default pin locations					
	0 = C1INC, C2INC and C3INC are all mapped to RG9					
bit 0	Unimplemented: Read as '1'					

- **Note 1:** Unimplemented on 64-pin devices; maintain this bit as '0' in those devices.
 - 2: Unimplemented in PIC24FJXXXGAXXX devices.

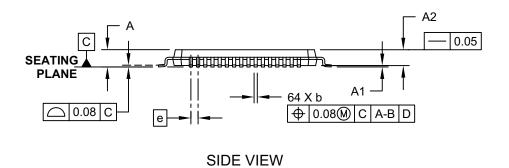
AC CHARACTERISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
SY10	TMCL	MCLR Pulse Width (Low)	2		—	μS	
SY12	TPOR	Power-on Reset Delay	_	2	_	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 Tcy + 2) or 700	_	(3 Tcy + 2)	μS	
SY25	TBOR	Brown-out Reset Pulse Width	1	_	—	μS	$VDD \leq VBOR$
SY45	TRST	Internal State Reset Time	—	50	—	μS	
SY70	Toswu	Deep Sleep Wake-up Time	—	200	—	μS	VCAP fully discharged before wake-up
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with PMSLP = 0
			_	1	—	μS	Sleep wake-up with PMSLP = 1
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with PMSLP = 0
			_	70	—	μS	Sleep wake-up with PMSLP = 1

TABLE 36-25: RESET AND BROWN-OUT RESET REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions			
	Device Supply									
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 2.2		Lesser of: VDD + 0.3 or 3.6	~				
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V				
			Reference	e Inputs						
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V				
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 1.7	V				
AD07	VREF	Absolute Reference Voltage	AVss – 0.3		AVDD + 0.3	V				
			Analog	Input						
AD10	VINH-VINL	Full-Scale Input Span	VREFL		VREFH	V	(Note 2)			
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V				
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3	—	AVDD/3	V				
AD13		Leakage Current		±1.0	±610	nA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V, Source Impedance = 2.5 k\Omega			
AD17	Rin	Recommended Impedance of Analog Voltage Source	_		2.5K	Ω	10-bit			
			Accu	racy			·			
AD20B	Nr	Resolution	_	12	_	bits				
AD21B	INL	Integral Nonlinearity	_	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD22B	DNL	Differential Nonlinearity	—	—	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD23B	Gerr	Gain Error	_	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD24B	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD25B		Monotonicity ⁽¹⁾		_	_		Guaranteed			


TABLE 36-39: A/D MODULE SPECIFICATIONS

Note 1: The conversion result never decreases with an increase in the input voltage and has no missing codes.


2: Measurements are taken with the external VREF+ and VREF- used as the voltage reference.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-085C Sheet 1 of 2