

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

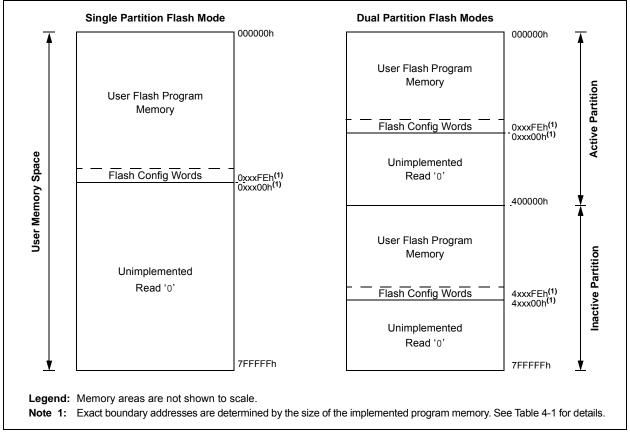
| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | PIC                                                                             |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG               |
| Peripherals                | Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT                            |
| Number of I/O              | 52                                                                              |
| Program Memory Size        | 128KB (43K x 24)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | · ·                                                                             |
| RAM Size                   | 16K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                       |
| Data Converters            | A/D 16x10b/12b; D/A 1x10b                                                       |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 64-TQFP                                                                         |
| Supplier Device Package    | 64-TQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb406t-i-pt |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### **Table of Contents**

| 1.0  | Device Overview                                             |       |
|------|-------------------------------------------------------------|-------|
| 2.0  | Guidelines for Getting Started with 16-Bit Microcontrollers | 57    |
| 3.0  | CPU                                                         | 63    |
| 4.0  | Memory Organization                                         | 69    |
| 5.0  | Direct Memory Access Controller (DMA)                       | 95    |
| 6.0  | Flash Program Memory                                        | . 103 |
| 7.0  | Resets                                                      | . 107 |
| 8.0  | Interrupt Controller                                        | . 113 |
| 9.0  | Oscillator Configuration                                    | . 183 |
| 10.0 | Power-Saving Features                                       | . 197 |
| 11.0 | I/O Ports                                                   | . 215 |
| 12.0 | Timer1                                                      | . 249 |
|      | Timer2/3 and Timer4/5                                       |       |
| 14.0 | Capture/Compare/PWM/Timer Modules (MCCP and SCCP)           | . 259 |
| 15.0 | Input Capture with Dedicated Timers                         |       |
| 16.0 | Output Compare with Dedicated Timers                        | . 281 |
| 17.0 |                                                             |       |
|      | Inter-Integrated Circuit (I <sup>2</sup> C)                 |       |
|      | Universal Asynchronous Receiver Transmitter (UART)          |       |
| 20.0 | Universal Serial Bus with On-The-Go Support (USB OTG)       | . 327 |
| 21.0 | Enhanced Parallel Master Port (EPMP)                        | . 361 |
|      | Liquid Crystal Display (LCD) Controller                     |       |
| 23.0 | Configurable Logic Cell (CLC)                               |       |
| 24.0 | Real-Time Clock and Calendar (RTCC) with Timestamp          |       |
| 25.0 | Cryptographic Engine                                        |       |
|      | 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator |       |
|      | 12-Bit A/D Converter with Threshold Detect                  |       |
|      | 10-Bit Digital-to-Analog Converter (DAC)                    |       |
| 29.0 | Triple Comparator Module                                    |       |
| 30.0 | · · · · · · · · · · · · · · · · · · ·                       |       |
| 31.0 | Charge Time Measurement Unit (CTMU)                         |       |
| 32.0 | High/Low-Voltage Detect (HLVD)                              |       |
| 33.0 |                                                             |       |
| 34.0 |                                                             |       |
|      | Instruction Set Summary                                     |       |
|      | Electrical Characteristics                                  |       |
|      | Packaging Information                                       |       |
|      | ndix A: Revision History                                    |       |
|      | ۲                                                           |       |
|      | Nicrochip Web Site                                          |       |
|      | omer Change Notification Service                            |       |
|      | omer Support                                                |       |
| Prod | uct Identification System                                   | . 555 |


#### TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 100-PIN

| Feetures                                                        | PIC24FJXXXGA/GB410                                                                                                                                                               |               |                  |                |                |        |  |  |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------|----------------|--------|--|--|--|
| Features                                                        | 64GA                                                                                                                                                                             | 128GA         | 256GA            | 64GB           | 128GB          | 256GB  |  |  |  |
| Operating Frequency                                             |                                                                                                                                                                                  |               | DC – 3           | 32 MHz         |                |        |  |  |  |
| Program Memory (bytes)                                          | 64K                                                                                                                                                                              | 128K          | 256K             | 64K            | 128K           | 256K   |  |  |  |
| Program Memory (instructions)                                   | 22,016                                                                                                                                                                           | 44,032        | 88,064           | 22,016         | 44,032         | 88,064 |  |  |  |
| Data Memory (bytes)                                             | 8K                                                                                                                                                                               | 1             | 6K               | 8K             | 16             | 6K     |  |  |  |
| Interrupt Sources (soft vectors/<br>NMI traps)                  |                                                                                                                                                                                  |               | 113 (1           | 107/6)         |                |        |  |  |  |
| I/O Ports                                                       |                                                                                                                                                                                  |               | Ports A, B,      | C, D, E, F, G  |                |        |  |  |  |
| Total I/O Pins                                                  |                                                                                                                                                                                  | 85            |                  |                | 84             |        |  |  |  |
| Remappable Pins                                                 |                                                                                                                                                                                  |               | 44 (32 l/Os,     | 12 input only) |                |        |  |  |  |
| Timers:                                                         |                                                                                                                                                                                  |               |                  |                |                |        |  |  |  |
| Total Number (16-bit)                                           |                                                                                                                                                                                  |               | 19               | (1,2)          |                |        |  |  |  |
| 32-Bit (from paired 16-bit timers)                              |                                                                                                                                                                                  |               |                  | 9              |                |        |  |  |  |
| Input Capture w/Timer Channels                                  |                                                                                                                                                                                  |               |                  | (2)            |                |        |  |  |  |
| Output Compare/PWM Channels                                     |                                                                                                                                                                                  |               | 6                | (2)            |                |        |  |  |  |
| Capture/Compare/PWM/Timer:                                      |                                                                                                                                                                                  |               |                  |                |                |        |  |  |  |
| Single Output (SCCP)                                            |                                                                                                                                                                                  |               | 6                | (2)            |                |        |  |  |  |
| Multiple Output (MCCP)                                          |                                                                                                                                                                                  |               | 1                | (2)            |                |        |  |  |  |
| Serial Communications:                                          |                                                                                                                                                                                  |               |                  |                |                |        |  |  |  |
| UART                                                            |                                                                                                                                                                                  |               | 6                | (2)            |                |        |  |  |  |
| SPI (3-wire/4-wire)                                             |                                                                                                                                                                                  |               | 4                | (2)            |                |        |  |  |  |
| l <sup>2</sup> C                                                |                                                                                                                                                                                  |               | :                | 3              |                |        |  |  |  |
| USB On-The-Go                                                   |                                                                                                                                                                                  | No            |                  |                | Yes            |        |  |  |  |
| Cryptographic Engine                                            |                                                                                                                                                                                  |               | Y                | es             |                |        |  |  |  |
| Parallel Communications<br>(EPMP/PSP)                           |                                                                                                                                                                                  |               | Y                | es             |                |        |  |  |  |
| 10/12-Bit Analog-to-Digital<br>Converter (A/D) (input channels) |                                                                                                                                                                                  |               | 2                | 4              |                |        |  |  |  |
| Digital-to-Analog Converter<br>(DAC)                            |                                                                                                                                                                                  |               |                  | 1              |                |        |  |  |  |
| Analog Comparators                                              |                                                                                                                                                                                  |               |                  | 3              |                |        |  |  |  |
| CTMU Interface                                                  |                                                                                                                                                                                  |               | Y                | es             |                |        |  |  |  |
| LCD Controller (available pixels)                               |                                                                                                                                                                                  |               | 512 (64 SE       | G x 8 COM)     |                |        |  |  |  |
| JTAG Boundary Scan                                              |                                                                                                                                                                                  |               | Y                | es             |                |        |  |  |  |
| Resets (and delays)                                             | Core <u>POR</u> , VDD POR, VBAT POR, BOR, RESET Instruction,<br>MCLR, WDT, Illegal Opcode, REPEAT Instruction,<br>Hardware Traps, Configuration Word Mismatch<br>(OST, PLL Lock) |               |                  |                |                |        |  |  |  |
| Instruction Set                                                 | 7                                                                                                                                                                                | 7 Base Instru | ctions, Multiple | e Addressing N | Node Variation | าร     |  |  |  |
| Packages                                                        |                                                                                                                                                                                  |               | 100-Pii          | n TQFP         |                |        |  |  |  |

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

**2:** Some instantiations of these modules are only available through remappable pins.





| TABLE 4-1: | PROGRAM MEMORY SIZES AND BOUNDARIES |
|------------|-------------------------------------|
|------------|-------------------------------------|

|                 | Program Memory   | / Upper Boundary (I |                    |                                |                                |
|-----------------|------------------|---------------------|--------------------|--------------------------------|--------------------------------|
| Device          | Single Partition | Dual Partitio       | n Flash Mode       | Write<br>Blocks <sup>(1)</sup> | Erase<br>Blocks <sup>(1)</sup> |
|                 | Flash Mode       | Active Partition    | Inactive Partition |                                |                                |
| PIC24FJ256GX4XX | 02AFFEh (88K)    | 0157FEh(44K)        | 0157FEh(44K)       | 1376                           | 172                            |
| PIC24FJ128GX4XX | 0157FEh(44K)     | 00ABFEh (22K)       | 00ABFEh (22K)      | 688                            | 86                             |
| PIC24FJ64GX4XX  | 00AFFEh (22K)    | 0057FEh (11K)       | 0057FEh (11K)      | 352                            | 44                             |

Note 1: One Write Block = 64 Instruction Words; One Erase Block = 512 Instruction Words.

The Boot Sequence Configuration Words (FBTSEQ) determine whether Partition 1 or Partition 2 will be active after Reset. If the part is operating in Dual Partition mode, the partition with the lower boot sequence number will operate as the Active Panel (FBTSEQ is unused in Single Partition mode). The partitions can be switched between Active and Inactive by reprogramming their boot sequence numbers, but the Active Partition will not change until a device Reset is performed. If both boot sequence numbers are the same, or if both are corrupted, the part will use Partition 1 as the Active Partition. If only one boot sequence number is corrupted, the device will use the partition without a corrupted boot sequence number as the Active Partition.

The user can also change which partition is active at run time using the BOOTSWP instruction. Issuing a BOOTSWP instruction does not affect which partition will be the Active Partition after a Reset. Figure 4-4 demonstrates how the relationship between Partitions 1 and 2, shown in red and blue, respectively, and the Active and Inactive Partitions are affected by reprogramming the boot sequence number or issuing a BOOTSWP instruction.

The P2ACTIV bit (NVMCON<10>) can be used to determine which physical partition is the Active Partition. If P2ACTIV = 1, Partition 2 is active; if P2ACTIV = 0, Partition 1 is active.

#### 4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in **Section 6.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address (TBLPAG) register. TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.

|       | 99303                     | gram Space                                                                |                                     |                                             |                     |
|-------|---------------------------|---------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|---------------------|
|       |                           |                                                                           |                                     |                                             |                     |
| 23 25 | 9<br>0200005<br>0200005 _ |                                                                           | 23                                  |                                             | 8 0                 |
|       | 200000k                   | versen<br>versen<br>versen<br>versen<br>vine address ha<br>wine the carps | defined by 1995<br>alions are chose | )<br>)<br>flori is distanti<br>REUPAO conje | ined by the data EA |

### FIGURE 4-11: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

| TABLE 5    | 5-1: | DMA CHANNEL T          | RIGGER  | SOU  | RCES                   |         |      |                        |  |  |
|------------|------|------------------------|---------|------|------------------------|---------|------|------------------------|--|--|
| CHSEL<6:0> |      | Trigger (Interrupt)    | CHSEL<  | 6:0> | Trigger (Interrupt)    | CHSEL<  | 6:0> | Trigger (Interrupt)    |  |  |
| 0000000    | 00h  | (Unimplemented)        | 0100110 | 26h  | SPI1 Receive Event     | 1001100 | 4Ch  | DMA Channel 4          |  |  |
| 0000001    | 01h  | SCCP7 IC/OC Event      | 0100111 | 27h  | SPI1 Transmit Event    | 1001101 | 4Dh  | DMA Channel 3          |  |  |
| 0000010    | 02h  | SCCP7 Timer            | 0101000 | 28h  | SPI1 General Event     | 1001110 | 4Eh  | DMA Channel 2          |  |  |
| 0000011    | 03h  | SCCP6 IC/OC Event      | 0101001 | 29h  | (Reserved, do not use) | 1001111 | 4Fh  | DMA Channel 1          |  |  |
| 0000100    | 04h  | SCCP6 Timer            | 0101010 | 2Ah  | (Reserved, do not use) | 1010000 | 50h  | DMA Channel 0          |  |  |
| 0000101    | 05h  | SCCP5 IC/OC Event      | 0101011 | 2Bh  | (Reserved, do not use) | 1010001 | 51h  | A/D Converter          |  |  |
| 0000110    | 06h  | SCCP5 Timer            | 0101100 | 2Ch  | I2C3 Slave Event       | 1010010 | 52h  | USB                    |  |  |
| 0000111    | 07h  | SCCP4 IC/OC Event      | 0101101 | 2Dh  | I2C3 Master Event      | 1010011 | 53h  | EPMP                   |  |  |
| 0001000    | 08h  | SCCP4 Timer            | 0101110 | 2Eh  | I2C3 Collision Event   | 1010100 | 54h  | HLVD                   |  |  |
| 0001001    | 09h  | (Reserved, do not use) | 0101111 | 2Fh  | I2C2 Slave Event       | 1010101 | 55h  | CRC Done               |  |  |
| 0001010    | 0Ah  | (Reserved, do not use) | 0110000 | 30h  | I2C2 Master Event      | 1010110 | 56h  | LCD                    |  |  |
| 0001011    | 0Bh  | SCCP3 IC/OC Event      | 0110001 | 31h  | I2C2 Collision Event   | 1010111 | 57h  | Crypto Done            |  |  |
| 0001100    | 0Ch  | SCCP3 Timer            | 0110010 | 32h  | I2C1 Slave Event       | 1011000 | 58h  | Crypto OTP Done        |  |  |
| 0001101    | 0Dh  | SCCP2 IC/OC Event      | 0110011 | 33h  | I2C1 Master Event      | 1011001 | 59h  | CLC4 Output            |  |  |
| 0001110    | 0Eh  | SCCP2 Timer            | 0110100 | 34h  | I2C1 Collision Event   | 1011010 | 5Ah  | CLC3 Output            |  |  |
| 0001111    | 0Fh  | MCCP1 IC/OC Event      | 0110101 | 35h  | UART6 Transmit         | 1011011 | 5Bh  | CLC2 Output            |  |  |
| 0010000    | 10h  | MCCP1 Timer            | 0110110 | 36h  | UART6 Receive          | 1011100 | 5Ch  | CLC1 Output            |  |  |
| 0010001    | 11h  | Output Compare 6       | 0110111 | 37h  | UART6 Error            | 1011101 | 5Dh  | (Reserved, do not use) |  |  |
| 0010010    | 12h  | Output Compare 5       | 0111000 | 38h  | UART5 Transmit         | 1011110 | 5Eh  | RTCC                   |  |  |
| 0010011    | 13h  | Output Compare 4       | 0111001 | 39h  | UART5 Receive          | 1011111 | 5Fh  | Timer5                 |  |  |
| 0010100    | 14h  | Output Compare 3       | 0111010 | 3Ah  | UART5 Error            | 1100000 | 60h  | Timer4                 |  |  |
| 0010101    | 15h  | Output Compare 2       | 0111011 | 3Bh  | UART4 Transmit         | 1100001 | 61h  | Timer3                 |  |  |
| 0010110    | 16h  | Output Compare 1       | 0111100 | 3Ch  | UART4 Receive          | 1100010 | 62h  | Timer2                 |  |  |
| 0010111    | 17h  | Input Capture 6        | 0111101 | 3Dh  | UART4 Error            | 1100011 | 63h  | Timer1                 |  |  |
| 0011000    | 18h  | Input Capture 5        | 0111110 | 3Eh  | UART3 Transmit         | 1100100 | 64h  | (Reserved, do not use) |  |  |
| 0011001    | 19h  | Input Capture 4        | 0111111 | 3Fh  | UART3 Receive          | 1100101 | 65h  | DAC                    |  |  |
| 0011010    | 1Ah  | Input Capture 3        | 1000000 | 40h  | UART3 Error            | 1100110 | 66h  | CTMU                   |  |  |
| 0011011    | 1Bh  | Input Capture 2        | 1000001 | 41h  | UART2 Transmit         | 1100111 | 67h  | Comparators Event      |  |  |
| 0011100    | 1Ch  | Input Capture 1        | 1000010 | 42h  | UART2 Receive          | 1101000 | 68h  | External Interrupt 4   |  |  |
| 0011101    | 1Dh  | SPI4 Receive Event     | 1000011 | 43h  | UART2 Error            | 1101001 | 69h  | External Interrupt 3   |  |  |
| 0011110    | 1Eh  | SPI4 Transmit Event    | 1000100 | 44h  | UART1 Transmit         | 1101010 | 6Ah  | External Interrupt 2   |  |  |
| 0011111    | 1Fh  | SPI4 General Event     | 1000101 | 45h  | UART1 Receive          | 1101011 | 6Bh  | External Interrupt 1   |  |  |
| 0100000    | 20h  | SPI3 Receive Event     | 1000110 | 46h  | UART1 Error            | 1101100 | 6Ch  | External Interrupt 0   |  |  |
| 0100001    | 21h  | SPI3 Transmit Event    | 1000111 | 47h  | (Reserved, do not use) | 1101101 | 6Dh  | Interrupt-on-Change    |  |  |
| 0100010    | 22h  | SPI3 General Event     | 1001000 | 48h  | (Reserved, do not use) | 1101110 | 6Eh  |                        |  |  |
| 0100011    | 23h  | SPI2 Receive Event     | 1001001 | 49h  | (Reserved, do not use) | •       | •    |                        |  |  |
| 0100100    | 24h  | SPI2 Transmit Event    | 1001010 | 4Ah  | (Reserved, do not use) | •       | •    | (Unimplemented)        |  |  |
| 0100101    | 25h  | SPI2 General Event     | 1001011 | 4Bh  | DMA Channel 5          | 1111111 | 7Fh  |                        |  |  |

## TABLE 5-1: DMA CHANNEL TRIGGER SOURCES

| Reset Type      | Clock Source | SYSRST Delay           | System Clock<br>Delay | Notes         |
|-----------------|--------------|------------------------|-----------------------|---------------|
| POR             | EC           | TPOR + TSTARTUP + TRST |                       | 1, 2, 3       |
|                 | ECPLL        | TPOR + TSTARTUP + TRST | Тьоск                 | 1, 2, 3, 5    |
|                 | XT, HS, SOSC | TPOR + TSTARTUP + TRST | Тоѕт                  | 1, 2, 3, 4    |
|                 | XTPLL, HSPLL | TPOR + TSTARTUP + TRST | Tost + Tlock          | 1, 2, 3, 4, 5 |
|                 | FRC, FRCDIV  | TPOR + TSTARTUP + TRST | TFRC                  | 1, 2, 3, 6, 7 |
|                 | FRCPLL       | TPOR + TSTARTUP + TRST | TFRC + TLOCK          | 1, 2, 3, 5, 6 |
|                 | LPRC         | TPOR + TSTARTUP + TRST | Tlprc                 | 1, 2, 3, 6    |
| BOR             | EC           | TSTARTUP + TRST        | —                     | 2, 3          |
|                 | ECPLL        | TSTARTUP + TRST        | Тьоск                 | 2, 3, 5       |
|                 | XT, HS, SOSC | TSTARTUP + TRST        | Тоѕт                  | 2, 3, 4       |
|                 | XTPLL, HSPLL | TSTARTUP + TRST        | Tost + Tlock          | 2, 3, 4, 5    |
|                 | FRC, FRCDIV  | TSTARTUP + TRST        | TFRC                  | 2, 3, 6, 7    |
|                 | FRCPLL       | TSTARTUP + TRST        | TFRC + TLOCK          | 2, 3, 5, 6    |
|                 | LPRC         | TSTARTUP + TRST        | Tlprc                 | 2, 3, 6       |
| MCLR            | Any Clock    | Trst                   |                       | 3             |
| WDT             | Any Clock    | TRST                   | _                     | 3             |
| Software        | Any clock    | Trst                   |                       | 3             |
| Illegal Opcode  | Any Clock    | TRST                   |                       | 3             |
| Uninitialized W | Any Clock    | TRST                   | _                     | 3             |
| Trap Conflict   | Any Clock    | Trst                   | _                     | 3             |

### TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

**Note 1:** TPOR = Power-on Reset Delay (10  $\mu$ s nominal).

- **2:** TSTARTUP = TVREG.
- **3:** TRST = Internal State Reset Time (2 μs nominal).
- **4:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL Lock Time.
- 6: TFRC and TLPRC = RC Oscillator Start-up Times.
- 7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.

#### 7.4.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

#### 7.4.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

| TABLE 8-2: IMPLEMENTED IN            | Vector |       | IVT     | Interrupt Bit Locations |          |              |  |
|--------------------------------------|--------|-------|---------|-------------------------|----------|--------------|--|
| Interrupt Source                     | Number | IRQ # | Address | Flag                    | Enable   | Priority     |  |
| ADC1 Interrupt                       | 21     | 13    | 00002Eh | IFS0<13>                | IEC0<13> | IPC3<6:4>    |  |
| CLC1                                 | 104    | 96    | 0000D4h | IFS6<0>                 | IEC6<0>  | IPC24<2:0>   |  |
| CLC2                                 | 105    | 97    | 0000D6h | IFS6<1>                 | IEC6<1>  | IPC24<6:4>   |  |
| CLC3                                 | 106    | 98    | 0000D8h | IFS6<2>                 | IEC6<2>  | IPC24<10:8>  |  |
| CLC4                                 | 107    | 99    | 0000DAh | IFS6<3>                 | IEC6<3>  | IPC24<14:12> |  |
| Comparator Event                     | 26     | 18    | 000038h | IFS1<2>                 | IEC1<2>  | IPC4<10:8>   |  |
| CRC Generator                        | 75     | 67    | 00009Ah | IFS4<3>                 | IEC4<3>  | IPC16<14:12> |  |
| Crypto Buffer Ready                  | 42     | 34    | 000058h | IFS2<2>                 | IEC2<2>  | IPC8<10:8>   |  |
| Crypto Operation Done                | 63     | 55    | 000082h | IFS3<7>                 | IEC3<7>  | IPC13<14:12> |  |
| Crypto Key Store Program Done        | 64     | 56    | 000084h | IFS3<8>                 | IEC3<8>  | IPC14<2:0>   |  |
| Crypto Rollover                      | 43     | 35    | 00005Ah | IFS2<3>                 | IEC2<3>  | IPC8<14:12>  |  |
| CTMU Event                           | 85     | 77    | 0000AEh | IFS4<13>                | IEC4<13> | IPC19<6:4>   |  |
| DAC                                  | 86     | 78    | 0000B0h | IFS4<14>                | IEC4<14> | IPC19<10:8>  |  |
| DMA Channel 0                        | 12     | 4     | 00001Ch | IFS0<4>                 | IEC0<4>  | IPC1<2:0>    |  |
| DMA Channel 1                        | 22     | 14    | 000030h | IFS0<14>                | IEC0<14> | IPC3<10:8>   |  |
| DMA Channel 2                        | 32     | 24    | 000044h | IFS1<8>                 | IEC1<8>  | IPC6<2:0>    |  |
| DMA Channel 3                        | 44     | 36    | 00005Ch | IFS2<4>                 | IEC2<4>  | IPC9<2:0>    |  |
| DMA Channel 4                        | 54     | 46    | 000070h | IFS2<14>                | IEC2<14> | IPC11<10:8>  |  |
| DMA Channel 5                        | 69     | 61    | 00008Eh | IFS3<13>                | IEC3<13> | IPC15<6:4>   |  |
| Enhanced Parallel Master Port (EPMP) | 53     | 45    | 00006Eh | IFS2<13>                | IEC2<13> | IPC11<6:4>   |  |
| External Interrupt 0                 | 8      | 0     | 000014h | IFS0<0>                 | IEC0<0>  | IPC0<2:0>    |  |
| External Interrupt 1                 | 28     | 20    | 00003Ch | IFS1<4>                 | IEC1<4>  | IPC5<2:0>    |  |
| External Interrupt 2                 | 37     | 29    | 00004Eh | IFS1<13>                | IEC1<13> | IPC7<6:4>    |  |
| External Interrupt 3                 | 61     | 53    | 00007Eh | IFS3<5>                 | IEC3<5>  | IPC13<6:4>   |  |
| External Interrupt 4                 | 62     | 54    | 000080h | IFS3<6>                 | IEC3<6>  | IPC13<10:8>  |  |
| Flash Write/Program Done             | 23     | 15    | 000032h | IFS0<15>                | IEC0<15> | IPC3<14:12>  |  |
| FRC Self-Tune                        | 114    | 106   | 0000E8h | IFS6<10>                | IEC6<10> | IPC26<10:8>  |  |
| High/Low-Voltage Detect (HLVD)       | 80     | 72    | 0000A4h | IFS4<8>                 | IEC4<8>  | IPC18<2:0>   |  |
| I2C1 Bus Collision                   | 92     | 84    | 0000BCh | IFS5<4>                 | IEC5<4>  | IPC21<2:0>   |  |
| I2C1 Master Event                    | 25     | 17    | 000036h | IFS1<1>                 | IEC1<1>  | IPC4<6:4>    |  |
| I2C1 Slave Event                     | 24     | 16    | 000034h | IFS1<0>                 | IEC1<0>  | IPC4<2:0>    |  |
| I2C2 Bus Collision                   | 93     | 85    | 0000BEh | IFS5<5>                 | IEC5<5>  | IPC21<6:4>   |  |
| I2C2 Master Event                    | 58     | 50    | 000078h | IFS3<2>                 | IEC3<2>  | IPC12<10:8>  |  |
| I2C2 Slave Event                     | 57     | 49    | 000076h | IFS3<1>                 | IEC3<1>  | IPC12<6:4>   |  |
| I2C3 Master Event                    | 79     | 71    | 0000A2h | IFS4<7>                 | IEC4<7>  | IPC17<14:12> |  |
| I2C3 Slave Event                     | 78     | 70    | 0000A0h | IFS4<6>                 | IEC4<6>  | IPC17<10:8>  |  |
| IC23 Collision                       | 117    | 109   | 0000EEh | IFS6<13>                | IEC6<13> | IPC27<6:4>   |  |
| Input Capture 1                      | 9      | 1     | 000016h | IFS0<1>                 | IEC0<1>  | IPC0<6:4>    |  |
| Input Capture 2                      | 13     | 5     | 00001Eh | IFS0<5>                 | IEC0<5>  | IPC1<6:4>    |  |
| Input Capture 3                      | 45     | 37    | 00005Eh | IFS2<5>                 | IEC2<5>  | IPC9<6:4>    |  |
| Input Capture 4                      | 46     | 38    | 000060h | IFS2<6>                 | IEC2<6>  | IPC9<10:8>   |  |
| Input Capture 5                      | 47     | 39    | 000062h | IFS2<7>                 | IEC2<7>  | IPC9<14:12>  |  |
| Input Capture 6                      | 48     | 40    | 000064h | IFS2<8>                 | IEC2<8>  | IPC10<2:0>   |  |
| Interrupt-on-Change (IOC)            | 27     | 19    | 00003Ah | IFS1<3>                 | IEC1<3>  | IPC4<14:12>  |  |
| JTAG                                 | 125    | 117   | 0000FEh | IFS7<5>                 | IEC7<5>  | IPC29<6:4>   |  |
| LCD                                  | 108    | 100   | 0000DCh | IFS6<4>                 | IEC6<4>  | IPC25<2:0>   |  |

#### TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

| R/W-0        | R-0, HSC                                                                                       | R/W-0                                                                | U-0            | U-0               | U-0              | U-0             | R/W-0  |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|-------------------|------------------|-----------------|--------|--|--|--|--|--|--|
| GIE          | DISI                                                                                           | SWTRAP                                                               | _              | _                 | _                | _               | ALTIVT |  |  |  |  |  |  |
| bit 15       |                                                                                                |                                                                      |                |                   |                  |                 | bit    |  |  |  |  |  |  |
|              |                                                                                                |                                                                      | DAMO           | DAVO              | DANA             | DAMA            | DANO   |  |  |  |  |  |  |
| U-0          | U-0                                                                                            | U-0                                                                  | R/W-0          | R/W-0             | R/W-0            | R/W-0           | R/W-0  |  |  |  |  |  |  |
|              | _                                                                                              | —                                                                    | INT4EP         | INT3EP            | INT2EP           | INT1EP          | INT0EP |  |  |  |  |  |  |
| bit 7        |                                                                                                |                                                                      |                |                   |                  |                 | bit    |  |  |  |  |  |  |
| Legend:      |                                                                                                | HSC = Hardwa                                                         | are Settable/C | learable bit      |                  |                 |        |  |  |  |  |  |  |
| R = Readab   | le bit                                                                                         | W = Writable b                                                       | bit            | U = Unimplem      | nented bit, read | l as '0'        |        |  |  |  |  |  |  |
| -n = Value a | t POR                                                                                          | '1' = Bit is set                                                     |                | '0' = Bit is clea | ared             | x = Bit is unkn | iown   |  |  |  |  |  |  |
|              |                                                                                                |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
| bit 15       |                                                                                                | nterrupt Enable                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              |                                                                                                | and associated                                                       | •              |                   | bled             |                 |        |  |  |  |  |  |  |
| L:L 4 4      |                                                                                                | s are disabled; t                                                    | •              | napled            |                  |                 |        |  |  |  |  |  |  |
| bit 14       |                                                                                                | struction Status                                                     |                |                   |                  |                 |        |  |  |  |  |  |  |
|              |                                                                                                | 1 = DISI instruction is active<br>0 = DISI instruction is not active |                |                   |                  |                 |        |  |  |  |  |  |  |
| bit 13       |                                                                                                | oftware Trap Sta                                                     |                |                   |                  |                 |        |  |  |  |  |  |  |
|              | 1 = Generates a software trap                                                                  |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              | 0 = Software                                                                                   | trap is not requ                                                     | ested          |                   |                  |                 |        |  |  |  |  |  |  |
| bit 12-9     | Unimplemen                                                                                     | ted: Read as '0                                                      | ,              |                   |                  |                 |        |  |  |  |  |  |  |
| bit 8        | ALTIVT: Enable Alternate Interrupt Vector Table bit                                            |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              |                                                                                                | ernate Interrupt<br>ndard (default)                                  |                | or Table          |                  |                 |        |  |  |  |  |  |  |
| bit 7-5      | Unimplemen                                                                                     | ted: Read as '0                                                      | 3              |                   |                  |                 |        |  |  |  |  |  |  |
| bit 4        | INT4EP: External Interrupt 4 Edge Detect Polarity Select bit                                   |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              |                                                                                                | on negative edg                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
| bit 3        | INT3EP: External Interrupt 3 Edge Detect Polarity Select bit                                   |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              | 1 = Interrupt                                                                                  | on negative edg                                                      | ge             | 2                 |                  |                 |        |  |  |  |  |  |  |
| bit 2        | 0 = Interrupt on positive edge                                                                 |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              | INT2EP: External Interrupt 2 Edge Detect Polarity Select bit<br>1 = Interrupt on negative edge |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              | 0 = Interrupt on positive edge                                                                 |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
| bit 1        | INT1EP: External Interrupt 1 Edge Detect Polarity Select bit                                   |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
|              |                                                                                                | on negative edg                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |
| bit 0        |                                                                                                | ernal Interrupt 0                                                    |                | Polarity Select b | bit              |                 |        |  |  |  |  |  |  |
|              |                                                                                                | on negative edg                                                      | -              |                   | -                |                 |        |  |  |  |  |  |  |
|              | 0 = Interrupt                                                                                  |                                                                      |                |                   |                  |                 |        |  |  |  |  |  |  |

#### REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

### 11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

#### 11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

### 11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits, which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

## 11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Information on voltage tolerance is provided in the pinout diagrams in the beginning of this data sheet. For more information, refer to **Section 36.0** "**Electrical Characteristics**" for more details.

| Pin Function   | ANSx<br>Setting | TRISx<br>Setting | Comments                                                                                                                             |
|----------------|-----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Analog Input   | 1               | 1                | It is recommended to keep ANSx = 1.                                                                                                  |
| Analog Output  | 1               | 1                | It is recommended to keep ANSx = 1.                                                                                                  |
| Digital Input  | 0               | 1                | Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read. |
| Digital Output | 0               | 0                | Make sure to disable the analog output function on the pin if any is present.                                                        |

#### TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

## 11.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

#### 11.5.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ256GA412/GB412 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 32 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered: RP0 through RP31. See Table 1-4 and Table 1-5 for a summary of pinout options in each package offering.

### 11.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

PPS is not available for analog peripherals or these digital peripherals:

- I<sup>2</sup>C (input and output)
- RTCC Alarm and Power Gate Outputs
- EPMP Signals (input and output)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

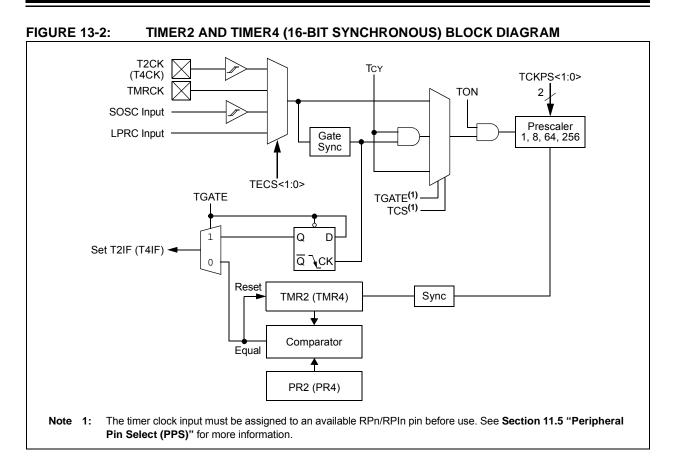
#### 11.5.2.1 Peripheral Pin Select Function Priority

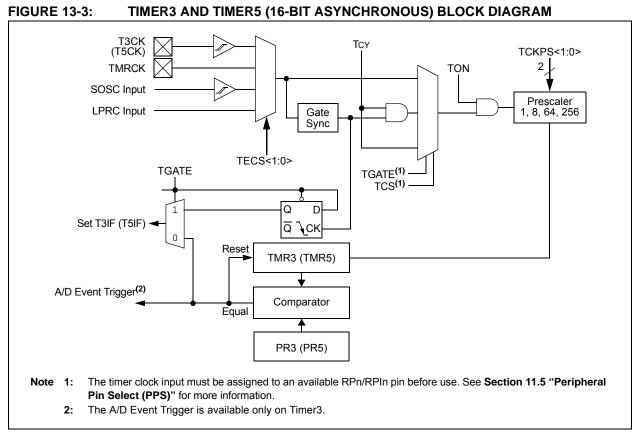
Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

#### 11.5.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.


The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.


#### 11.5.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers (Register 11-3 through Register 11-22) are used to configure peripheral input mapping. Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral.

Table 11-11 summarizes the remappable inputs available with Peripheral Pin Select. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

**Note:** Unless otherwise noted, all remappable inputs utilize Schmitt Trigger buffers.





NOTES:

#### REGISTER 25-3: CRYSTAT: CRYPTOGRAPHIC STATUS REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R-x, HSC <sup>(1)</sup> | R-0, HSC <sup>(1)</sup> | R/C-0, HS <sup>(2)</sup> | R/C-0, HS <sup>(2)</sup> | U-0 | R-0, HSC <sup>(1)</sup> | R-x, HSC <sup>(1)</sup>  | R-x, HSC <sup>(1)</sup>  |
|-------------------------|-------------------------|--------------------------|--------------------------|-----|-------------------------|--------------------------|--------------------------|
| CRYBSY <sup>(4)</sup>   | TXTABSY                 | CRYABRT <sup>(5)</sup>   | ROLLOVR                  | —   | MODFAIL <sup>(3)</sup>  | KEYFAIL <sup>(3,4)</sup> | PGMFAIL <sup>(3,4)</sup> |
| bit 7                   |                         |                          |                          |     |                         |                          | bit 0                    |

| Legend: C = Clearable bit |                            | HSC = Hardware Settable/Clearable bit |                    |  |
|---------------------------|----------------------------|---------------------------------------|--------------------|--|
| R = Readable bit          | HS = Hardware Settable bit | U = Unimplemented bit, read as '0'    |                    |  |
| -n = Value at POR         | '1' = Bit is set           | '0' = Bit is cleared                  | x = Bit is unknown |  |

| bit 15-8 | Unimplemented: Read as '0'                                                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 7    | CRYBSY: Cryptographic Engine Busy Status bit <sup>(1, 4)</sup>                                                                                                                                            |
|          | 1 = A cryptographic operation is in progress                                                                                                                                                              |
|          | 0 = No cryptographic operation is in progress                                                                                                                                                             |
| bit 6    | TXTABSY: CRYTXTA Busy Status bit <sup>(1)</sup>                                                                                                                                                           |
|          | 1 = The CRYTXTA register is busy and may not be written to                                                                                                                                                |
|          | 0 = The CRYTXTA is free and may be written to                                                                                                                                                             |
| bit 5    | CRYABRT: Cryptographic Operation Aborted Status bit <sup>(2,5)</sup>                                                                                                                                      |
|          | 1 = Last operation was aborted by clearing the CRYGO bit in software                                                                                                                                      |
|          | 0 = Last operation completed normally (CRYGO cleared in hardware)                                                                                                                                         |
| bit 4    | ROLLOVR: Counter Rollover Status bit <sup>(2)</sup>                                                                                                                                                       |
|          | 1 = The CRYTXTB counter rolled over on the last CTR mode operation; once set, this bit must be                                                                                                            |
|          | cleared by software before the CRYGO bit can be set again<br>0 = No rollover event has occurred                                                                                                           |
|          |                                                                                                                                                                                                           |
| bit 3    | Unimplemented: Read as '0'                                                                                                                                                                                |
| bit 2    | <b>MODFAIL:</b> Mode Configuration Fail Flag bit <sup>(1,3)</sup>                                                                                                                                         |
|          | 1 = Currently selected operating and Cipher mode configuration is invalid; the CRYWR bit cannot be                                                                                                        |
|          | set until a valid mode is selected (automatically cleared by hardware with any valid configuration)<br>0 = Currently selected operating and Cipher mode configurations are valid                          |
| bit 1    | <b>KEYFAIL:</b> Key Configuration Fail Status bit <sup>(1,3,4)</sup>                                                                                                                                      |
| DILI     | See Table 25-1 and Table 25-2 for invalid key configurations.                                                                                                                                             |
|          | 1 = Currently selected key and mode configurations are invalid; the CRYWR bit cannot be set until a                                                                                                       |
|          | valid mode is selected (automatically cleared by hardware with any valid configuration)                                                                                                                   |
|          | 0 = Currently selected configurations are valid                                                                                                                                                           |
| bit 0    | PGMFAIL: Key Storage/Configuration Program Fail Flag bit <sup>(1,3,4)</sup>                                                                                                                               |
|          | 1 = The page indicated by KEYPG<3:0> is reserved or locked; the CRYWR bit cannot be set and no                                                                                                            |
|          | programming operation can be started                                                                                                                                                                      |
|          | 0 = The page indicated by KEYPG<3:0> is available for programming                                                                                                                                         |
| Note 1:  | These bits are reset on system Resets or whenever the CRYMD bit (PMD8<0>) is set.                                                                                                                         |
| 2:       | These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.                                                                                                                 |
| 3:       | These bits are functional even when the module is disabled (CRYON = 0); this allows mode configurations                                                                                                   |
| •••      | to be validated for compatibility before enabling the module.                                                                                                                                             |
| 4:       | These bits are automatically set during all OTP read operations, including the initial read at POR. Once the read is completed, the bit assumes the proper state that reflects the current configuration. |

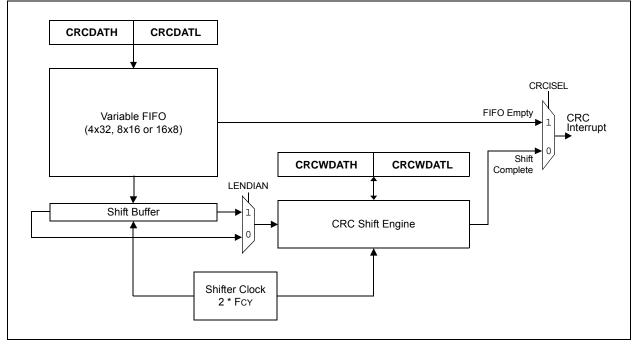
5: If this bit is set, a cryptographic operation cannot be performed.

| Mode of     | KEVMOD 4.0  |                     | Key                                        | Source                          |             |  |
|-------------|-------------|---------------------|--------------------------------------------|---------------------------------|-------------|--|
| Operation   | KEYMOD<1:0> | KEYSRC<3:0> -       | SKEYEN = 0                                 | SKEYEN = 1                      | OTP Address |  |
|             |             | 0000 <b>(1)</b>     | CRYKE                                      | _                               |             |  |
|             |             | 0001                | AES Key #1 Key Config Error <sup>(2)</sup> |                                 | <127:0>     |  |
|             |             | 0010                | AES                                        | Key #2                          | <255:128>   |  |
|             |             | 0011                | AES                                        | Key #3                          | <383:256>   |  |
|             |             | 0100                | AES                                        | Key #4                          | <511:384>   |  |
| 128-Bit AES | 00          | 1001                | AES Key                                    | / #5 (RAM)                      | <127:0>     |  |
|             |             | 1010                | AES Key                                    | / #6 (RAM)                      | <255:128>   |  |
|             |             | 1011                | AES Key                                    | / #7 (RAM)                      | <383:256>   |  |
|             |             | 1100                | AES Key                                    | / #8 (RAM)                      | <511:384>   |  |
|             |             | 1111                | Rese                                       |                                 |             |  |
|             |             | All Others          | Key Con                                    | _                               |             |  |
|             |             | <sub>0000</sub> (1) | CRYKEY<191:0>                              |                                 | _           |  |
|             |             | 0001                | AES Key #1                                 | Key Config Error <sup>(2)</sup> | <191:0>     |  |
|             |             | 0010                | AES                                        | <383:192>                       |             |  |
| 192-Bit AES | 01          | 1001                | AES Key                                    | <191:0>                         |             |  |
|             |             | 1010                | AES Key                                    | <383:192>                       |             |  |
|             |             | 1111                | Rese                                       | _                               |             |  |
|             |             | All Others          | Key Config Error <sup>(2)</sup>            |                                 | _           |  |
|             |             | 0000 <b>(1)</b>     | CRYKE                                      | Y<255:0>                        | —           |  |
|             |             | 0001                | AES Key #1                                 | Key Config Error <sup>(2)</sup> | <255:0>     |  |
|             |             | 0010                | AES                                        | Key #2                          | <511:256>   |  |
| 256-Bit AES | 10          | 1001                | AES Key                                    | / #3 (RAM)                      | <255:0>     |  |
|             |             | 1010                | AES Key #4 (RAM)                           |                                 | <511:256>   |  |
|             |             | 1111                | Reserved <sup>(2)</sup>                    |                                 |             |  |
|             |             | All Others          | Key Config Error <sup>(2)</sup>            |                                 |             |  |
| (Reserved)  | 11          | xxxx                | Key Con                                    | ifig Error <sup>(2)</sup>       |             |  |

#### TABLE 25-2: AES KEY MODE/SOURCE SELECTION

Note 1: This configuration is considered a key configuration error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.


## 26.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

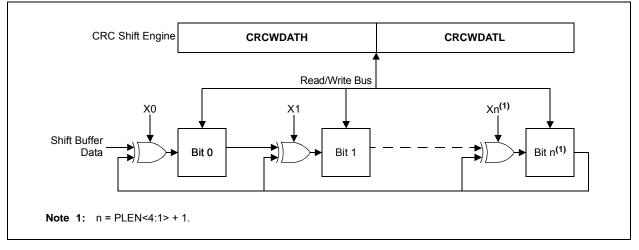

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- · Configurable Interrupt Output
- Data FIFO

Figure 26-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 26-2.

## FIGURE 26-1: CRC MODULE BLOCK DIAGRAM



### FIGURE 26-2: CRC SHIFT ENGINE DETAIL



© 2015-2016 Microchip Technology Inc.

#### **REGISTER 33-10: FDEVOPT1: DEVICE OPTIONS CONFIGURATION WORD**

| U-1    | U-1 | U-1 | U-1                    | U-1      | U-1     | U-1                    | U-1    |
|--------|-----|-----|------------------------|----------|---------|------------------------|--------|
|        | —   |     | —                      | _        |         | —                      | _      |
| bit 23 |     |     |                        |          |         |                        | bit 16 |
|        |     |     |                        |          |         |                        |        |
| U-1    | U-1 | U-1 | U-1                    | U-1      | U-1     | U-1                    | U-1    |
| —      | —   |     | —                      | _        |         | —                      | —      |
| bit 15 |     |     |                        |          |         |                        | bit 8  |
|        |     |     |                        |          |         |                        |        |
| U-1    | U-1 | U-1 | R/PO-1                 | R/PO-1   | R/PO-1  | R/PO-1                 | U-1    |
|        | —   | —   | ALTVREF <sup>(1)</sup> | TMPRWIPE | TMPRPIN | ALTCMPI <sup>(2)</sup> | _      |
| bit 7  |     |     |                        |          |         |                        | bit 0  |
|        |     |     |                        |          |         |                        |        |

| Legend:           | PO = Program Once bit |                             |                    |  |  |
|-------------------|-----------------------|-----------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit      | U = Unimplemented bit, read | d as '0'           |  |  |
| -n = Value at POR | '1' = Bit is set      | '0' = Bit is cleared        | x = Bit is unknown |  |  |

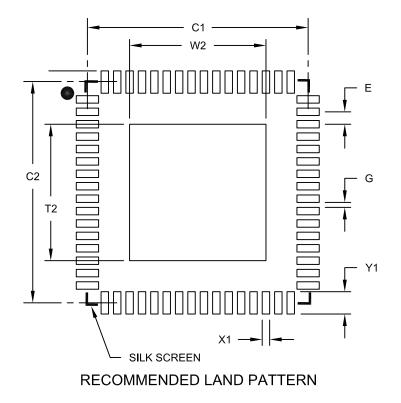
| bit 23-5 | Unimplemented: Read as '1'                                                                                                                                                                      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 4    | ALTVREF: Alternate External Voltage Reference Location Select bit <sup>(1)</sup>                                                                                                                |
|          | <ul> <li>1 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RA10 and RA9, respectively</li> <li>0 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RB0 and RB1, respectively</li> </ul> |
| bit 3    | TMPRWIPE: Erase Key RAM on Tamper Event Enable Pin bit                                                                                                                                          |
|          | 1 = Cryptographic Engine Key RAM is not erased on $\overline{\text{TMPR}}$ pin events<br>0 = Cryptographic Engine Key RAM is erased when a TMPR pin event is detected                           |
| bit 2    | TMPRPIN: Tamper Pin Disable bit                                                                                                                                                                 |
|          | $1 = \overline{\text{TMPR}}$ pin is disabled                                                                                                                                                    |
|          | 0 = TMPR pin is enabled                                                                                                                                                                         |
| bit 1    | ALTCMPI: Alternate Comparator Input Location Select bit <sup>(2)</sup>                                                                                                                          |
|          | 1 = C1INC, C2INC and C3INC are mapped to their default pin locations                                                                                                                            |
|          | 0 = C1INC, C2INC and C3INC are all mapped to RG9                                                                                                                                                |
| bit 0    | Unimplemented: Read as '1'                                                                                                                                                                      |
| Note 1   | I inimplemented on 64-pin devices: maintain this bit as '0' in those devices                                                                                                                    |

- **Note 1:** Unimplemented on 64-pin devices; maintain this bit as '0' in those devices.
  - 2: Unimplemented in PIC24FJXXXGAXXX devices.

| DC CHARACTERISTICS |                       |                     | Standard Operating Condition |                    |           | ons: 2.0V to 3.6V (unless otherwise stated -40°C $\leq$ Ta $\leq$ +85°C for Industrial |                           |  |
|--------------------|-----------------------|---------------------|------------------------------|--------------------|-----------|----------------------------------------------------------------------------------------|---------------------------|--|
| Param<br>No.       | Symbol Characteristic |                     | Min                          | Typ <sup>(1)</sup> | Max Units |                                                                                        | Conditions                |  |
|                    | Vol                   | Output Low Voltage  |                              |                    |           |                                                                                        |                           |  |
| DO10               |                       | I/O Ports           | _                            | —                  | 0.4       | V                                                                                      | IOL = 6.6 mA, VDD = 3.6V  |  |
|                    |                       |                     | _                            | —                  | 0.4       | V                                                                                      | IOL = 5.0 mA, VDD = 2V    |  |
| DO16               |                       | OSCO/CLKO           | _                            | —                  | 0.4       | V                                                                                      | IOL = 6.6 mA, VDD = 3.6V  |  |
|                    |                       |                     | _                            | —                  | 0.4       | V                                                                                      | IOL = 5.0 mA, VDD = 2V    |  |
|                    | Vон                   | Output High Voltage |                              |                    |           |                                                                                        |                           |  |
| DO20               |                       | I/O Ports           | 3.0                          | —                  | —         | V                                                                                      | IOH = -3.0 mA, VDD = 3.6V |  |
|                    |                       |                     | 2.4                          | —                  | —         | V                                                                                      | IOH = -6.0 mA, VDD = 3.6V |  |
|                    |                       |                     | 1.65                         | —                  | —         | V                                                                                      | IOH = -1.0 mA, VDD = 2V   |  |
|                    |                       |                     | 1.4                          | —                  | —         | V                                                                                      | IOH = -3.0 mA, VDD = 2V   |  |
| DO26               |                       | OSCO/CLKO           | 2.4                          | —                  | —         | V                                                                                      | IOH = -6.0 mA, VDD = 3.6V |  |
|                    |                       |                     | 1.4                          | —                  | _         | V                                                                                      | Iон = -1.0 mA, VDD = 2V   |  |

#### TABLE 36-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.


#### TABLE 36-10: DC CHARACTERISTICS: PROGRAM MEMORY

| DC CHARACTERISTICS |        |                                      | Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |                    |     |       |                                         |
|--------------------|--------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|-----------------------------------------|
| Param<br>No.       | Symbol | mbol Characteristic                  |                                                                                                                                                 | Typ <sup>(1)</sup> | Max | Units | Conditions                              |
|                    |        | Program Flash Memory                 |                                                                                                                                                 |                    |     |       |                                         |
| D130               | Eр     | Cell Endurance                       | 20000                                                                                                                                           | —                  | _   | E/W   | -40°C to +85°C                          |
| D131               | Vpr    | VDD for Read                         | VMIN                                                                                                                                            | —                  | 3.6 | V     | VMIN = Minimum operating voltage        |
| D132B              |        | VDD for Self-Timed Write             | VMIN                                                                                                                                            | —                  | 3.6 | V     | VMIN = Minimum operating voltage        |
| D133A              | Tiw    | Self-Timed Word Write<br>Cycle Time  | _                                                                                                                                               | 20                 | —   | μS    |                                         |
|                    |        | Self-Timed Row Write<br>Cycle Time   | _                                                                                                                                               | 1.5                | —   | ms    |                                         |
| D133B              | TIE    | Self-Timed Page Erase<br>Time        | 20                                                                                                                                              | -                  | 40  | ms    |                                         |
| D134               | TRETD  | Characteristic Retention             | 20                                                                                                                                              | —                  | —   | Year  | If no other specifications are violated |
| D135               | IDDP   | Supply Current During<br>Programming | —                                                                                                                                               | 5                  |     | mA    |                                         |

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

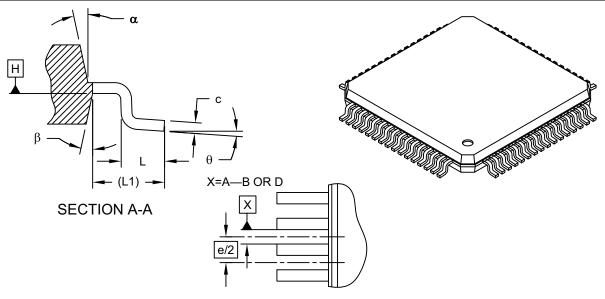
# 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | MILLIMETERS      |      |      |      |
|----------------------------|------------------|------|------|------|
| Dimensior                  | Dimension Limits |      |      | MAX  |
| Contact Pitch              | Contact Pitch E  |      |      |      |
| Optional Center Pad Width  | W2               |      |      | 5.50 |
| Optional Center Pad Length | T2               |      |      | 5.50 |
| Contact Pad Spacing        | C1               |      | 8.90 |      |
| Contact Pad Spacing N      | C2               |      | 8.90 |      |
| Contact Pad Width (X64)    | X1               |      |      | 0.30 |
| Contact Pad Length (X64)   | Y1               |      |      | 0.85 |
| Distance Between Pads      | G                | 0.20 |      |      |

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A

### 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



## DETAIL 1

|                          | MILLIMETERS |          |           |      |
|--------------------------|-------------|----------|-----------|------|
| Dimension                | Limits      | MIN      | NOM       | MAX  |
| Number of Leads          | Ν           |          | 64        |      |
| Lead Pitch               | е           |          | 0.50 BSC  |      |
| Overall Height           | Α           | -        | -         | 1.20 |
| Molded Package Thickness | A2          | 0.95     | 1.00      | 1.05 |
| Standoff                 | A1          | 0.05     | -         | 0.15 |
| Foot Length              | L           | 0.45     | 0.60      | 0.75 |
| Footprint                | L1          | 1.00 REF |           |      |
| Foot Angle               | ¢           | 0°       | 3.5°      | 7°   |
| Overall Width            | E           |          | 12.00 BSC |      |
| Overall Length           | D           |          | 12.00 BSC |      |
| Molded Package Width     | E1          |          | 10.00 BSC |      |
| Molded Package Length    | D1          |          | 10.00 BSC |      |
| Lead Thickness           | С           | 0.09     | -         | 0.20 |
| Lead Width               | b           | 0.17     | 0.22      | 0.27 |
| Mold Draft Angle Top     | α           | 11°      | 12°       | 13°  |
| Mold Draft Angle Bottom  | β           | 11°      | 12°       | 13°  |

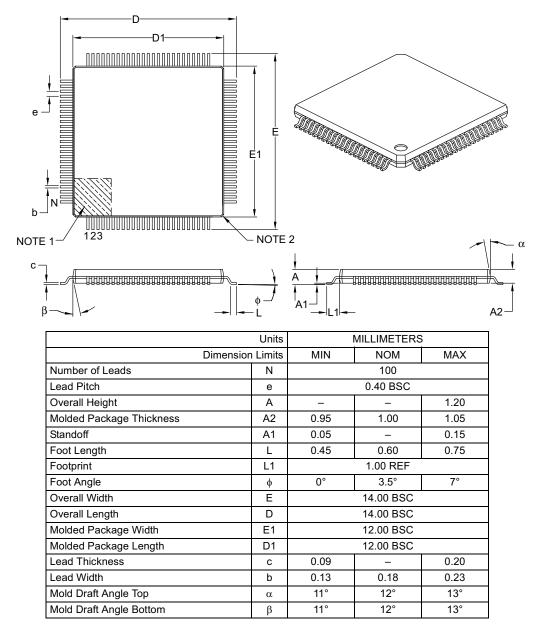
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

### 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B